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Abstract. In this article we construct, both asymptotically and numerically, multi-bump, blow-
up, self-similar solutions to the complex Ginzburg-Landau equation in the limit of small dispersion.
Through a careful asymptotic analysis, involving a balance of both algebraic and exponential terms,
we determine the parameter range over which these solutions may exist. Most intriguingly, we
determine a branch of solutions that are not perturbations of solutions to the nonlinear Schrödinger
equation, moreover, they are not monotone but they are stable. Furthermore, these ring-like solutions
exist over a broader parameter regime than the monotone profile.

1. Introduction. The complex Ginzburg-Landau equation (CGL),

i
∂Φ

∂t
+ (1 − iε)∇2Φ + (1 + iδ)|Φ|2Φ = 0, x ∈ Rd, t > 0 (1.1)

arises as a model equation in a variety of problems from physics, biology and chemistry.
These include nonlinear optics, models of turbulence, Rayleigh-Bénard convection,
superconductivity, superfluidity, Taylor-Couette flow and reaction-diffusion systems,
see [18, 2, 23, 7, 8] and in particular the review article [1]. The CGL can be seen
as a normal form that describes the leading order behaviour of small perturbations
in ‘marginally unstable’ systems of nonlinear partial differential equations defined on
unbounded domains, [17]. Hence, it is relevant for understanding the dynamics of
‘instabilities’ in a wide variety of physical and other contexts. The coefficients in
the equation can be expressed in terms of the coefficients of the underlying system of
PDE’s and thus their meaning depends on the problem at hand. As such, in this paper
we would like to consider the dynamics of the CGL for a wide range of parameters.

In the limit of ε = δ = 0 the CGL reduces to the well known Nonlinear Schrödinger
equation (NLS), which lies at the heart of many physical problems related to wave
modulation. This limit can be obtained from the standard form of the complex
Ginzburg-Landau equation

At = rA+ (1 + ib)∇2A+ (1 + ic)|A|2A, b, c ∈ R

by rescaling and considering the limit |b|, |c| → ∞. The case of ε > 0 which we
consider in this paper is a dissipative perturbation of the NLS.

The cubic NLS has the important property that when posed in dimension d ≥ 2,
there are sets of initial data that lead to solutions which become infinite (blow-up) at
a finite time T . This phenomenon is called self-focusing in the context of nonlinear
optics and collapse when applied to problems on turbulence. We will study the related
question of blow-up in the CGL in this article. We focus on ε� 1 and δ � 1 to study
the case where the CGL can be seen as a small perturbation of the NLS.
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Blow-up in the NLS has been extensively studied by many authors, and a recent
monograph [24] gives a survey of the current literature. The dimension d = 2 is
critical for the cubic NLS and marks the boundary between blow-up and integrable
behaviour. When d = 2 the singularity formation is approximately self-similar where
‖Φ‖∞ is believed to be proportional to log | log(T−t)|(T−t)−1/2 [24, 15]. When d > 2
the blow-up takes a self-similar form with ‖Φ‖∞ proportional to (T − t)−1/2 as t→ T .
A proof of the existence and local uniqueness of radially symmetric, monotone, self-
similar blow-up solutions for d close to 2 is given in [14], with an extension of this result
given in [21]. In [4] and [3] numerical calculations supported by formal asymptotic
calculations give evidence for the existence of further multi-bump, self-similar, blow-
up solutions for d > 2 where multi-bump is in the sense that |Φ| may have many local
maxima. Moreover, the existence and local uniqueness of these multi-bump, blow-up,
self-similar solutions is proved in [22].

The NLS is an example of a Hamiltonian partial differential equation of hyperbolic
type with various conserved quantities. Whilst ‖Φ‖ becomes singular at a single point,
the unitary nature of the NLS implies that Φ has a constant L2−norm (power) and
a conserved Hamiltonian

H =

∫

|∇Φ|2 − 1

2
|Φ|4 dV. (1.2)

In this article we will explore the non-trivial relationship between blow-up solutions in
the CGL and the NLS. In particular, we determine for which values of the dimension
d and the parameters ε and δ self-similar blow-up is observed. This relationship
was firstly considered by Fibich and Levy [10] who looked at the CGL problem in
the limit of small ε and δ by using modulation theory. Their analysis concentrates
on the blow-up of solutions in two dimensions. In [11] the asymptotic results are
extended by applying a modulational approach to general perturbations of NLS-type
equations for fixed d = 2. The main result of this analysis was the observation that
when α ≡ ε + 2δ > 0 there are no stable blow-up solutions which are modulated
NLS blow-up solutions. Indeed, it is established that the solutions are bounded, for
all time, by a term exponentially large in α−1. In contrast, finite time blow-up is
observed if α < 0. The latter results are not unexpected since if we consider spatially
uniform solutions then blow-up in the ODE iφt = −(1+iδ)φ|φ|2 only occurs for δ < 0.
Similarly for ε < 0, the CGL is a non-dissipative perturbation of NLS, and is close to
the backwards heat equation. What is remarkable is that blow-up can be observed if
ε or δ are positive but only for d > 2. It is the range of values for which this occurs
that is of interest to us in this article.

The radially symmetric, blow-up solutions of the CGL in dimensions d higher than 2,
are already studied in [19]. There it is assumed that the blow-up profile is self-similar
and a similarity reduction is made; we review this dynamical rescaling in Section 2.
The rescaling reduces the study of the radially symmetric blow-up solutions of the
CGL to that of a related second order complex ordinary differential equation combined
with certain far field conditions on the solutions at infinity. Whilst no rigorous proof
of the existence of the solutions of this ODE is available (although some partial results
are known) strong numerical evidence reported in [19] indicates that when d > 2, the
self-similar blow-up solutions of the NLS described in [3] smoothly perturb as ε, δ
increase from zero, to give a family of multi-bump, self-similar, blow-up solutions.
We show that for δ = 0, multi-bump solutions appear to exist in a parameter range
0 ≤ ε ≤ ε∗k(d) where ε∗k(d) → 0 as d → 2 and k is an integer index denoting the
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Fig. 1.1. The k = 1 solution branch, the solutions with one maximum on (−∞,∞), and the
k = 2 solution branch, the solutions with two maxima on (−∞,∞), plotted in the (ε, a)-plane where
d = 3 and δ = 0. The solutions corresponding to the *’s are given in Figure 1.2. On the upper part
of the k = 1 solution branch and the lower part of the k = 2 solution branch the solutions are found
to be stable whereas on the other parts the solutions are unstable.

number of maxima of the modulus of a solution on the real line. Every k-solution
branch consists of two parts which coalesce in a fold bifurcation at ε = ε∗k(d). The
solutions on the upper part of the branch are smooth perturbations of the NLS self-
similar solutions. In contrast, the solutions on the lower part of the branch, which
tends weakly to zero as ε → 0, are not a simple perturbation of the solutions of the
NLS. In Figure 1.1, we give two of these branches where solutions are found in the
(ε, a)-plane, these branches where obtained numerically, see Section 7. Here a is a
small parameter that will appear when introducing the dynamical rescaling into the
equation in Section 2. The two solution branches given in the figure correspond to
solutions with one maximum at ξ = 0, k = 1, and with two maxima, k = 2, on the
real line. The norm of the solutions that are found on the upper and lower part of
both of the branches at ε = 0.1, the points indicated by the *’s, are given in Figure
1.2.

We present an asymptotic analysis which supports both the numerical results pre-
sented here and those in [19]. The form of the monotonically decreasing solution,
k = 1, and the solution with two maxima on the real line, k = 2, is determined. Also,
an indication of how to extend these results to a general k-solution is given. Further-
more, an asymptotic description of the branches of the various multi-bump solutions
is obtained, including an estimate of the location of the fold bifurcation point ε∗k(d).
An interesting feature of this calculation is that whereas the description of the solu-
tions on the upper part of a branch (which are perturbations of the solutions of the
NLS) is valid only for d − 2 small, the description of the solutions on the lower part
of the branch remains valid in the case of quite general d (for small ε), including the
physically interesting case of d = 3. A particular conclusion of the present study is
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Fig. 1.2. Final-time profiles in the rescaled variables for d = 3, δ = 0 and ε = 0.1. The solutions
correspond to the *’s in Figure 1.1

the estimate for the location of the fold bifurcation. Whilst this can be in principle
calculated for general δ it is easiest to express when δ = 0.

Proposition 1.1. In the limit d → 2+, for the case of δ = 0, the range of ε for
which a multi-bump, self-similar, blow-up solution may exist on the k-solution branch,
is given by 0 ≤ ε < ε∗k(d), where

ε∗k(d) = Ck
d− 2

| log( Dk

d−2)|
, (1.3)

to leading order Here Ck > 0 and Dk > 0 are constants that can be determined
explicitly and that depend upon the structure of the solution. For instance, in the
special case of a multi-bump solution with two maxima on the real line, for which
k = 2, we have

ε∗2(d) =
λ2(d− 2)

log(3λ2/(d− 2))
+ O

(

1

log(d− 2)2

)

, (1.4)

where λ2 = 2π
3 −

√
3

2 .

In Table 1 in Section 3 a comparison is made between the asymptotic formula above
and the results of numerical computations of the fold location for k = 1 and k = 2.
These show excellent agreement.

We use a numerical method for ordinary differential equations (on infinite domains)
to obtain the branches in Figure 1.1 and the solutions in Figure 1.2. Note that in
Figure 1.1 the range of ε for which k = 2 solutions exist is larger than that of the
monotone (k = 1) solutions. This leads to the question of stability of the solutions. In
[19], stability is studied by numerically examining the spectrum of the linearization of
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the computed solutions. We investigate this further by doing a numerical calculation
of the radially symmetric forms of blow-up of the full partial differential equation
(1.1). This simulation was suggested but not implemented in [19]. We use a scale-
invariant adaptive numerical method that exploits scaling structures of the underlying
equations to give an optimal temporal and spatial resolution of the solution as a
blow-up singularity is approached. In particular we calculate solutions that grow in
amplitude from their initial data by over nine orders of magnitude. This simulation
allows us to determine both the stability of the various types of blow-up profiles and
the effect of taking different initial data for varying values of ε, the results will be
discussed in detail in Section 7. We find that the solutions on the upper part of the
k = 1 solution branch and on the lower part of the k = 2 solution branch are stable.
On the other part solutions are unstable. This is denoted in Figure 1.1 by the solid
and dashed curves. Our most interesting observation is that the k = 2 solution is
not only stable over a range of values of ε, but that it can be the only stable profile
observed for certain ranges of ε, namely for ε∗1(d) < ε < ε∗2(d) . This is in complete
contrast to blow-up in other systems such as NLS, the semilinear heat equation and
chemotaxis amongst others where stable exact non-monotone, self-similar blow-up,
profiles are not seen.

The layout of the remainder of this paper is as follows. In Section 2 we describe
the basic scaling laws and self-similar profiles associated with blow-up in the CGL
system. We state in Section 3 the main asymptotic result related to the behaviour
of the solution branches. In Section 4 we analyze the phase of the solution which
makes a matching possible between the far field solution and the solution close to the
peaks. The monotone solution (k = 1) is the subject of Section 5 and in Section 6 we
focus on the self-similar, multi-bump solutions. In Section 7 we first determine the
numerical solution of the ordinary differential equation that the self-similar solutions
must satisfy. This allows us to determine the accuracy of the asymptotic calculation.
We then apply a scale invariant adaptive method to find the time-dependent solutions
of the full partial differential equation.

2. Blow-up and scaling laws. In this Section we consider the equations sat-
isfied by the self-similar blow-up solutions of (1.1). We will assume that blow-up
occurs at time T at the spatial origin and is radially symmetric. (In the case of the
NLS such solutions are believed from numerical calculations reported in [24, 15] to be
attractors.) Such solutions satisfy the partial differential equation

i
∂Φ

∂t
+ (1 − iε)

(

∂2Φ

∂r2
+ (d− 1)

∂Φ

∂r

)

+ (1 + iδ)|Φ|2Φ = 0. (2.1)

In physical applications d will be an integer, however, it is very convenient for asymp-
totic analysis to consider the case of non-integer d. In particular, numerical calcula-
tions of solutions in the physically interesting case of d = 3 can be continuations of
solutions determined when d is close to 2. Furthermore, keeping a cubic nonlinearity
and varying d is essentially equivalent to fixing d and varying the nonlinearity.

In Figure 2.1, we give results of a numerical simulation of the CGL when starting
with a monotone initial condition for d = 3 and ε = 0.1. In the physical coordinates
the blowup occurs at the origin and in the rescaled variables (to be discussed below),
we see convergence to a stationary profile.

It is easy to see that (2.1) is invariant under a change in the phase of the solution,
also under a change in the scale of r, t and Φ or under a translation in time. That is,
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Fig. 2.1. Numerical simulation of the full CGL for d = 3 and ε = 0.1. (left) Blow-up in
physical coordinates. (right) Blow-up in rescaled coordinates, notice the convergence to a stationary
profile.

it is invariant under the continuous group of transformations

Φ 7→ eiθΦ, or t 7→ λt, r → λ1/2r, Φ → λ−1/2Φ where λ > 0.

Blow-up of the solution occurs at the origin for this equation at the blow-up time
T <∞ if

max
r

|Φ(r, t)| = |Φ(0, t)| → ∞, as t→ T−,

with |Φ(r, t)| <∞ for all t < T , r ≥ 0 and limt→T− |Φ(r, t)| <∞ for all r > 0.

In the NLS, blow-up occurs on a length scale L(t) with L(t) → 0 as t→ T [24, 15]. We
assume that similar behaviour occurs in the CGL. Accordingly, to resolve the temporal
and spatial structure we introduce a dynamic rescaling of the solution so that space,
time, and Φ are scaled by factors of L(t), leading to a more regular equation. Taking

ξ ≡ |x|
L(t)

, τ ≡
∫ t

0

1

L2(s)
ds, u(ξ, τ) = L(t)Φ(x, t), (2.2)

the rescaled solution u(ξ, τ) satisfies the rescaled partial differential equation

iuτ + (1 − iε)

(

uξξ +
d− 1

ξ
uξ

)

+ (1 + iδ)|u|2u+ ia(τ)(ξu)ξ = 0, (2.3)

where

a = −LdL
dt

= − 1

L

dL

dτ
.

The simplest form of blow-up behaviour, with L(t) → 0 arises when a(τ) is a positive
constant and

u(ξ, τ) = eiωτQ(ξ). (2.4)

For simplicity we will consider only the case ω ≡ 1. Although left in as an unknown
constant by the authors in [19] this does not affect the solutions under consideration
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as ω can easily be scaled out by scaling Q, ξ and a with ω. The resulting solutions
are then precisely the self-similar, blow-up solutions which themselves are invariant
under the group transformations. We have

L(t) =
√

2a(T − t) and τ =
log(T − t)

2a
, (2.5)

and

(1 − iε)

(

Qξξ +
(d− 1)

ξ
Qξ

)

−Q+ ia(ξQ)ξ + (1 + iδ)|Q|2Q = 0. (2.6)

The constant a > 0 above is a non-linear eigenvalue for the reduced equation (2.6)
and represents a coupling between the length-scale and the phase. The value of a
needs to be determined as part of the solution process.

Note that choosing different initial values for the PDE (2.1) will in general correspond
to different values of Q(0) and ω, where also ω 6= 1 can be found. However, these all
reduce to the same ODE (2.6). We will consider a solution to (2.6) to be stable if, in
the limit t→ T a solution of (1.1) converges to a solution of (2.6) under the rescalings
(2.2) and (2.4).

In the rescaled equation (2.3), the perturbations in the CGL of the nonlinear and
Laplacian terms of the NLS are given by δu|u|2 and ε∇2u. As u and ξ are of unit order
when blow-up is approached, these perturbations are of equivalent order provided that
δ ∼ ε. This is the motivation to set

δ = ∆ε, ∆ ∈ R

and henceforth, without loss of generality, assume ε 6= 0. This balance between ε and
δ is also found in formulae derived in [10] for the saturation of blow-up in CGL.

3. Admissible solution branches.

3.1. Existence of solution branches. The complex ordinary differential equa-
tion (2.6) must be satisfied by the self-similar solutions. Considered as an initial value
problem, it has many solutions, and only those that satisfy certain conditions at in-
finity are admissible as being related to self-similar solutions of the partial differential
equation. These conditions are the same as for the NLS to guarantee agreement
in the limit ε → 0. Briefly, the admissible solutions are those solutions of (2.6)
that are slowly varying at infinity. More precisely, the initial and asymptotic condi-
tions for a self-similar solution Φ(x, t) of the partial differential equation, namely that
Φ(x, 0) = Φ0(x) and that |Φ| vanishes as |x| → ∞, respectively, lead to the following
initial and asymptotic conditions for Q(ξ), respectively,

Qξ(0) = 0, ImQ(0) = 0, (3.1)

|Q(ξ)| → 0 as |ξ| → ∞. (3.2)

Here we have exploited the phase invariance of the differential equation to define the
phase of Φ at the origin. Alternatively, we could have kept ω as an unknown in (2.4)
and set Q(0) = 1 as in [19]. From a related regularity result, see [24], it also follows
that

∣

∣

∣

∣

ξQξ +

(

1 +
i

a

)

Q

∣

∣

∣

∣

→ 0 as |ξ| → ∞ (3.3)
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must hold for solutions Φ with finite H1 norm. In the NLS limit this corresponds to
solutions with finite Hamiltonian H (1.2).

The majority of the solutions of (2.6) are rapidly varying as |ξ| → ∞ and do not
satisfy the condition (3.3). Such solutions are proportional to exp(iaξ2) in this limit
and have unbounded H1-norm. In contrast the slowly varying solutions (for both
CGL and NLS) are polynomially decaying and

Q(ξ) ∼ µ

ξ
exp

(

− i

a
log(ξ)

)

= µξ−1− i
a as ξ → ∞. (3.4)

The value of µ given by these solutions of (2.6) that are slowly varying at infinity,
plays a central role in the later work on matching.

Monotone solutions

It is believed that the solutions of (2.6) that are slowly varying at infinity occur only
for isolated values of the nonlinear eigenvalue a. However in the case that |Q(ξ)| is a
monotonically decreasing function of ξ (monotone solution) a proof of the existence
and local uniqueness is only known for the NLS close to d = 2 and a = 0 [14, 21]. In
particular, if a = ε = δ = 0 then (2.6) reduces to

Qξξ +
d− 1

ξ
Qξ −Q+ |Q|2Q = 0. (3.5)

It is known that this equation has a discrete set of exponentially decaying solutions,
of which the monotone decreasing solution is called the ground state or Townes soliton
and is known to be unique [16]. For a > 0 and ε = δ = 0 the following results are
known about the monotone solutions of (2.6) satisfying the conditions (3.1) - (3.3)
[24, 21],

Theorem 3.1 (Sulem and Sulem, Rottschäfer and Kaper). (i) As d → 2 then there
exists a monotone solution of the NLS with a→ 0, indeed,

d− 2 ∼ A

a
e−π/a, (3.6)

(ii) For d = 2 + O(ap) and a sufficiently small, a monotone solution of (2.6) exists
and is locally unique.

Non-monotone solutions

In [3] the above result for the NLS is extended through a formal asymptotic argument
that implies the existence of further non-monotone slowly varying solutions of (2.6).
These have also been detected in numerical computations [4]. The computations
reported in [19] indicate that similar solutions characterized by the number of turning
points of the amplitude of |Q|, are found for CGL. Accordingly we define a k-solution
branch to be a branch of solutions, denoted by Qk(ξ), for which |Qk| has k maxima
on the whole real line ξ ∈ (−∞,∞). (So that the monotone solutions lie on the k = 1
solution branch.) A particular conclusion of [3] was the existence of a k = 2 solution
branch, where in the limit of d → 2 there is a solution Q2(ξ) with a local minimum
at ξ = 0 and isolated peaks at points asymptotically close to |ξ| = 1/a. In the limit
of d→ 2 and a→ 0, this solution exists when

d− 2 ∼ 3

a
e−λ2/a and λ2 = 2π/3 −

√
3/2. (3.7)
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Fig. 3.1. (left) The k = 1 solution branch, the monotone solution is found here, in the (ε, a)-
plane for different choices of d where δ = 0. (right) The k = 2 solution branch, the solution Q2 with
two maxima on the real line is found here, in the (ε, a)-plane for different choices of d where δ = 0.
The value of the fold bifurcation point ε∗

k
(d) is also given for the branches.

There is no reason to expect that this is the only two-bump solution, in fact, the
following existence and uniqueness result is also known [22]

Theorem 3.2 (Rottschäfer and Kaper). For each a sufficiently small, there exists a
n0(a) such that, if 2 ≤ n ≤ n0(a), then with d = 2+O(al) for any l > d+1 there exist
4(n − 1) locally unique symmetric 2n − 1-bump solutions with a maximum at ξ = 0
and n− 1 maxima for ξ > 0.

While this theorem indicates that in the case of the NLS there are multiple multi-
bump solutions, the construction in [22] shows that they are exponentially close to
each other. While we anticipate that these families persist for ε and δ small but non-
zero they cannot be distinguished by the asymptotics discussed in this paper and we
denote any member of this family as ”the k-bump solution”. We show presently that
we can extend both of the results (3.6) and (3.7) to the CGL system by looking at
the limit of the solutions when the nonlinear eigenvalue a is small. In particular we
have the following.

Proposition 3.3. For a and ε sufficiently small

(i) There exists a branch of monotone solutions (k = 1) which are smooth perturba-
tions of the monotonically decreasing solution of the NLS. On this branch the values
of a, d, ε and δ are related through the asymptotic formula

e−λ1/a = (C1(d− 2)a− C2ε− C3δ)
(

1 + O
(

a2, aε, aδ
))

, λ1 = π/2 (3.8)

with explicitly computable constants Ci(d) > 0 for all d (defined in Section 5), and
C3/C2 → 2 as d→ 2.

(ii) There also exist k-solution branches, k ≥ 2, on which the solutions Qk(ξ) with k
maxima on the real line are found. Along every k-solution branch the values of a, d, ε
and δ are related through

e−
λk
a = (C1,k(d− 2)a− C2,kε− C3,kδ) (1 + O (a)) , (3.9)

where the constants λk and Ci,k can be computed from integrals of the solution Qk(ξ)
along each branch.
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Fig. 3.2. (left) The amplitude of the solutions |Q2(ξ)| for ξ > 0 as a and ε are moving along
the k = 2 solution branch for d = 3. The peak of the solution moves to the right as a is decreased
to zero. For smaller values of a, the solutions have a similar form and the peak ξ∗ is located close
to 1

a
. (right) The location of the maximum ξ∗ along the k = 2 solution branch for various choices

of d where aξ∗ is plotted as a function of a.

The solutions on the k = 2 solution branch have a local minimum at the origin and
maxima located at the points |ξ| = O(κ/a) where κ can be determined explicitly, and

e−λ2/a = (C1,2(d− 2)a− C2,2ε− C3,2δ) (1 + O (a)) (3.10)

For δ = 0 then

λ2 = 2π/3−
√

3/2, κ = 1, and C1,2 = C2,2 = 1/3.

In Section 6 we present the explicit computation of the coefficients in (3.9) where a
k = 2 solution is constructed.

It is possible to consider the solutions as functions of d, ε and δ. In calculations it is
convenient to fix d and δ and to vary the value of ε, the branches of the solutions can
then be represented in a diagram by plotting the value of a. A numerical calculation
of the k = 1 and k = 2 solution branches in the (ε, a)-plane is given in Figure 3.1 for
a range of values of d, where δ = 0. Also, the value of the fold bifurcation point ε∗k(d)
is given for each of the branches. Note that the range of existence of the branch drops
to zero as d→ 2.

In Figure 3.2 we plot the amplitude of the multi-bump solution Q2(ξ) on the k = 2
solution branch in the case of d = 3, δ = 0 and we show how this solution changes
along the branch. In this figure the peak of the solution moves uniformly to the right
as a decreases along the branch (so that ε initially starts at zero, reaches a maximum
at ε∗k(d) and then decreases to zero again as the peaks move to the right). The
solution with the peak nearest to the origin is found for ε = 0, a = 0.3124... which is
the solution of the NLS computed in [4]. This solution does not have a form which
is easy to analyse. In contrast, as a and ε tend to zero (along the solution branch),
the solution takes on a localized form, with a peak located at a point ξ∗ close to
1/a. We demonstrate this in Figure 3.2 by plotting aξ∗ as a function of a for various
d. It is this solution with a peak located close to 1

a , found on the lower part of the
solution branch which is described by the asymptotic formula (3.10) and which will
be analysed in detail in Section 6.
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Fig. 3.3. Comparison of the numerical results (solid line) and the asymptotic expansion for a−

and a+ (dashed line) of the k = 2 solution branch. (left) Here d = 2.1, 2.001 and ε is plotted on a
log-scale. (right) For d = 2.5 and d = 3.

3.2. The existence of two solutions on each branch. In Figure 3.1 we
clearly see that there exists a ε∗k(d), where the value of ε∗k depends upon the branch,
such that for every value of ε < ε∗k there are two solutions on each k-solution branch
with corresponding values of a: a+ > a−. In fact, in the limit of d → 2 and/or ε→ 0
we can determine, from the asymptotic formulae (3.8) and (3.10), both the two values
a− and a+ and, the position of the fold asymptotically, for δ = 0. More specifically,
when we set ε = 0 and δ = 0 in (3.9) we obtain an asymptotic expression for a+ and
when we set a = 0 and δ = 0 in (3.9) we obtain an asymptotic expression for a−:

a+ ∼ λk

| log(C1,ka+(d− 2))| and a− ∼ εAk

(d− 2)
. (3.11)

It is clear from comparing these results to with those of Theorem 3.1 that the solution
corresponding to a = a+ is a natural perturbation of the solution of the NLS in the
limit of small ε. Moreover, a+ is only small when d− 2 is small, and the asymptotic
description of a+ is only valid in this limit.

In contrast, the solution corresponding to a = a− is not a perturbation of the solution
of the NLS. Furthermore, the value of a− is small provided that ε is small, regardless
of the value of d− 2; we may even take d = 3.

The agreement between the numerical results of the branches and the asymptotic
calculations is very good indeed, as can be seen in Figure 3.3. There we present a plot
comparing the values of a given in (3.11), to the numerically computed k = 2 solution
branch for various values of d. We observe from this figure that the lower branch
a− is well approximated for a wide range of values of d provided that ε is small. In
contrast, the upper branch a+ is only well approximated when d− 2 is small.

This nice agreement for a− leads us to believe that it may be possible to prove the
existence of this part of the branch for general 2 < d < 4 and, therefore, in the
physically important case of three dimensions. We leave this as future work.

3.3. The position of the fold bifurcation. The two two parts of the branch
corresponding to a = a+ and a = a− coalesce in a fold bifurcation at the point (a∗k, ε

∗
k)

and solutions for each of these parts of the branch only exist for ε < ε∗k. We can derive

11



k = 1 k = 2
d Asymptotic Numerical Asymptotic Numerical
3 .1517 .1980 .2616 .2439

2.5 .0914 .1024 .1034 .1111
2.1 .0151 .0182 .0148 .0161

2.001 9.177 10−5 1.110 10−4 8.770 10−5 8.991 10−5

Table 3.1
Comparison of the asymptotic and numerical location of the fold point ε∗ for k = 1 and k = 2

for various values of d with δ = 0.

the estimates (1.3) and (1.4) for ε∗k(d) from the asymptotic results presented in (3.9)
and (3.10). Indeed, differentiating (3.9) with respect to a and applying the condition

dε

da
(a∗k) = 0,

determines (a∗k, ε
∗
k) exactly. In the case of δ = 0, this condition yields that a∗k satisfies

the asymptotic relation

a∗k =
λk

log
(

λk

C1,k(d−2)

)

− 2 log(a∗k)

so that as d→ 2 we have asymptotically

a∗k ∼ λk

log
(

λk

C1,k(d−2)

) .

The critical value of ε for the k-solution branch is then determined by substituting
the differentiated expression back into (3.9) as

ε∗k = (d− 2)

(

a∗k − (a∗k)2

λk

)

C1,k

C2,k
. (3.12)

Combining these expressions gives (1.3) to leading order, where ε∗k → 0 as d→ 2.

In Table 3.1 we present a comparison of the asymptotic values of ε∗k given by formula
(3.12) with the numerical values for the k = 1 and k = 2 solution branches for
various values of d. The agreement between the numerical and asymptotic calculations
is excellent, especially when considering the various approximations that have been
made to obtain the asymptotic formula for the fold location.

The restriction on the range of ε over which self-similar blow-up is observed is fully
consistent with the calculations presented in [10] in the case of d = 2. In particular,
we see that the range of the dissipative values of ε > 0 and δ > 0 over which we see
self-similar blow-up reduces to the empty set as d → 2 when each branch collapses
to a single point. In the case of d = 2 (when the blow-up of the NLS is marginal)
we only see blow-up for the non-dissipative values of ε, δ < 0 described in [10]. In
contrast, for d = 3 (where blow-up is observed for the NLS) the range of ε values over
which self-similar blow-up exists is quite large.
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4. Construction of the asymptotic solution.

4.1. Overview. The construction of asymptotic solutions leading to the state-
ments in Propositions 1.1 and 3.3 is similar to that described in [3], although rather
more subtle as it involves both polynomial and exponential terms. In all parts of the
analysis we presume that a is small, but in contrast to the NLS case described in [3]
we do not necessarily require that d− 2 is also small. The calculation is rather differ-
ent for the case of the monotone solutions on the k = 1 solution branch compared to
that for the multi-bump solutions on the other branches, although both follow similar
lines.

The solutions are constructed by determining them on three distinct ranges of ξ
which are then matched to eachother. Firstly we examine the far field solution when
aξ � 1. Then, the solution is small and equation (2.6) can be approximated by
a linear equation. Secondly, we determine global estimates on the evolution of the
phase of the solution that allow a comparison between the form of the solution for
the large values of aξ described above and smaller values of aξ. Next we construct
an inner solution valid over the range aξ � 1. Similar to the cases described in
[3], this solution is either a regular perturbation of the monotone decreasing ground
state solution of (3.5) or it is an exponentially growing perturbation of the ground
state or the zero solution. However, these exponentially growing perturbations are
only small if aξ is small. The regular perturbations of the ground state solution lead
to monotone solutions of the CGL, whereas the exponentially growing perturbations
lead to multi-bump solutions of the CGL related to those described in [3]. In the
case of the monotone solutions we match an exponentially decay in the solution for
aξ < 2 with a polynomial decay when aξ > 2 by using a WKB analysis. In contrast,
the exponentially growing perturbations lead to multi-bump solutions and we study
these in the vicinity of the isolated peaks which occur when aξ = O(1). Following
this analysis we again match a solution decaying exponentially away from the peak
for aξ < 2 with a polynomial decay when aξ > 2 by using a WKB analysis.

4.2. Far-field behaviour aξ � 1. We now consider the behaviour of Q for
large values of aξ. The boundary condition (3.2) requires that |Q| is very small in
this range of ξ values and, therefore, equation (2.6) can be closely approximated by
the linearized equation

(1 − iε)

(

Qξξ +
d− 1

ξ
Qξ

)

−Q+ ia(ξQ)ξ = 0. (4.1)

This equation is also obtained after rescaling in ξ with
√

1 − iε in the far field equation
that is satisfied by the solutions of the NLS (when ε = 0). The solutions to that
equation for the NLS are parabolic cylinder functions that now must be rescaled. For
small ε, the solutions of (4.1) change type when aξ = 2 (as in the NLS case), admitting
exponentially decaying solutions for aξ < 2 and polynomially decaying solutions for
aξ > 2. Applying the rescaling of ξ to the solutions given in [3] implies that there are
(complex) constants µ, ν such that as aξ → ∞ (so that aξ > 2) and ε small

Q(ξ) ∼ µξ−1−i/a

(

1 + O
(

1

aξ2

))

or

Q(ξ) ∼ νξ1−d+i/ae−iaξ2/2eaεξ2/2

(

1 + O
(

1

aξ2

))

.
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Of these two solutions, the first is slowly varying and decaying, whereas the second
is rapidly varying and growing when ε > 0. Only this first solution can be matched
to the boundary conditions satisfied by a self-similar solution and the consequent far
field condition for Q(ξ) given in (3.4). Consequently, if we decompose Q in amplitude
and phase as

Q(ξ) = A(ξ)exp

(

i

∫ ξ

0

ψ(x)dx

)

(4.2)

then for aξ � 1

A ≈ µ

ξ

(

1 + O
(

1

aξ2

))

and ψ ≈ − 1

aξ

(

1 + O
(

1

aξ3

))

. (4.3)

4.3. Global estimates. We can link the far field solution to the global be-
haviour of Q via a rigorous result that relates the amplitude and phase of the solu-
tions of (2.6). This relation is central in our final analysis and we will state it here.
Substituting the decomposition (4.2) of Q in amplitude and phase into (2.6) leads to
the following expression for A and ψ

Aξξ =ψ2A− d− 1

ξ
Aξ +A−A3

− ε

(

2Aξψ +Aψξ +
d− 1

ξ
Aψ

)

+ aξAψ

(4.4)

ψξ = − 2ψ
Aξ

A
− d− 1

ξ
ψ +

ε

A

(

Aξξ −Aψ2 +
d− 1

ξ
Aξ

)

− a

A
(A+ ξAξ) − ∆εA2,

(4.5)

where δ = ∆ε. From this system we obtain the following integral equation for ψ

Lemma 4.1. The phase ψ and the amplitude A satisfy

ψ +
aξ

2
=

1

ξA2

∫ ξ

0

(

(2 − d)A2ψ + εxA

(

Axx −Aψ2 +
d− 1

x
Ax

)

− ∆εxA4

)

dx.

(4.6)

Proof. Consider first the identity

d

dx

(

xA2
(

ψ +
ax

2

))

=(A2 + 2xAAx)
(

ψ +
ax

2

)

+ xA2
(

ψx +
a

2

)

=(A2 + 2xAAx)
(

ψ +
ax

2

)

+ xA2

[

a

2
− 2ψ

Ax

A
− d− 1

x
ψ

+
ε

A

(

Axx −Aψ2 +
d− 1

x
Ax

)

− a

A

(

A+ xAx − ∆εA2
)

]

=(2 − d)ψA2 + εxA
(

Axx −Aψ2
)

+
d− 1

x
Ax − ∆εxA4.

Integrating this identity from 0 to ξ and using the fact that ψ(0) = 0 we obtain the
statement of the lemma. 2

14



From Lemma 4.1 and the asymptotic estimates (4.3), it follows that for aξ � 1

aξ

2
=
ξ(2 − d)

µ2

∫ ξ

0

A2ψdx+
ξε

µ2

∫ ξ

0

xA

(

Axx −Aψ2 +
d− 1

x
Ax − ∆A3

)

dx (4.7)

where both integrals converge as ξ → ∞. Thus, we find the exact expression,

µ2 =
2(2 − d)

a

∫ ∞

0

A2ψdx+
2ε

a

∫ ∞

0

xA

(

Axx −Aψ2 +
d− 1

x
Ax − ∆A3

)

dx. (4.8)

This is a regular perturbation of formulae for the NLS which are given in [24] [Section
8.1.3]. Once the structure of a solution is fixed the integrals can be determined. To
obtain the result as stated in Propostion 3.3 we make two estimates of µ. One estimate
follows from matching the solution in the region ξ � 1, aξ < 2, on the lefthandside
of the peak, to the solution for aξ � 1. For this, we link a WKB estimate of the
exponential decay rate of either the monotone solution or the multi-bump solution,
for ξ � 1, aξ < 2, to the slowly varying solution for aξ � 1. The second estimate
for µ follows from (global) estimates of both of the integral terms in (4.8). In order
to do this we use approximations for the amplitude A which are derived in the next
two Sections. In the case of a solution with one maximum, we find the ground state
solution, see Section 5 and for the multi-bump solution we obtain a sech profile, see
Section 6. In the latter case the quadratures can be evaluated exactly while the former
requires numerical approximation.

4.4. Asymptotic analysis of the inner region. We consider next the general
behaviour of the solutions when aξ is small; the inner region. This analysis is similar
to that reported in [24, 15] and more relevant details are given there. Inspection of
the equations (4.4) and (4.5) shows that if ε and aξ are both small then to leading
order A and ψ satisfy the ordinary differential equations

Aξξ = ψ2A− d− 1

ξ
Aξ +A−A3,

ψξ = −2ψ
Aξ

A
− d− 1

ξ
ψ.

From Lemma 4.1 we have that to leading order

ψ = −aξ
2

+
1

ξA2

∫ ξ

0

(2 − d)A2ψdx,

which validates the introduction of the rescaling ψ = aξφ. Then the equation for A
becomes

Aξξ +
d− 1

ξ
Aξ −A+A3 = a2ξ2φ2A, (4.9)

and Lemma 4.1 gives to leading order

φ = −1

2
− (d− 2)

ξ2A2

∫ ξ

0

A2xφdx.

Accordingly, if aξ � 1, A will to leading order be given by a solution R(ξ) of the
ground-state equation

Rξξ +
d− 1

ξ
Rξ +R3 −R = 0, R′(0) = 0, lim

ξ→∞
R(ξ) = 0. (4.10)
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This equation has a discrete set of exponentially decaying solutions [16]: R0 ≡ 0, the
unique monotone solution R1 (the ground state solution or Townes soliton) and an
infinite sequence of non-monotone solutions RK , with

RK(ξ) =
νK

ξ(d−1)/2
e−ξ as ξ → ∞.

Note that the equation also admits exponentially growing solutions.

Starting with one of these solutions RK it follows that, to leading order, φ satisfies
the Volterra integral equation

φ = −1

2
− (d− 2)

ξ2R2
K

∫ ξ

0

R2
Kxφdx.

We may generally solve this integral equation by using a Volterra series. In the limit
of d→ 2 this gives

φ = −1

2
+

(d− 2)

2ξ2R2
K

∫ ξ

0

R2
Kxdx+ O((d − 2)2).

Note, that as RK is exponentially decaying, all of the integrals in the Volterra series
are rapidly convergent.

The amplitude A now is a perturbation of one of the solutions RK of the ground
state equation (4.10). Substituting the leading order expression ψ = aξφ , where
φ = O(1), and A = RK into (4.4) it follows that the perturbation to (4.10) is of
order O(a2ξ2) + O(aε). Therefore, the leading order expressions for A and ψ must
be perturbed, these perturbations take a similar form as those described in [3], (see
also [24]). If we set A = RK + B then, to leading order, the perturbation B evolves
according to the expression

LB ≡ Bξξ +
(d− 1)

ξ
Bξ −B + 3R2

KB = O(a2ξ2) + O(aε). (4.11)

Therefore, we may develop a regular expansion for A of the form

A = RK + a2A1 + aεA2 + ... (4.12)

where each of the terms Ai is exponentially decreasing. For K = 1 this is a natural
perturbation of the ground state solution.

Significantly, this expansion for A is in general incomplete. For large ξ, the linear
equation LB = 0 has two linearly independent solutions, which are to leading order
given by

ψ1 = ξ−(d−1)/2e−ξ and ψ2 = ξ−(d−1)/2eξ.

The regular expansion (4.12) is sufficient as a perturbation of the ground state solution
R1, however, it excludes the contributions due to ψ2 and these should not be ignored
in general. Thus, a more general expression for the perturbation is obtained by adding
the exponentially growing terms given by ψ2. These terms become important when
looking at a perturbation of the non-monotone solutions RK ,K > 1. Accordingly,
following [3], we extend the expansion for the perturbation to give

A = RK + a2A1 + aεA2 + ...
α

ξ(d−1)/2
eξ
(

1 + a2B1 + aεB2 + ..
)

(4.13)
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To ensure that the perturbation to the ground state solution RK is small, we require
in this expansion that α is an exponentially small term in a of the form α = e−γ/a.
The terms a2ξ2 and αeξ then become significant when aξ is of order one.

5. The monotone solution. First, we focus on constructing the monotone
solutions Q1 on the k = 1 solution branch. We expect these solutions to have the
form of the regular perturbation to the monotone solution R1(ξ) described in (4.12).
Since there exist no further maxima, apart from the one in ξ = 0, the solutions do
not contribute to the leading order for ξ � 1 (far-field profile). Substituting the
expressions (4.12) and ψ = aξφ into (4.8) we have to leading order

µ2 = 2(2 − d)

∫ ∞

0

R2
1φx

(

1 + O(a2, aε)
)

dx

+
2ε

a

∫ ∞

0

xR1

(

R1,xx −R1a
2x2φ2 +

d− 1

x
R1,x − ∆R3

1

)

(

1 + O(a2, aε)
)

dx.

(5.1)

Each of these integrals can be estimated in turn, where semi-explicit expressions are
possible in the limit of d → 2 and numerical expressions otherwise. In particular for
d− 2 small

∫ ∞

0

R2
1φxdx ≈ −1

2

∫ ∞

0

R2
1xdx+ O(d − 2),

since φ = − 1
2 + O(d − 2), where the remainder term in this expression depends on

(d − 2) but does not depend upon a or ε. Likewise, the contribution to the second
integral in (5.1) is also dominated by the ground state profile and

∫ ∞

0

xR1

(

R1,xx − a2φ2R1x
2 +

d− 1

x
R1,x

)

dx ≈
∫ ∞

0

xR2
1(1 −R2

1)
(

1 + O(a2(d− 2))
)

dx

since R1 satisfies equation (4.10). Hence

µ2 = (d− 2)

(
∫ ∞

0

xR2
1 dx+ O

(

(d− 2), a2, aε
)

)

+
2ε

a

(
∫ ∞

0

xR2
1(1 − (1 + ∆)R2

1) dx+ O
(

a2, aε
)

)

.

(5.2)

5.1. The matching for the monotonically decreasing solution. To leading
order, the behaviour of the function A at large values of ξ for the CGL is identical
to that for the monotone solution of the NLS described in [24]. In particular, the
matching between the exponentially decaying solution for aξ < 2 and the polynomially
decaying solution for aξ > 2 is identical. Following [24], we have that in this case, a
solution which is a perturbation of R1(ξ) evolves smoothly into one of the form µ/ξ
with the matching constant

µ2 = 2ν2
1

e−π/2a

a
. (5.3)
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Substituting into (5.2) we obtain

2ν2
1

e−π/2a

a
=

(

(d− 2)M1 +
2ε

a
(M1 − (1 + ∆)M2)

)

(

1 + O
(

a2, aε, (d− 2)2
))

(5.4)

where

M1 =

∫ ∞

0

xS2(x) dx ≈ 1.862 and M2 =

∫ ∞

0

xS4(x) dx ≈ 3.725.

Rearranging, this gives the asymptotic expression (3.8) in Proposition 3.3.

Here S is the monotone solution of the ground state equation (4.10) with d = 2
and the integrals are evaluated by numerical quadrature. It can be shown [11] that
2M1 = M2 for d = 2. The constant ν1 is a related to the matching of the exponential
and algebraically decaying solutions [24] and we have from numerical quadrature that
when d = 2

ν1 = lim
x→∞

x(d−1)/2exS(x) ≈ 3.150.

Critically, this gives a condition on the relationship between ε and δ for which the
monotonically decreasing solutions Q1 may exist and we require

(d− 2)M1 +
2ε

a
(M1 − (1 + ∆)M2) > 0.

In the limit case d = 2 [11], this implies that ε(1+2∆) = ε+2δ < 0 must be satisfied,
recovering exactly the result in [10] where modulational analysis is used to determine
the stability of monotonically decreasing blow-up profiles. Their instability result
relies on exactly the same comparison of integrals, [11, 10]. For d − 2 > 0 and small
we see existence over a wider range of ε and δ. In particular, for δ = 0 (hence ∆ = 0)
there exists a solution for a small (the branch a−) with

ε ∼ (d− 2)a−
2

.

For more general values of d we must evaluate expressions for R1, φ and the integrals
in (5.1) by numerical methods. In particular, if d = 3, ν1 ≈ 2.713,

∫ ∞

0

xR2
1 dx ≈ 2.580 and

∫ ∞

0

xR4
1 dx ≈ 18.813.

This leads to the expression (3.8) with C1 ≈ 0.1753, C2 ≈ 2.205 and C3 ≈ 0.1359.
Similar calculations may be performed for any dimension.

6. Asymptotic analysis of the multi-bump solutions.

6.1. Overview. We now consider the possible multi-bump solutions that were
observed in the numerical calculations presented here and in [19]. In the analysis for
the inner solution (the solution for aξ small) in section 4.4, we identified the possibility
of having exponentially growing perturbations of the solutions of the ground state
equation (4.13). This result was obtained by studying (4.11). We find that in the
region where ξ = O(1/a) the perturbation a2ξ2 in (4.11) to the ground state equation
has the same order as the other terms. And, there is a large perturbation of the
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solution from RK(ξ) as the terms αeξ become significant. It is precisely in this range
of ξ = O(1/a) that we observe, in numerical simulations, the existence of additional
peaks of order one. When a is small, we are able to give a precise description of
these peaks in the following two cases: the case of d− 2 small, (indeed exponentially
small in a), and the case of general d but with ε small (ε proportional to a). When
either of these conditions is satisfied we are able to give a complete description of the
bifurcation diagram.

We shall concentrate our analysis only on solutions with two maxima on the interval
ξ ∈ (−∞,∞). This is due the numerical ODE computations reported in [19] sug-
gesting that only the single and two-bump solutions are stable. We have also seen
numerically that the higher multi-bump solutions are unstable through both PDE
and ODE compuations. As such we leave their further investigation for a future time.

6.2. The form of the peaks. The numerical evidence presented in Figure 3.2,
indicates that the peaks of the function |Q| are asymptotically located at the points
κ/a, with κ = 1. Also, the solution |Q| takes on a localised form that is independent of
a, provided that ε is small. We follow the asymptotic analysis of [3] and assume that
the multi-bumps are found in the region where ξ = O( 1

a ). Here the peaks strongly
resemble a localized solution of the one-dimensional focussing NLS equation. We
assume that the peak is located at the point

ξ∗ = κ/a

and seek to determine κ. In order to do this we rescale the Q-equation (2.6) by setting

ξ =
κ

a
+ s (6.1)

and consider an expansion of the solution in terms of a with a � 1. From this an
expression for κ will be obtained.

Substituting (6.1) into (2.6) leads to

Qss + iκQs −Q+ |Q|2Q = iεQss −a
(d− 1)

κ+ as
Qs − ia(sQ)s − i∆ε|Q|2Q+O(aε). (6.2)

We now express Q(s), in the neighbourhood of s = 0, as an asymptotic series in a

Q(s) = Q0(s) + aQ1(s) + o(a). (6.3)

This gives the following reduced equation for Q0

Q0,ss + iκQ0,s −Q0 + |Q0|2Q0 = 0. (6.4)

We now rescale the phase of Q0 in (6.4) by setting

Q0(s) = e−
iκs
2 S0(s) (6.5)

which leads to

S0,ss −
(

1 − κ2

4

)

S0 + |S0|2S0 = 0. (6.6)
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Without loss of generality we may assume the solution of (6.6) to be real, so that up
to an arbitrary multiplicative constant of modulus one, we have

S0(s) =

√

2

(

1 − κ2

4

)

sech

(
√

1 − κ2

4
s

)

. (6.7)

Observe that this solution is valid provided that we are in the region κ < 2 (i.e.
ξ < 2/a). Note further that the form of S0 is independent of a. Important for
the matching later on is that for |s| large and a small, this solution is exponentially
decaying. From (6.5) it also follows that the gradient of the phase ψ is − κ

2 to leading
order.

6.3. Locating the peaks. The terms on the righthandside of (6.2) are of the
same order when ε and a are of the same order and, therefore, we set ε = Ka and
estimate the value of K. Consider now the equation for Q1. The values of κ and K
are fixed by the compatibility condition and thus in the asymptotic series, the term
a|Q1| is small in comparison to |Q0|. Taking the terms of O(a) together gives the
following equation for Q1

Q1,ss + iκQ1,s −Q1 +Q2
0Q̄1 + 2|Q0|2Q1 =

iKQ0,ss +
(1 − d)

κ
Q0,s − i(sQ0)s−i∆K|Q0|2Q0.

(6.8)

Again, we rescale the phase by setting

Q1(s) = e−
iκs
2 S1(s) (6.9)

then, using (6.5), we obtain

S1,ss −
(

1 − κ2

4

)

S1+S
2
0 S̄1 + 2|S0|2S1 = iK

(

−κ
2

4
S0 − iκS0,s + S0,ss

)

+

(

(1 − d)

κ
− is

)(

− iκ
2
S0 + S0,s

)

− iS0 − i∆KS3
0 .

(6.10)

Setting S1 = t+ iv and splitting into real and complex parts leads to (since S0 is real)

tss −
(

1 − κ2

4

)

t+ 3tS2
0 = KκS0,s +

1 − d

κ
S0,s −

κs

2
S0 =: f (6.11)

and

vss−
(

1 − κ2

4

)

v+vS2
0 = K

(

κS0,ss −
κ2

4
S0

)

+
d− 3

2
S0−sS0,s−∆KS3

0 =: g. (6.12)

For the asymptotic expansion to be consistent we require

t(0) = v(0) = 0, and |t| → 0, |v| → 0 as |s| → ∞.

We will determine the form of t and v by using the variation of constants formula. For
subsequent use, we define the right-hand side of (6.11) to be the function f and the
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right-hand side of (6.12) to be the function g. First, we focus on the equation for t and
more specifically on the homogeneous part of (6.11). A solution to this homogeneous
equation is ψ1(s) = S0,s(s) (which is odd and exponentially decaying). Also, there
exists an exponentially growing, even valued solution ψ2 that is linearly independent
of ψ1(s); ψ1(s) and ψ2(s) have a constant Wronskian W1. Computing directly,

ψ2(s) = S0,s

∫ s

0

dy

S2
0,y(y)

∼ exp

(
√

1 − κ2

4
s

)

for large s. (6.13)

It follows by the variation of constants, using t(0) = 0, that

t(s) = A1ψ2(s) + ψ1

∫ s

0

ψ2f

W1
dz − ψ2

∫ s

0

ψ1f

W1
dz (6.14)

where A1 is arbitrary. Then using the fact that ψ1 decays exponentially we find that

t(s) →
(

A1 −
I1
W1

)

ψ2(s) as s→ ∞ (6.15)

t(s) →
(

A1 +
I1
W1

)

ψ2(s) as s→ −∞ (6.16)

where I1 is defined as

I1 =

∫ ∞

0

fψ1ds =

∫ ∞

0

(

KκS0,s +
1 − d

κ
S0,s −

κs

2
S0

)

S0,sds. (6.17)

Now, we study v and we find that φ1 = S0 is a solution of the homogeneous part of
equation (6.12). Again, φ1 is exponentially decaying and odd. There also exists a
second linearly independent, exponentially growing, even valued solution

φ2 = S0

∫ s

0

dy

S2
0(y)

,

and, φ1 and φ2 have a constant Wronskian W2. In a similar way as before, using
v(0) = 0, it follows that

v(s) = A2φ2(s) + φ1

∫ s

0

φ2g

W2
dz − φ2

∫ s

0

φ1g

W2
dz

where A2 is a constant. Then

v(s) →
(

A2 −
I2
W2

)

φ2(s) as s→ ∞ (6.18)

v(s) →
(

A2 +
I2
W2

)

φ2(s) as s→ −∞ (6.19)

where

I2 =

∫ ∞

0

gφ1ds =

∫ ∞

0

(

K

(

κS0,ss −
κ2

4
S0

)

+
d− 3

2
S0 − sS0,s −K∆S3

0

)

S0ds.

(6.20)
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First, we focus on those solutions with one maximum in the region ξ = O( κ
a ). These

solutions decay exponentially away from s = 0 and therefore, cannot have an expo-
nential growth in t(s) and v(s) for s → ∞ and for s → −∞. Thus, it follows from
(6.15), (6.16), (6.18) and (6.19), since ψ2 and φ2 are both exponentially growing, that
A1 = 0, I1 = 0, A2 = 0 and I2 = 0. Substituting the expression for S0 (6.7) into I1
and I2 and using of the exact integrals

∫ ∞

0

(S0,s)
2ds =

2

3

(
√

1 − κ2

4

)3

,

∫ ∞

0

sS0S0,sds = −
√

1 − κ2

4
,

∫ ∞

0

S0S0,ssds = −2

3

(
√

1 − κ2

4

)3

,

∫ ∞

0

S2
0ds = 2

√

1 − κ2

4
, (6.21)

and

∫ ∞

0

S4
0ds =

8

3

(
√

1 − κ2

4

)3

,

leads to

I1 =
1

2κ

√

1 − κ2

4

[

4

3

(

1 − κ2

4

)

(Kκ2 + 1 − d) + κ2

]

(6.22)

and

I2 =

√

1 − κ2

4

[

−2

3
Kκ

(

1 − κ2

4
+

3κ

4

)

+ d− 2 − 8

3
∆K

(

1 − κ2

4

)]

. (6.23)

A relationship between the values of κ, K and ∆ then follows from the two conditions

I1 = 0 and I2 = 0. (6.24)

We consider first the case of δ = 0 hence ∆ = 0. In this case there is precisely one
exact solution of (6.24) with 0 < κ < 2 which is given by

κ = 1 and K = d− 2. (6.25)

Therefore, we find that

ε = (d− 2)a, ξmax =
1

a
+ hot. (6.26)

(hot denotes higher order terms.) A key result of this calculation is that the location
of the peak depends upon a but not explicitly upon d. Indeed, in the limit of d = 2
we still have κ = 1. The dominant contribution to the function A = |Q| in the global
identity (4.8) thus comes from the localised peak, centred at 1/a for which both the
functional form and the form of the phase ψ are as given in Section 6.2. The integrals
in (4.8) can thus be evaluated explicitly.

It also follows from the above expression, that in the limit of d = 2 we find that ε = 0
to leading order in a. In fact we see presently that as d → 2, both ε and d − 2 are
exponentially small functions of a, which is consistent with the above estimate.
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Now we consider δ 6= 0 (hence ∆ 6= 0) and ε = 0. Setting ε = 0 would imply that
K = 0, however, if we first substitute ∆ = δ

aK where δ 6= 0 and then set K = 0, we
find that

δ = a
d2 − 4

8
, κ = 2

√

d− 1

d+ 2

Similar to the above calculation, we obtain that κ→ 1 and δ → 0 as d→ 2.

Additional solutions for general δ may also be found, but we will concentrate on the
case δ = 0 for comparison with numerics.

6.4. Evaluating the integrals in the identity (4.8). So far, we studied the
structure of the multi-bump solutions in different regions of ξ. As a final step in
constructing these solutions, we determine the integrals in equation (4.8). We obtain
the condition on a, d, ε and δ under which they exist as stated in the in Proposition
3.3. For this we use the asymptotic solution determined in the previous section. The
key result we exploit here is that, for small a, the solution has a peak at 1/a, to leading
order, independent of the value of d. Thus, we study the solution with a single peak at
ξ = 1

a +hot over a range of values of d; we construct the k = 2 solution. This solution
will be estimated on different ranges of ξ. To evaluate the integrals in (4.8), we split
both integrals into three parts from 0 to ξ1 to ξ2 to ∞ where 1 � ξ1 � 1

a � ξ2. On
each of these three regions the solution is known from previous sections to leading
order and the integrals can be estimated.

When integrating from 0 to ξ1, in other words, x � 1
a , A(x) is either exponentially

small or A(x) ≈ RK and ψ = −ax
2 . The contribution over this region to the first

integral in (4.8) is therefore smaller than

−a
∫ ∞

0

R2
Kxdx = O(a).

In a similar way, the contribution to the second integral in this regions is either
exponentially small (in the case that A is exponentially small) or it is O(1) when
A ≈ RK .

Now we focus on the integrals in (4.8) in the range where x > ξ2 � 1
a . We find by

using (4.3) that A2ψ = − µ2

ax3 to leading order so that the contribution to the first
integral in (4.8) over this range is of order a. Similarly, we find that

xA

(

Axx −Aψ2 +
d− 1

x
Ax − ∆A3

)

≈ −µ
2

x3

(

1

a2
+ d− 3 − ∆µ2

)

so that the contribution to the second integral is to leading order given by − µ2

8 .

Finally, in the middle range of ξ values, in the neighbourhood of 1
a , here ξ1 < x < ξ2,

we know from Section 6.2 that A and ψ are to leading order given by

S(x) =

√

2

(

1 − κ2

4

)

sech

(
√

1 − κ2

4

(

x− κ

a

)

)

and ψ = −κ
2
. (6.27)

Therefore, in this region the contribution to the first integral is to leading order given
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by

−
∫ ξ2

ξ1

κ

(

1 − κ2

4

)

sech2

(
√

1 − κ2

4

(

x− κ

a

)

)

dx

= −κ
(

1 − κ2

4

)
∫ ∞

−∞
sech2

(
√

1 − κ2

4
y

)

dy + hot

= −2κ

√

1 − κ2

4
+ hot

where the first equality is obtained by introducing the rescaled variable y = x − κ
a

and using the fact that a� 1.

The contribution to the second integral in (4.8) for ξ1 < x < ξ2 is given to leading
order given by

∫ ξ2

ξ1

xS

(

Sxx − Sψ2 +
d− 1

x
Sx − ∆S3

)

dx

=

∫ ∞

−∞

(

y +
κ

a

)

S

(

Syy − Sψ2 +
d− 1

y + κ
a

Sy − ∆S3

)

dy + hot

=

∫ ∞

−∞

κ

a
S
(

Syy − Sψ2 − ∆S3
)

dy

= −κ
a

∫ ∞

−∞

(

(Sy)2 + S2ψ2 + ∆S4
)

dy

= −2κ

3a

√

1 − κ2

4

(

2 + κ2 + 8∆(1 − κ2

4
)

)

.

where A is given by (6.27). A similar error analysis to the previous case implies that
the error in the above integral when extended to the real line is O(1) as a→ 0.

Summarizing, the two integrals in (4.8) when integrated from 0 to ∞ are given to
leading order by

∫ ∞

0

A2ψdx = −2κ

√

1 − κ2

4
,

and
∫ ∞

0

xA

(

Axx −Aψ2 +
d− 1

x
Ax −∆A3

)

dx =

− 2κ

3a

√

1 − κ2

4

(

2 + κ2 + 8∆(1 − κ2

4
)

)

.

Substituting these expressions for the integrals into (4.8) and including the error terms
gives

µ2 =

[

−4κ

a

√

1 − κ2

4

(

2 − d+
ε

3a
(2 + κ2) + ∆ε

8

3a

(

1 − κ2

4

))

]

(1 + O(a)) . (6.28)

To complete the matching we estimate the value for the parameter µ. This is done by
matching the exponentially decaying behaviour to the right and away from the main
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peak of the solution to the polynomially decaying behaviour in the tail. The analysis
is, to leading order, identical to the NLS calculation for the multi-bump solutions and
it is based on the WKB approximation that was described in [3]. We obtain that

µ2 =
16κ(1− κ2/4)3/2

a2
e−λ2/a, λ2 = π − 2 sin−1(κ/2) − κ

√

1 − κ2/4, (6.29)

so that if κ = 1 (as in the case of δ = 0) we find that

µ2 =
6
√

3

a2
e−(2π/3−

√
3/2).

The value of κ in general follows by imposing both conditions in (6.24).

We now substitute (6.29) into the expression (6.28) to determine a condition relating
κ, K and ∆. On rearranging we obtain

(4 − κ2)e−λ2/a =

(

(d− 2)a− ε

3
(2 + κ2) − 8

3
a∆ε

(

1 − κ2

4

))

(1 + O(a)) . (6.30)

In general, this expression is complicated since there is a subtle relationship between
d, κ, ε and ∆, although in all cases κ→ 1 as d → 2. In the case of δ = 0 (∆ = 0 and
κ = 1), (6.30) reduces to

3e−λ2/a ∼ (d− 2)a− ε, λ2 = 2π/3−
√

3/2. (6.31)

We observe that the values of κ = 1, ε = a(d − 2) that were obtained in Section 6.3
by the use of the Fredholm alternative, set the right hand side of (6.31) identically to
zero. This is consistent with the exponentially small estimate of µ when a is small.
However, the value of the Fredholm alternative calculation in finding the location
(ξ = 1

a ) and form of the peak is plain, as when combined with the global estimate we
not only recover the earlier condition linking a and ε but also find the exponential
link between a and d− 2 in the limit of d→ 2 and a→ 0.

7. Numerical results. In this Section, we consider two numerical simulations.
Firstly, we look at numerical solutions of the ordinary differential equation (2.6) that
must be satisfied by the self-similar solutions. These numerics are compared to the
asymptotic formulae computed in the previous sections. It should be noted that the
existence of solutions to this ODE does not in any way guarantee the formation of
blow-up solutions to the full CGL for a broad class of initial data. Therefore, we also
solve the PDE problem (1.1) directly.

7.1. Solution of the ordinary differential equation. In order to find solu-
tions of the ODE (2.6) a parameter continuation with respect to ε was performed with
the (collocation based) two-point boundary value solver and path following algorithms
in the package AUTO [9]. This package requires a good initial guess for the solution
at a certain value of ε. This initial solution was computed with a shooting algorithm
combining the ODE solver DOP853 [12] and the nonlinear solver DNSQE [20]. In
light of the prediction for the location (6.26) of the maximum of the non-monotone
profile with two bumps on the real line (k = 2), the boundary value problem (2.6)
was solved with the normalization and symmetry conditions (3.1) enforced at the
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origin and the slow-growth condition (3.3) enforced at finite L = 1000. From (6.26),
ξmax = 1

a + hot, this means that we should be able to continue the k = 2 solution
branch until a ∼ 10−3. The bifurcation diagram in the (a, ε)-plane where solutions
with two maxima exist as computed in this manner is shown in Figure 3.1 and the
structure of the solution as moving along the branch in the (a, ε)-plane is given in
Figure 3.2.

The ODE computation that really motivated us to solve the PDE directly is given
in Figure 1.1. Here we see the remarkable feature that the range of ε for which
multi-bump solutions exist, is larger than that for the monotone solutions! This begs
the question of whether or not multi-bump solutions in this regime are stable. In
[19], the authors considered this question by numerically examining the spectrum of
the linearization about the computed solutions and found that the lower part of the
branch of k = 2 solutions is linearly stable for ε sufficiently small. This in contrast
to the monotone solutions that are found to be stable on the upper part of the k = 1
branch. We now consider computations of the solutions of the full PDE to examine
the stability of the solutions and to see which initial data converge to the various
types of stable self-similar blow-up profiles.

7.2. Solution of the partial differential equation. The numerical approx-
imation of the large solutions of the full PDE (1.1), which evolve over small length
and time scales, requires the use of an adaptive method. To ensure spatially accurate
final-time profiles we use the scale-invariant moving mesh PDE approach [13] that
has previously been used in the study of blow-up problems of this type [5, 4]. In this
semi-discretization method, a set of computational nodes are distributed in a finite
spatial interval and the spatial derivatives of the PDE are discretised by using a collo-
cation method. Then, the resulting system of ordinary differential equations is solved
by using a stiff ODE solver. To ensure a correct resolution of the singularity, the com-
putational nodes are moved to equidistribute the integral of a user-defined quantity, a
monitor function, between mesh points. We use the scale-invariant monitor function

M = |Ψ|2

so that the blow-up solutions are resolved at all times. This was effective for the
computations of NLS reported in [4] and it has the property that it admits moving
meshes which move nodes along level sets of the similarity variables defined in (2.2).
Since the symmetries of the CGL are the same as for the NLS, a similar method is
expected to work well in this case. We take a slightly different approach from the
dynamic rescaling method described in [24, 15], as we are not assuming any particular
relation between the solution magnitude and the spatial and temporal scales on which
the solution is evolving. Instead we follow any emergent scaling in the problem.

In Figure 7.1, we consider a numerical simulation of the full PDE starting with a
non-monotone initial condition for d = 3 and ε = 0.2. This value of ε is chosen such
that it lies beyond the range of existence of the monotone solutions. The resulting
calculation, presented in the rescaled coordinates, show a stabilization of the blow-up
solution to a multi-bump profile (k = 2).

The history of the numerical investigation of blow-up phenomena is plagued with
errors and false-starts. We have confidence in the methods used here because they
give results consistent with asymptotics and numerically computed ODE profiles.
However, that might not be enough for the skeptical reader. The reliability of these
methods comes from the fact that they can, under appropriate assumptions, lead
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Fig. 7.1. (left) Convergence of a non-monotone initial condition to a multi-bump similarity
solution in the rescaled dynamical coordinates. (right) The grid lines of the moving mesh method
plotted in the rescaled dynamical coordinates. After an initial transient phase, they are essentially
constant in the region of the peak.

to uniform error estimates [6]. This is because of the special scaling structure of the
monitor function used. As an extra consequence, the dynamic grid follows level sets of
any emergent similarity variable. Hence, the computational variables can be thought
of as mimicking the similarity variables. This can be seen in Figure 7.1(right) where,
after an initial transient phase, the grid lines are essentially constant in the rescaled
variables.

To demonstrate the stability of various solutions on the k = 1 and k = 2 solution
branches, we now consider four cases with fixed d = 3. With both monotone and non-
monotone initial data we take ε = 0.1 < ε∗1 < ε∗2 and ε∗1 < ε = 0.22 < ε∗2 (recall that
at ε∗1,2 the fold bifurcation takes place and the k = 1, 2 solutions cease to exist). The
data from each case is presented in Figure 7.2. For monotone initial data no blow-up
is observed when ε = 0.22, Figure 7.2b; the evolution of the profile is presented in
physical coordinates. All the other cases are presented in the rescaled coordinates
(2.2). For comparison, the ODE solutions found for the same value of ε on both the
upper and the lower part of the solution branches is also indicated. We see that the
ODE solution found on the lower part of the k = 2 solution branch and the final
profile at t = T− coincide and, hence, in agreement with the ODE numerics in [19],
the lower part of the k = 2 solution branch is stable.

Additional computations lead us to speculate the following.

Conjecture 1. i) For 0 < ε < ε∗1 there exists a wide class of initial data such that
the solutions on the upper part of the k = 1 (monotone) solution branch are stable.
For ε > ε∗1 there are no stable monotone blow-up solutions.
ii) For 0 < ε < ε∗2 there exists a wide class of initial data such that the lower part of
the k = 2 solution branch is stable. For ε > ε∗2 there are no stable 2−bump solutions.

To summarise, we have not only found stable non-monotone profiles but we have also
found them to exist in a broader region of parameter space than the monotone ones.
This is in complete contrast to other blow-up problems; for most blow-up problems
the pattern of minimal shape is the only stable one.
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Fig. 7.2. Numerical simulations of the full CGL for monotone and non-monotone initial con-
ditions. The initial solution, t = t0, is given, as well as the final-time profile and the ODE solutions
that were observed for the same ε on both the upper and the lower part of the k = 1, resp k = 2,
solution branch are given. In all but one case, the profiles are presented in rescaled coordinates. As
indicated in Figure 7.1 the transient dynamics can be quite complicated and have been omitted for
clarity. (a) Monotone initial data where ε = 0.1 < ε∗

1
< ε∗

2
converge to a monotone final profile

found on the upper part of the k = 1 solution branch. (b) Monotone initial data, plotted in the
physical coordinates, decay to the zero solution for ε∗1 < ε = 0.22 < ε∗2. (c) Non-monotone initial
data, where ε = 0.1 < ε∗1 < ε∗2, converge to a non-monotone final time profile found on the lower
part of the k = 2 branch. (d) Non-monotone initial data, where ε∗1 < ε = 0.22 < ε∗2, also converge
to a non-monotone final time profile found on the lower part of the k = 2 branch.

It would be very interesting indeed to extend to the k−bump solutions for k > 2.
We have not included our numerics on these solutions here because they indicate, in
agreement with results in [19], that these are unstable. However, in principle they
could be constructed asymptotically as we described in the previous sections. It
would, however, be most intriguingly to try and answer the question what supn ε

∗
n is,

if it exists at all. This is still an open problem.
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