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Abstract

Optimal state estimation from given observations of a dynamical system by

data assimilation is generally an ill-posed inverse problem. In order to solve

the problem, a standard Tikhonov, or L2 , regularization is used, based on

certain statistical assumptions on the errors in the data. The regularization

term constrains the estimate of the state to remain close to a prior estimate.

In the presence of model error, this approach does not capture the initial state

of the system accurately, as the initial state estimate is derived by minimizing

the average error between the model predictions and the observations over a

time window. Here we examine an alternative L1 regularization technique

that has proved valuable in image processing. We show that for examples of

flow with sharp fronts and shocks, the L1 regularization technique performs

more accurately than standard L2 regularization.
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variational data assimilation, nonlinear least-squares optimization, model

error, Burgers’ equation.

1. Introduction

The estimation of the states of a fluid dynamical system from given obser-

vations by data assimilation is generally an ill-posed inverse problem. Even

with excellent numerical models of the system, prediction of the future states

of the system is not possible without an accurate estimate of the current state

of the system with which to initialize a forecast. For the very large systems

arising in geosciences and environmental sciences, where there are few and

sporadic observations, the problem is particularly hard to tackle. In opera-

tional weather and ocean forecasting centres and in the reservoir engineering

industry, the problem is commonly formulated as a variational data assim-

ilation problem, resulting in an optimization problem constrained by the

dynamical equations describing the system.

The lack of available data, coupled with errors in the observations and in

the prior state estimate, as well as in the model, leads to a highly ill-posed

inverse problem. To make the problem amenable to solution, a standard form

of regularization is used, based on certain statistical assumptions about the

errors in the data. Under these assumptions the variational problem provides

the maximum posterior Bayesian estimate of the current state of the system

[7]. The problem is written as an L2–norm nonlinear least squares problem

with an L2–norm regularization term. The regularization term constrains the

estimate of the initial state to remain close to the prior estimate. The solution

is essentially derived by averaging the error between the model prediction
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and the observations over a time window. As a result, the estimated initial

state often contains unsatisfactory oscillations, determined to compensate for

errors over the time window.

In this paper we examine alternative methods for regularizing the prob-

lem. These methods have proved valuable in image processing applications -

especially in image de-blurring and reconstruction algorithms. In these ap-

plications the images tend to be static with extensive observations available,

but are badly affected by errors. These methods are based on using L1–norm

regularization terms that effectively remove outliers in the data and provide

strong edge preservation in the images [1]. To implement these methods in

the data assimilation problem, we reformulate the state estimation problem

as a least mixed–norm problem, where we regularize the least squares op-

timization problem using an alternative L1– norm constraint on the prior

estimate.

We compare these different regularization techniques for a test case where

there are sharp fronts propagating in a fluid. Numerical methods that pre-

serve different properties of the systems, such as Lax-Friedrich and Lax-

Wendroff schemes, are applied. The results show that in the presence of

model error the L1–norm regularization methods capture the discontinuities

in the initial conditions more accurately than using the classical L2–norm

regularization technique.

In the next section we describe the variational assimilation problem. In

Section 3 we formulate it as a Tikhonov regularized problem and introduce

the alternative L1 regularized problem. In Section 4 we present experimental

results comparing the two regularization techniques. The conclusions are
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summarized in Section 5.

2. Variational Data Assimilation

In optimal state estimation by variational data assimilation (VAR), a

weighted nonlinear least-squares measure of the error between the model

forecast and the available observations is minimized over a time window

together with a penalty term that ensures that the optimal state estimate

remains close to a prior estimate (or previous forecast). The problem is

formulated as follows.

Given a prior estimate xb
0 ∈ IRm (the background) of the current state of

the system at time t0 and observations yi ∈ IRpi , at times ti for i = 0, . . . , N ,

the aim of variational data assimilation is to find the optimal estimate for the

initial state of the system x0 ∈ IRm (the analysis) at time t0 that minimizes

the objective function

J(x0) = (x0 − xb
0)

TB−1(x0 − xb
0) +

N∑
i=0

(Hi(xi)− yi)
TR−1

i (Hi(xi)− yi), (1)

subject to the nonlinear forecast model equations given by

xi = Mi,i−1(xi−1), i = 1, . . . , N . (2)

Here M : IRm → IRm and Hi : IRm → IRpi denote the evolution and

observation operators of the system. We assume that the errors (x0−xb
0) in

the background and the errors (yi−Hi(xi)) in the observations are unbiased

random Gaussian errors, uncorrelated in time, with covariance matrices B

and Ri , respectively, and that the errors in the background and the obser-

vations are uncorrelated. Under these statistical assumptions the solution to
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the assimilation problem yields the maximum a posteriori Bayesian estimate

of the state of the system [7].

In practice, for computational efficiency, an incremental version of VAR

is implemented in many operational centres. This method solves a sequence

of linear approximations to the nonlinear least-squares problem and is equiv-

alent to an approximate Gauss-Newton method for determining the analy-

sis [6]. At each step of the procedure the current estimate x0 of the analysis

is up-dated by an increment δx0 that minimizes the linear least-squares

objective function

J̃(δx0) = (δx0 − δxb
0)

TB−1(δx0 − δxb
0) + (Ĥδx0 − d̂)T R̂−1(Ĥδx0 − d̂), (3)

subject to the linearized model equations

δxi = Mi,i−1 δxi−1, i = 1, . . . , N (4)

where

Ĥ =
[
HT

0 , (H1M1,0)
T , . . . , (HNMN,0)

T
]T

,

d̂T =
[
dT
0 , dT

1 , . . . , dT
N

]
, with di = yi −Hi(xi),

and δxb
0 = (xb

0 − x0) . The matrices Mi,0 and Hi are linearizations of the

evolution and observation operators Mi,0(x0) and Hi(xi) about the current

estimated state trajectory xi , i = 0, . . . , N , and R̂ is a block diagonal

matrix with diagonal blocks equal to Ri .

The linearized assimilation problem is generally ill-posed or highly ill-

conditioned. Without the penalty term on the background, the problem is

likely to be underdetermined, due to the relatively small number of avail-

able observations and the correspondingly low rank of Ĥ . The penalty
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term, where the covariance matrix B is positive definite, then acts as a

regularization term and guarantees the existence of a solution to the prob-

lem. The problem, however, may still be very ill-conditioned (see [4]) and

therefore difficult to solve accurately. In order to improve the conditioning

of the linearized assimilation system, a transformation of the incremental

states is introduced that decorrelates the errors in the prior states. For a

spatially-distributed single-state system, the transformed problem is then

easily written as a classical Tikhonov regularization problem and the alter-

native L1 regularization problem can be derived directly. Both formulations

are described in the next section.

3. Tikhonov and L1 Regularization

A well-known technique for improving the conditioning of a linear least-

squares problem is to apply a linear transformation to ‘precondition’ the

system [2]. To illustrate the technique we here consider a system with a

single spatially-distributed state and let B = σ2
bCB and R̂ = σ2

oCR̂ , where

CB and CR̂ denote the correlation structures of the background and ob-

servation errors and σ2
b and σ2

o are the corresponding error variances. The

strategy used in many forecasting centres is to precondition the problem sym-

metrically using the square root of the background error correlation matrix

C
1/2
B . The preconditioning is implemented using a transformation to new

variables z = C
−1/2
B (δx0− δxb

0) , which are then uncorrelated. With different

statistical assumptions on the background errors, different regularizations of

the problem then arise.
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3.1. Tikhonov regularized problem

In terms of the transformed variable the linearized objective function (3)

may be written

Ĵ(z) = µ2 ||z||22 +
∣∣∣∣∣∣Gz− f̂

∣∣∣∣∣∣2
2
, (5)

where µ2 = σ2
o/σ

2
b , G = C

−1/2

R̂
ĤC

1/2
B and f̂ = C

−1/2

R̂
(d̂ − Ĥδxb

0) . We see

that this is the form of a classical Tikhonov regularization problem, where µ2

is the regularization parameter. The solution gives the maximum posterior

Bayesian estimate for the transformed analysis, assuming the background

and observational errors have Gaussian distributions.

If the matrix G is very ill-conditioned, that is, it has singular values that

decay rapidly with many that are zero or near zero, then without the regular-

ization term the assimilation problem (5) is ill-posed. Letting G = USVT

be the singular value decomposition of G [2], we find that the minimizer of

(5) is given by

z =
r∑

i=0

s2i
µ2 + s2i

uT
i f̂

si
vi , (6)

where si ,ui ,vi are the singular values and corresponding left and right sin-

gular vectors of the matrix G and r is its rank. The factor |uT
i f̂ | determines

the observational information that is projected onto the ith right singular

vector in the analysis. For perfect observations this factor typically has a

magnitude similar to si . If the singular values become very small relative

to this factor, however, then observational noise contained in f̂ may corrupt

the solution significantly. The effect of the regularization parameter is to

ensure that this noise is filtered from the solution. Information is lost, but

the accuracy of the result is improved [5].
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3.2. L1 regularized problem

An alternative form of regularization is obtained by using an L1 -norm

penalty term in place of the Tikhonov, or L2 -norm, penalty term. The linear

objective function in this case takes the form

Ĵ(z) = µ2 ||z||1 +
∣∣∣∣∣∣Gz− f̂

∣∣∣∣∣∣2
2
, (7)

The solution gives the maximum posterior Bayesian estimate for the trans-

formed analysis provided that the background errors now have an exponential

distribution and the observational errors have a Gaussian distribution.

This form of regularization is used popularly for image deblurring and

image restoration since it effectively removes outliers in the data and pro-

vides strong edge recovery. It might be expected therefore that this form of

regularization would more accurately recover sharp fronts and shocks in data

assimilation for fluid flows. Our aim here is to investigate this hypothesis

and to compare the L1 and L2 regularization techniques in an application

to computational fluid dynamics. We consider a 1D single-state system with

a moving front approximated by two different finite-difference schemes. Fur-

ther experiments are described in [3].

4. Numerical Experiments

In order to test the two different regularization techniques in a data as-

similation scheme, we consider the inviscid Burgers’ equation

ut + [f(u)]x = 0, (8)

where f(u) = 1
2
u2 , with initial conditions

u(x, 0) =

{ 2 , 0≤ x < 2.5

0.5 , 2.5≤ x ≤ 10 .
(9)
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The solution is given by

u(x, t) =

{ 2 , 0≤ x < 2.5 + st

0.5 , 2.5+ st≤ x ≤ 10 ,
(10)

where s = 1.25 is the shock speed. We approximate this system by the

Lax-Friedrich finite-difference scheme

Un+1
j =

1

2
(Un

j−1 + Un
j+1)−

∆t

2∆x
(f(Un

j+1)− f(Un
j−1)), (11)

Un+1
j =

1

2
(Un

j−1 + Un
j+1)−

∆t

2∆x
(f(Un

j+1)− f(Un
j−1)), (12)

or by the Lax-Wendroff scheme in conservative form

Un+1
j = Un

j − ∆t

2∆x
(f(Un

j+1)− f(Un
j−1)) (13)

+
∆t2

2∆x2

(
Aj+ 1

2
(f(Un

j+1)− f(Un
j ))− Aj− 1

2
(f(Un

j )− f(Un
j−1))

)
,(14)

where Aj± 1
2
is the Jacobian matrix A(u) = f ′(u) evaluated at 1

2
(Un

j +Un
j±1)

(see, for example, [8]). Here Un
j ≈ u(j∆x, n∆t) , and ∆x = 0.01, ∆t = 0.001

and j = 1, . . . , 100 . The Lax-Friedrich method is known to smear out the

shock over time. The Lax-Wendroff method recovers the shock speed, but

leads to oscillations near the shock. Both methods therefore introduce model

errors into the system.

Observations are taken from the exact solution (10) at every 20 points

in space and at every 2 time steps over a window of 100 time steps. The

background is taken to be U b0
j = U0

j − 0.1 , a shifted initial condition, and

the model is initialized with the true initial data. We choose CB = I and

CR̂ = I with σ2
o = 0.01 . We choose σ2

b = 1.0 for the Lax-Friedrich

model and for the Lax-Wendroff example, which is more sensitive, we choose

σ2
b = 0.04 . We examine cases with perfect data and with noisy data, where
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random errors from a Gaussian distribution with variance σ2
o = 0.01 are

added to the observations.

The assimilation problem is ill-posed for both numerical models. In Fig-

ure 1 the singular values si of the matrix G are plotted (red *) for each

model on a log scale. We can see that these decay rapidly, with a large num-

ber that are numerically zero (below machine precision). The factors uT
i f̂

are also shown (blue line) and it is easy to see that the ratios uT
i f̂/si become

extremely large and hence without regularization the assimilation problem

would become impossible to solve with any accuracy.
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Figure 1: Singular values si (red *) of G for the Lax-Friedrich (left) and Lax-Wendroff

(right) models and factors uT
i f̂ for the case of noisy data (blue line) plotted on a log scale.

The aim of the assimilation is to reconstruct the initial conditions that

minimize the errors between the observations from the exact system and the

forecast from the imperfect model over the assimilation time window. The

best solution over the assimilation window that can be attained is the model

solution initialized with the true initial conditions, since the assimilation

cannot correct the numerical model here.
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4.1. Lax-Friedrich method

The results obtained by the L2 and L1 regularized assimilation tech-

niques with perfect observations using the Lax-Friedrich numerical model

are shown in Figure 2. From the model trajectory with the exact initial

conditions (shown in blue), we see that the true shock front (shown in red)

is smeared out over time, as expected for this numerical scheme. With the

L2 assimilation, the initial analysis is not recovered accurately, due to the

model errors that are introduced over the window and also to the errors in

the background. The initial analysis contains significant oscillations, leading

to an inaccurate position for the shock front in the trajectory at the end

of the assimilation window. For the L1 assimilation, remarkably, the true

initial condition is recovered exactly and the trajectory exactly matches the

model solution over the time window.

With noisy observations, the results for the classical L2 variational assim-

ilation, shown in Figure 3, are considerably worse, with significant incorrect

oscillations throughout the window. Again, the L1 regularized assimilation

technique captures the initial condition exactly - a surprising achievement!

In this case we have chosen a simple background covariance that does not

smooth the errors between the background and observations over the window

and does not enforce a strong contraint on the analysis to remain close to the

prior estimate. If instead, we use a Markov correlation matrix for the prior

estimate, then the L2 assimilation produces results very similar to those

with perfect observations, whilst the L1 regularization method continues to

produce the initial analysis exactly [3].

11



0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

x

u(
x)

 

 
Truth
Imperfect model
Final solution

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

x

u(
x)

 

 
Truth
Imperfect model
Final solution

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

x

u(
x)

 

 
Truth
Imperfect model
Final solution

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

x

u(
x)

 

 
Truth
Imperfect model
Final solution

Figure 2: Results for Lax-Friedrich method for perfect (partial) observations. The

left/right plots show the solution at the beginning (t = 0)/end (t = 100) of the as-

similation window, respectively. The analysis trajectories from the L2 and L1 methods

are shown in the upper/lower rows respectively. The true solution is shown in red, the

exact model solution is shown in blue and the model solution after assimilation is shown

in magenta.

4.2. Lax-Wendroff method

In Figure 4 the results from the L2 and L1 regularized assimilation

schemes are shown for the Lax-Wendroff numerical model with noisy obser-

vational data. The trajectories are shown here at the initial time and at the

end of a forecast period of 100 time steps from the end of the assimilation

window. The model trajectory with the exact initial conditions (shown in

blue) introduces oscillations around the true shock front (shown in red), but

maintains the position of the shock accurately, as expected with this nu-

merical scheme. We see again that with the classical L2 assimilation, the
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Figure 3: Results for Lax-Friedrich method with imperfect (partial) observations. The

left/right plots show the solution at the beginning (t = 0)/end (t = 100) of the assimilation

window, respectively. The analysis trajectories from the L2 and L1 methods are shown

in the upper/lower rows respectively. The true solution is shown in red, the exact model

solution is shown in blue and the model solution after assimilation is shown in magenta.

initial analysis is not recovered accurately, due to the model errors that are

introduced over the window and also to the errors in the background. The

initial analysis contains large oscillations behind the shock. Over the time

window, these are damped and the position of the shock front is maintained

quite well. However, the solution still contains significant oscillations at the

end of the assimilation window and hence the prediction for the shock at the

end of the forecast window is very inaccurate. With the L1 regularization,

in contrast, the true initial condition is recovered exactly, and the solution

at the end of the forecast contains small oscillations but captures the shock
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position accurately, which is the best that is possible with this numerical

model.
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Figure 4: Results for Lax-Wendroff method with imperfect (partial) observations. The

left/right plots show the solution at the beginning (t = 0)/end (t = 200) of the forecast

window, respectively. The analysis trajectories from the L2 and L1 methods are shown

in the upper/lower rows respectively. The true solution is shown in red, the exact model

solution is shown in blue and the model solution after assimilation is shown in magenta.

5. Conclusions

Variational data assimilation is popularly used in the geosciences to pro-

vide an optimal estimate of the state of a dynamical system by combining

observations of the system with a model forecast over a time window. The

problem is highly ill-posed due to lack of data coupled with errors in the ob-

servations and in the model. To make the problem amenable to solution, a
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standard L2 -norm regularization technique is used that constrains the state

estimate to remain close to a specified prior estimate. Here we have pro-

posed an alternative regularization strategy based on an L1 -norm penalty

approach, which is expected to remove outliers in the data and provide strong

edge recovery. We have examined both the traditional L2 and the proposed

L1 regularization techniques for a test case with sharp fronts propagating

in a fluid, using two numerical models with different properties. The results

show that in the presence of model error, the L1 regularization method cap-

ture the discontinuities in the initial states much more accurately than the

standard Tikhonov L2 technique. Other test examples that support these

conclusions can be found in [3]. The challenge now is to develop this ap-

proach for application to large multi-variable systems.
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