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Previous multi-layered folding models have struggled to describe the geometry
of the interfaces between layers. In the level set method a single function ¢(z, y,t)
can be used to encode all the information of a multi-layer material in which all
layers are in contact and thus i1s a very natural way of dealing with the geometry.
This paper shows the potential for the level set method (in multi-layer problems)
by demonstrating that it can describe the geometry of multi-layer folding patterns
including those with singularities. The method is then applied to describe the me-
chanics of the modelling of parallel folding in multi-layered structures.
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1. Introduction

Deformation patterns of multi-layered materials under compression are strongly in-
fluenced by the way that the layers interact and slide over each other, and hence
are quite different from the folding patterns of homogeneous materials. Such folding
arises naturally when layered materials are compressed in the plane of the layers,
in a medium that allows them to slide over each other but not to separate. An
important example occurs in the buckling of layered sedimentary rocks under tec-
tonic compression. The same mechanisms also appear in the compression of layers
of paper (for which we provide some experimental results), and in certain types
of composite materials. Structural geologists have classified folds according to the
geometry of their observed sections, and specific names have been given to those
that frequently appear (Price & Cosgrove 1990). The geometry of these folds range
from almost sinusoidal patterns, to the straight limbs and sharp corners of kink
banding and chevron folding. However in all cases the resulting deformation is
strongly influenced by the constraints of the multi-layered geometry — a subtle mix
of geometrical constraints imposed by the need for the layers to fit together, and
mechanical constraints of bending stiffness and interlayer friction.

Here we are mostly interested in parallel folding (folds where the orthogonal
thickness remain constant). This occurs when a finite number of layers, loaded in
their plane, deform into a softer surrounding medium (foundation or matrix) while
slipping at their interfaces (Edmunds et al. 2006). Parallel folds formed under large
overburden pressures would be expected to limit voids between the layers (carrying
a large energy penalisation), and we therefore take the process to be one of buckling
in the complete absence of voids (Budd et al. 2003; Edmunds et al. 2006)

Figure 1(a) shows an example of parallel folding in rocks with a layer thickness
of around 10-25 cm. Since the layers fit together without voids, each has a slightly
different geometry from its neighbour; as a consequence, a singularity can appear
on one interface, as seen in the figure. Here the layers appear smooth (almost
sinusoidal) at the bottom of the picture, but as we move towards the top they
become increasingly constrained by the geometry, until at a particular interface
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a singularity occurs. Past this singularity the layers take a non-differentiable ‘V’
shape which propagates without change as we move further up; this V shape is seen
also in kink bands and in chevron folds (see figure 1(b)).

Figure 1. (a) Parallel folding of rocks near Bude, Cornwall. (b) Chevron folding of rocks
at Millock Haven, Cornwall.

A series of experiments showing regular parallel folding in layers of paper has
been undertaken by two of the current authors and figure 2 shows a typical out-
come. Budd et al. (2003) presented a model for parallel folding in two flexible layers,
subsequently extended to an n layer model in Edmunds et al. (2006). A method
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Figure 2. Parallel folding of 220 sheets of paper into foam. Here the black lines are for
identification.

for modelling the fold geometry, proposed in Edmunds et al. (2006), considered a
sinusoidal Galerkin approximation for the shape of the central layer, and simply
extended it to the outerlayers. This technique is unable to deal with the geometri-
cal constraints of multi-layer folding leading to singularities. This means that the
associated problems of kink banding and chevron folding (layers bend with infinite
curvature and straight limbs such that no voids form (figure 1(b))) require a sep-
arate treatment for what is essentially a similar problem (see for example Hunt e?

al. (2000); Wadee et al. (2004)).
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Here we present a method for describing multi-layer parallel folding based on
the level set approach. This naturally copes with the geometry of smooth parallel
folding and also allows a consistent description of the geometry associated with
singularity formation and kink banding (§2). The level set approach propagates the
shape of the central layer at a prescribed rate in the normal direction. By doing
this, the shapes of all outer layers can be determined (and controlled) rather than
being just approximated. The normal propagation is achieved using the level set
method (Dervieux & Thomasset (1979, 1981); Osher & Sethian 1988) in which a
function ¢(z,y,t) is introduced such that the shape of the layer indexed by ¢ is
given by the (z,y) curve satisfying ¢(z,y,t) = 0 (the zero level set). An application
of this method to the rock layers pictured in figure 1(a) is shown in figure 3. A
spline function has been fitted to a central layer (thick dashed line) and the re-
sulting curve propagated in the normal direction by calculating ¢. We see that all
of the important geometrical features of the layers are resolved, including the cusp
and singularity formation as we propagate in the upwards direction and the sim-
ple geometry in the downwards direction. To apply this method to find the actual
form of a deformed material requires information only about the shape of a single
reference layer. The level set method then gives the position of all the other layers
and encodes all of the information of the geometry in terms of ¢. Additional in-
formation about the mechanical behaviour of the system, in particular the bending
energy, the work done by friction and the work done in compressing the embedding
medium is then determined for the individual layers. This provides a total potential
energy function for the whole system of the deformed layers, which when coupled
to the geometrical description of the layers given by the level set method contains
a significant (stiffening) nonlinearity. We then look for states which are stationary
points of this energy functional. As the energy can be expressed in terms of the
single function ¢ this calculation becomes relatively straightforward.

The paper first describes the geometry of multi-layer folding, showing that it
naturally leads to the formation of singularities. We then describe the level set
method for calculating this geometry, and will discuss its performance and errors
when singularities are present. Following this we make use of the level set method
to construct a potential energy function for the deformed material. Here we will
only look at such an energy functional up to a singularity which we take as the limit
of the folding pattern. (Beyond this, elasticity assumptions would be expected to
break down.) From this energy functional we deduce the profile of the deformed
multi-layer material.

2. The geometry of multilayer folding

We now consider the basic process involved in the folding of multi-layer materials,
using first a Lagrangian approach to describe the geometry of the patterns that
can be observed. A natural consequence of this is the demonstration that singular
behaviour arises very naturally in the folding of such materials.

(a) The basic folding processs

Sedimentary rocks can be formed under the sea bed as loose particles (sedi-
ments), layed down layer upon layer, and forced together by the overburden pres-
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Figure 3. The Level Set Method applied to folding rock. The thick dashed line is a spline
fitted to the shape of the rock layer

sure, caused by the material above. This process forms horizontal layers, which
fold when tectonic plate movement produces an axial load (figure 4). In this figure
we see 1dentical layers of length L and width A¢, under an overburden pressure ¢,
undergoing an end-shortening due to the compressive load.

Matrix -

& e ——
- '\/‘\

Matrix

| L | L |

Figure 4. The assumed geometry showing the compressive force P and the overburden
pressure g. Note that the angle of the layers with the horizontal at the endpoints is
assumed to be zero.

Consider a layered material to be characterized by the position of each layer.
We can then consider curves Iy, indexed by ¢, which describe the interface be-
tween layers. To describe such a layered material let the upper surface of top layer
be described by the curve T'ya; and the lower surface of the bottom layer by the
curve ['_,a¢ with the interfaces between the other layers described by the curves
Fiat,—n < @ < n. In parallel folding we consider a situation where the layers are
always in contact and for which the curves [';o; are separated by a constant normal
distance At. The geometry of a set of curves with parallel folding can then be de-
scribed by taking a reference curve (without loss of generality T) and propagating
this curve in a normal direction a distance tAt to give the curve I';a;. Generally,
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the shape of T; will differ from Ty (although the chevron folding phenomenon of
figure 1(b) gives an example where an identical family of curves can coexist). In
particular, an initially smooth curve 'y may give rise to curves [';o; with singu-
larities and sharp corners, as seen in figure 1. To propagate past such a singularity
great care needs to be taken.

(b) The Lagrangian representation of parallel folding

We now give a Lagrangian calculation of the process of parallel folding and show
that the length of the interface is conserved, provided: a) the surface remains smooth
(ie. no singularities develop); and b) the angle of the interface with the horizontal is
the same at either end. To describe the folding process we consider the set of curves
given parametrically by T'; : R? — R? so that Ty = {(2(s,1),y(s,t)) : s € [0,1]}.
The parallel folding assumption is that the normal separation between two curves
parametrized by ¢ = ¢t; and t = ¢, is given by [ts — ¢1| and does not depend on
s. This assumption leads to a simple construction of the entire set of curves for
all ¢, given a reference curve for ¢ = 0. The exact position of I'; at time ¢ may be
constructed by advancing each point of T'y in its unit normal direction, n, a distance

t = iAt (Sethian 1999) (figure 5) where

n— (—y?,mg) P
YT 21)

Here the suffix 0 refers to the reference curve.

)
T(s,t+ At)

s=1

Figure 5. A smooth curve propagating with unit speed.

It follows from standard analysis that for each fixed ¢ = 1At the Lagrangian
description of T'y takes the form

0 0
t t
Ys , 0(5)’ i

G s O G g YO

(2.2)

P = {(a(s, 1), y(s. 1)) = (

Equation (2.2) is valid for all # = iAt, although the resulting curve may have points
of singularity characterized by a lack of a well-defined normal vector. To find z(s,?)
and y;(s,t) we differentiate equation (2.2) with respect to s to obtain:
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and
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These expressions can be simplified by considering the curvature &

K(s,t) = ﬁ so that  (z4(s,2),ys(5,1)) = (2%, 4°)(1 — k(s, 0)). (2.5)

We make the significant observation that this vector vanishes (and hence we can
not define a normal vector) when t = 1/£(s,0) which is the radius of curvature of
the reference curve at this point. By moving forward ¢ and then backwards by the
same amount, it is immediately clear that (1 — x(s,0)¢)(1 + &(s,?)t) = 1 so that

k(s,0) .

k(s,t) = T (s, 0} (2.6)

Note that the curvature (s,t) becomes infinite at the first value of ¢ which
occurs on the normal through the point on the reference curve with the smallest
radius of curvature. If £(0, s) is negative then the curve T'; has a well defined normal
for all positive ¢. However, if £(s,0) is positive, then there will be a first value of
t = T = min(1/x(s,0)), at which the normal vector first vanishes. The value of T
gives the maximum width of the layers before a singularity occurs. For ¢t > T the
curve ['; is multi-valued and has a swallow-tail singularity, with points of infinite
curvature. This situation is illustrated in figure 6 where we take a parabola to be

the reference curve.
N \/
1
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Figure 6. Propagation of a parabolic reference curve I'g showing the formation of the

swallow-tail singularity

As the layers are assumed to be incompressible in their local tangent direction,
it follows that the arc-length of each layer must remain constant. This imposes a
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constraint on the allowable deformations. To consider the effects of this constraint
we calculate the arc-length. Suppose that do; is the infinitessimal arc-length on the
curve ['y. If the total arc-length of Iy is oy, then

d
o = / do; = / ﬁds
T, T,

dO’O

Now d
% = /22(s,1) + y2(5,8) = /(1 — Ky 0t)?
S

Two cases then arise: either ¢ < T' in which case 1 — kg ,f has a constant sign over
the length of Ty; or it changes sign at certain points along the curve. If 6(s,t) is
the angle of the curve Ty at the point. (z(s,t),y(s,t)), then tan(d) = dy/dz and
k= 00/dc. Thus, if t < T we have

d do do _
oy _/ ﬁd —/ (l—tﬁ(s))—ds—ao—t/ —Ods—oo—t[ﬁ(s,O)]z;é
T; Ty d Ty

We arrive at the result:

le K‘,sot|—
ds

Theorem 2.1. Whilst equation (2.2) holds and t < T total arc-length of Ty is given
by:

o = 0o — t[6(s,0)] 5 (2.7)

Corollary 2.2. Ift < T and [0(s,0)]:=
remains constant.

$ =0, the total arc-length of each curve Ty

s§=

If ¢ > T then the normal ceases to exist, and the direction of do/ds(t) changes
sign at certain points so that |1 —#x(s, 0)| changes from 1 —1x(s,0) to —1+tx(s,0).
The above reasoning breaks down, and there is no guarantee that the total arc-
length is preserved.

(¢) Singularities

If t > T the curve I'y has a singularity resulting in a self-intersecting curve with
infinite curvature. We now explore what happens ¢ — 7~ . To study this situation
we consider what happens when a parabola is propagated forward at a constant
speed. We take a reference curve T'y defined for s € [0, 1] by

z(s,0) =s—1/2, and y(S’O)ZK(S_Qil/W.

If we set S = (s — 1/2) then the unit normal n is given by

< KS 1 )
n—
V1+ K252 \/1+ K252

and hence

KSt KS? t >

'S,t, S,t =|S- 3 +
Mm”( VIt RS 2 VTR
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A plot of the resulting set of curves was given in figure 6 where the self-intersecting
nature of the curve is clear. The radius of curvature of the reference curve Iy
takes its smallest value of 1/K when S = 0 and we deduce that the singular-
ity occurs when t = T = 1/K. If t > 1/K then the curve self-intersects when
(2(S,1),y(S,1)) = (x(=S,1),y(—=S,t)) = (0,Y) which occurs when

S=+/t2—1/K?2 and Y =K#*/2+1/2K.

At the point of self-intersection the curve T'; has a locally V-shaped form. The
gradient of the curve is given by dy/dx = y,/x,. Substituting K2S5? = 1 4+ K2
into the expressions for y, and z; we have that at the point of self-intersection

dy/de = +K\/t? —1/K?, if t>1/K. (2.8)

To examine the form of the curves as we approach the singular point we set
t=1/K —é and let S and 6 > 0 be small. To leading order we then have

K23 1 §K2S? 3K
2= 8kS+ 55 L 0(s5,55%) and y= -8+ *25 +3§ ST+0(S%,854).
It follows that
1 3K1/3 22
y= % BT 0n) P 0@ i s=0, y:l—;—6+(9(£4) if 0<é< 1.
\

It follows immediately that when z = 0 we have d?y/dz? = oo if 6 = 0 and
d*y/dz? = K/§ if 0 < § < 1. This calculation is significant in the context of the
calculation of the mechanics of buckling that we will consider in §4. In particular,
the bending energy associated with a buckled layer is proportional to the integral
of the square of the second derivative which, we show in §4 approaches infinity as
6 — 0. As a consequence, the buckling energy is a strongly nonlinear function of the
displacement of the reference layer, and this has a significant effect on the resulting
buckling profiles.

It is difficult to know exactly what happens to the rock layers physically as a sin-
gularity is approached and possibly transgressed. However, the assumed geometry
forces this to happen and a comparison of figure 1 and figure 6 shows clear simi-
larities. What is clear, however, is that the rocks do not pass through themselves.
Indeed, what seems to occur is that the rock layers of figure 3 (shown as a dashed
line) take the geometry of the non self-intersecting part of the curve. Hence, to
fully realise the possible geometries that a rock layer can have, we are motivated
to look at a construction method which is different from the Lagrangian approach
(which leads to the self-intersecting curves) and which allows us naturally to re-
solve, and pass through, the singularity, allowing a natural description of the non
self-intersecting part of the curves when ¢ > 1 where appropriate. Such a procedure
is given by the level set method, which relies on an Eulerian representation of the
set of layered surfaces and a weak formulation of the equation of propagation of
the layers. Sethian (1985) uses an entropy condition to overcome the problems with
self-intersection that arise in the Lagrangian framework. Informally, this strategy
evolves the front according to (2.2) until there is a collision in the normals. The
curves that collide are then eliminated and the front is moved continuously along
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the remaining normal curves, all along removing those that collide. It is this process
of deleting the swallow-tail that causes the loss in length. This process is equivalent
to using a numerical method to solve the level set equation described in the next
section to give a regularized (viscosity) solution.

3. The Eulerian representation, the theory of level sets and
the viscosity solution

(a) The Eulerian representation and the level set method

In contrast to the previous description of layer propagation using Lagrangian coor-
dinates, the Eulerian representation aims to find the (z,y) equation of the curves
T'; thinking of ¢ as a continuous variable and looking at the differential equations
governing the propagation of T' as a function of ¢. Accordingly, for a general ¢t we
set Ty = {(z,y) : y = w(x,t)}. We suppose further that each set T'; occupies a part
of a bounded, rectangular domain Q in R? extending from the left boundary of Q
to the right and separating €2 into two regions, 7, the region ‘inside’ the boundary
and Q% the region ‘outside’ the boundary. We next assume that T is a level set of
a higher dimensional function ¢(z,y,1) so that

y=w(z,t) iff é(z,y,t)=0.

The evolution of the function ¢ with ¢ can then be linked to the propagation of the
interfaces T';. This is the essence of the level set method (LSM). References to the
the level set method, and in particular its application to the calculation of various
free surface problems in fluid mechanics, include Osher & Sethian (1988), Osher
& Fedkiw (2003) and Sethian (1999). To apply the level set method, we first find

ya Q

Ot

O

Figure 7. The domain €. *

¢ by solving an appropriate partial differential equation, and then determine its
contours. As an example of the use of the LSM, consider the function

é(x,y,t) = 2?24+ — (1 +t)2

then for fixed ¢ the (z,y) curve satisfying the level set equation Ty = {(z,y) :
o(z,y,t) = 0} is a circle of radius (1 + ¢). The family of such level sets precisely
describes the evolution of an initial circle propagating at a constant speed v = 1 in

Article submaitied to Royal Society



10

a direction normal to each curve. Figure 8 shows how the function ¢ above evolves
with £.

2
A
—

¢(Iaya 2) :0/( v

Initial (reference) curve

Figure 8. The propagation of a circle in the normal direction by considering a higher
dimensional function ¢(z,y,t). (After Sethian (1999))

We now return to the general case and derive the partial differential equation
satisfied by the function ¢(z,y,?). Following the formulation of Sethian (1999), let
x(t) = (z(t),y(t)) be a point on the curve 'y = {(z,y) : y = w(z,?)}. Starting from
the identity ¢(z,y,t) = 0, it follows from the chain rule that,

b0+ Vo (x(1), 1) - x(1) = 0, (3.1)

where V¢ is defined to be (¢z, ¢y). If v(z,y) is the speed in the normal direction,
then x’(¢) -1 = v, where the unit normal n is given by n = V¢/|V¢|. It follows that
¢ satisfies the following hyperbolic partial differential equation of Hamilton—Jacobi
type (the level set equation).

by +v.|Vé| = 0. (3.2)

Solving this equation for ¢(z, y, t) together with a prescribed initial function ¢(z, y, 0)
determines the curves Ty = {(z,y) | ¢(z,y,t) = 0} and the exterior and interior re-
gions:

Qf ={(z.9) lé(z,y.1) >0} Q7 = {(z,9) | 6(z,y,1) < 0} (3.3)

In the level set formulation, the condition for parallel folding is that the speed func-
tion, v(z, y) should be constani. However, we note that it would be straightforward
to include other forms for the function v to allow, for example, for situations in
which the rocks can compress laterally (Wadee et al. 2004). Other examples of speed
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functions include the cases where v depends on the curvature x (which arises in
flame front propagation (Rhee et al. 1995)) and where it depends on |V¢| (which
arises in electro-machining). With this formulation the important properties (see
figure 4) of the geometry of the layers of rock can be easily calculated in terms of

é.

(b) Numerical implementation

To propagate the interface using the level set method we calculate the whole func-
tion ¢ using a time-stepping method. Assuming that we have a good approximation
to ¢(z,y,t) for some time ¢ = iAt we first use a numerical method to find an ap-
proximation to the solution ¢ of (3.2) for the time level + = (i + 1)At. A second
numerical method is then used to locate the zero contour of ¢(z, y, (1+ 1) At) to find
an approximation to T'(;11)a¢. The algorithm we use for implementing this strat-
egy is as described in Osher & Sethian (1988). To implement this we consider an
approximation @7, to the function ¢(z,y,t) at the point (z,y,t) = (jh, kh,nAt).
Here h and At are small and constant. An explicit discretisation of (3. 2) for a
constant v takes the form

@Z;l =&} ; — At [max(v,0)VT + min(v,0)V~] (3.4)
where
vt = [max(D;%,0)”+ min(D}%,0)* +
max(D; ¥, 0)” + min(D{ ¥, 0)%]"/? (3.5)
Vo = [max(Dk"'?,O) —|—m1n(DkJ,0)2 +
max(D Y, 0)? + min(D; ¥, 0)%]'/?, (3.6)

In the above the terms D}¥ etc. are a shorthand for the difference operators defined
ik
by
D-I—x — q>.7+1 k q).?:k
7.k h )

o, — P
Dif = LAt (3.7)
with similar expressions for D = Dj . Local errors in this scheme are of O(h, At).
The level set method as 1mplemented is stable provided that the Courant—Friedrichs—
Lewy condition (Courant et al. 1928) is met. There are three sources of error when
numerically solving the level set equation (Sethian 1999). These are the Initializa-
tion error which is error obtained when finding the signed distance function on a
discrete mesh from an initial curve, the Update error which is error in finding an
approximation to ¢(z,y,n + 1At) given ¢(z,y,nAt) and the Measurement error
which is the error associated with the finding the position of the zero level set us-
ing, for example, the MATLAB contour routine. Note that in order to calculate
®"*! we must calculate ®” at allspatial points, not just those close to the interface.
This is an inefficiency in the method. We note that there are more efficient schemes
such as the ‘Narrow Band Method’ (Chopp 1993), in which the only entries to be
updated are those in a narrow band around the interface. Once the interface reaches
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the edge of the band the signed distance function is re-calculated, the narrow band
is re-formed around the current position of the interface and the problem is solved
until the interface hits the edge of the band again and so on. Hence, a balance is
struck between saving time for updating only a small number of elements and the
cost of re-calculating the signed distance function.

(¢) Convergence of the LSM and the viscosity solutions

The level set equation (3.2) considered in the current paper is an example of a wider
class of equations called Hamilton—Jacob: equations, given by

o+ H(Vg,¢)=0 for z € IR™ x (0, o0) (3.8)

The function H is the Hamiltonian which for our purposes is given by

H(¢z,py) = v\/ 07 + &} (3.9)

In general there can be no smooth solution to equation (3.8) lasting for all times
t > 0. This corresponds precisely to the swallow-tail singularity observed in the
previous section. However, we may regularize the Hamilton—Jacobi equation by
adding artificial viscosity, eA¢®, with € > 0 to give

é; + H(VoS,¢°) —eAp =0 for z € R™ x (0, 00) (3.10)

In general, provided ¢ > 0, equation (3.10) admits smooth solutions. If the solutions
¢ of (3.10) converge weakly to a function ¢ as e — 0, then this is a weak solution
of (3.8). Tt is called the wiscosity solution and can have gradient discontinuities
(Crandall & Lions 1983; Crandall et al. 1984).

The viscosity solution picks out the correct weak solution when no classical solu-
tion exists. Informally, the viscosity solution ‘deletes’ the multivalued part of the
swallow-tail curve. In the numerical implementation of the level set method, that we
have presented, the regularisation is automatically provided by the numerical trun-
cation error which introduces an artificial viscosity term. The numerical method
is effectively solving a problem close to (3.10) with € &~ O(h) (Enright & Fedkiw
2003). Consequently, the numerical method will give solutions close to the viscosity
solution, thus automatically smoothing out the singularities and regularizing the
sharp corners.

(d) Singularities found in rock folding

We conclude this section by looking at some examples in which we explore the
applications and limitations of the LSM for calculating the geometry of certain
problems given a known reference layer I'g.

(i) Ezamples with reentrant corners

Example 1 As a first, quantitative calculation, which has a close link to a rock
folding problem which we will consider further in §4, we consider a reference curve
given by Ty = {(z,y) : ® = s,y = cos(2ws)}, 0 < s < 1. To apply the LSM
we take an initial function ¢(z,y,0) = y — cos(27z). This is not a signed distance
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function, meaning that gradients are steeper and therefore harder to approximate
accurately numerically, but it does give an accurate and easy to implement initial
zero level set. We now compute the resulting layers I'y and compare these with the
solutions predicted by the Lagrangian formulation. Using this, the exact parametric
equation of the layer at the time ¢ is given by

2w sin(27s)t t
TSIH( 7TS) 7 y:COS(?TFS)—{— )
\/1 + 472 sin?(27s) \/1 + 472 sin?(27s)

r=s++

The curvature of the reference curve takes its maximum value of 472 at the point
s = 1/2 and hence a singularity occurs when ¢t = 1/472 2 = 1/2, y = —1 + 1/4x2.
A close-up of the singularity of the exact (multi-valued) solution arising from the
Lagrangian description is plotted in figure 9(a).
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Figure 9. Close-up of a propagation of a cosine wave (a) using the Lagrangian method,
showing the self-intersecting curves. (b) using the LSM, showing the local V-shaped nature
of the curves.

We now compare the Lagrangian solution with that derived by using the LSM. A
calculation using the method for A = 0.01 and At = 0.005 is presented in figure 9(b)
(here the corresponding close-up of the singularity is shown). Observe, that in
contrast to the Lagrangian description, the LSM has deleted the self-intersecting
part of the curves, and the resulting curves have an apparent gradient discontinuity
at the centre. The local V-shaped nature of these curves is very similar to that of
the layers in the chevron folding pattern illustrated in figure 1(b). Indeed, if we take
Ty to be the V-shaped curve Ty = {(z,y) : = s,y = |s — 1/2|}, then the resulting
calculation of the layers T'; using the LSM is given in figure 10(a) and a close-
up in figure 10(b). We see that the LSM has succesfully coped with the gradient
singularity, reproducing the self-replicating feature of parallel folding in this case
where all layers T'; have the exactly the same shape and the same arc-length. We
note that in figure 10(b) the corner is slightly smoothed due to the error. This effect
can be reduced by refining the mesh.

As a further measure of the accuracy of the calculation of the propagating cosine
reference curve Tg = {(z,¥y) : ¢ = s,y = cos(27ws)} 0 < s < 1, we plot the total
arc-length of the resulting curves. The choice of reference curve ensures that [6;] = 0.
Hence, from theorem 2.1, the total arc-length of the curve I'; stays constant up to
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Figure 10. (a) Propagation of a V-shaped curve with the LSM (b) Close-up of the
singularity showing the local error

the point of singularity formation when ¢ = 1/472. For larger values of ¢ the curve
self-intersects and the total arc-length of the curve omitting the self-intersecting
part decreases until a steady state is reached. This arc-length can be calculated
exactly. If s = s* is the parameter value on the reference curve for which the
normal intersects with the line = 1/2 then

(1/2 = s*) \/1 + 472 sin?(27s*)
t =

27 sin(27ws*)

As the normal to the reference curve is also normal to T'; the angle 8 is given by
6 = —2msin 2ws. The arc-length o(¢) is then given by theorem 2.1 as

1
o(t) = 2/ \/1 + 472 sin*(27s) ds + 26 (3.11)

This is a standard elliptic integral and can be evaluated analytically. Similarly the
arc-length of T'; can be found numerically by applying quadrature to the sets found
by the LSM. The two values are compared in figure 11.

Example 2. As a second example of an application of the LSM method we consider
again the calculation illustrated in figure 3. A reference layer Iy was obtained
directly from the photograph by sampling the photographed curve at regular points
at a roughly middle layer and then fitting a spline through the resulting data.
The resulting layers propagated (through the singularity) by solving the level set
equation (3.2). Here we took h & 5 and At & 2.5, and chose to plot the zero level
set at every 15 time steps (there are 640 pixels in the horizontal direction). The
qualitative agreement between the calculations and the observed geometry appears
very good, including apparently the representation of the singularity and of the
rock layers formed beyond the singularity.

(i1) Ezamples with salient corners

The viscosity solution does not always agree with the observed patterns of folded
rock. In the photograph of figure 1(b) we see an example of chevron folding in which
rock layers fold in a zig-zag with both reentrant and salient corners, each of which
has a gradient discontinuity. Now consider a reference curve 'y given by an upside-
down ‘V’ with interior angle 2o and propogate this in the direction of incresing ¢
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Figure 11. Change in arc length with t showing the LSM estimate (dotted) and the
quadrature estimate (solid)

(see figure 12). Instead of propagating such a salient corner without change, the
artificial viscosity in the LSM picks out a rarefaction fan of solutions in which the
curves I'; lose the sharp V-shape and have a circular arc at the peak with arc-length
2ta. The LSM has not in this case given a solution consistent with that observed
in practice. To overcome this difficulty we could follow the procedure outlined in
Russo & Smereka (2000) in which the level set method is used to describe crystal
growth with sharp corners. In such a method additional slip is introduced between
the layers. This has the advantage of preserving the total arc-length of the solution,
but we shall not consider this approach in the present paper.

Figure 12. A Salient Corner obeys Huygens’ Principle, forming a Rarefaction fan.

4. The mechanics of folding

Having determined a procedure for finding the overall geometry of the layered
system from a single reference layer I'y we now examine how the form of 'y itself can
be calculated by using properties of the function ¢. This section shows how we can
incorporate mechanical features into the geometrical description given by the level
set method, allowing us to find the shape of the reference curve. The profile of the
compressed layered material 1s determined by the interplay of several mechanisms
namely the effect of the applied force, the bending properties of the layers, the
work done into the external medium, the effects of the geometry constraints and
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the frictional forces acting to oppose sliding between the layers. These are best
described by calculating the total energy V' which is a combination of the bending
energy, frictional energy and the work done by the external forces. Crucially, this
total energy, V' can be calculated in terms of the level set function ¢, depending on
[g. We can then find the profile of the material by finding stationary points of V'
with respect to (appropriate) variations in T'g.

(a) Total energy in terms of ¢

We consider the geometry illustrated in figure 4 in which we assume that an ini-
tially undeformed multi-layer material enclosed within a foundation material is
compressed and buckled by an external load. This load is resisted by the stiffness of
the layers, the frictional force as the layers slide in contact and the resistance of the
matrix in which the layers are embedded. In Budd et al. (2003) the potential energy
of two axially and transversely incompressible layers of small thickness ¢ in contact
along an interface line was considered. In this the two layers each comprised a mate-
rial of bending stiffness F T, which was embedded in a soft foundation of transverse
stiffness k£ per unit length, and compressed longitudinally by a horizontal distance
& (the end-shortening) by a load P. In Budd et al. (2003) the total energy was
decomposed into four components: V = Bending Energy + Foundation Energy —
Work Done by Load + Work Done against Friction, or

V =Up+Up — PE+ xU, (4.1)

The function x = +1 is included in (4.1) as a friction indicator which ensures that
the friction makes a positive contribution to the total potential energy when friction
opposes the external force, and conversely, makes a negative contribution when
friction acts in the same sense as the external force. For details on the interaction
between x and p see Budd et al. (2003). In this two layer model we let w be the
vertical deflection of the interface between the layers, z the horizontal distance and
o the arc-length. The total length of each of the layers is a constant L. Expressions
for each of the terms making up V are derived in Budd et al. (2003). To extend this
two-layer model to a multi-layer formulation we assume as before that there are
2n 4 1 layers each of width At and length L and that w;as(2),i = —n...n is the
vertical deflection of the interface between two succesive layers. In the experiments
conducted, each of the layers is compressed by the load by the same horizontal
amount £. The simplest way to ensure this occurs with the level set formulation is
to set w(0) = w(L) = 0. The total energy of the multi-layer material can then be
expressed as

EbAL3 & L w2

Up = =, E/O 1i”w2 do, (4.2)
L =—n

vp = / [Q(tn) — Q(u_)] do (43)
0

PE = P/OL<1— 1—wg> do (4.4)

n L
U, = ,uRAtE/ |Sin_1(1bl-)|d0'. (4.5)
0

i=—n
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where b is the breadth of the paper and dots denote differentiation with respect to
0. In this expression the external foundation is assumed to have a Winkler force
law, so that the force resisting a local deflection w is given by q(w) = dQ/dw. We
also assume that there is a constant reaction R between each of the layers and that
the coefficient of friction p between the layers is the same as that between the top
and bottom layer and the external foundation. It is very important to observe that
the bending energy has a component which varies as the integral of 2. As we have
already seen, this term becomes unbounded as we approach a singularity, and the
expression (4.2) is not defined at this point. For the present we will assume that no
singularity has formed so that this issue does not arise, and will return to consider
the singular case. We can now combine the geometric description of the layers of
with the mechanical description in the previous sub-section by expressing V in
terms of the single function ¢. Before we reformulate the energy contribution in
terms of the level set fuction ¢, it is useful to state a lemma that expresses various
of the terms which arise in the energy expression in terms of ¢

Lemma 4.1. (a) The derivatives of x and y with respect to o are as follows:

A TR A o
(b) The curvature k can be expressed as
T 2 2 zWx 2'
K=V- ;zl _ Duzly = 204020 y; Py9 (4.7)
(03 +¢3)”

(¢) The angle of the tanjent 0 is given by
. Ow 06 .
sin(f) = o and Kk = 90 (4.8)

Proof see Sethian (1999).

We now use these expressions to reformulate the various components of the energy
contributions (4.2) and (4.5) in terms ¢(z,y,t) where, to simplify the expression
we set ¢' = @(x,y,iAt) where ¢'(z,wiai(z)).

Theorem 4.2. In the case of a nonsingular deformation the energy terms are given

by
3 n i\ 2
B0 5 e (o) s o

i=—n

UF_// ")V Q) — 8(6~") V6 Q(yn)] dydz  (4.10)
P& = P// ) (V6" + ¢p) dyda (4.11)

u—ﬂthZ//

1=—n

sin~ <|V¢ |)‘ |V(;SZ |dydz (4.12)
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The delta function is included in equations (4.9)-(4.12) so that it is the position
of the zero level set, I';a¢, that makes the contributions to the energy and not the
part of ¢ defined over the rest of Q2. To determine V from this expression the delta
function would have to be numerically approximated and this could potentially
cause the evaluation of the integrals to be inaccurate. However, having located the
zero level set of ¢ using the contour plotting algorithm and given the form of the
function ¢’(z,y), a more direct approach can be used. To do this we formulate the
equations over each zero level set, T';a; to give the following result

Lemma 4.3 Integrating over each level set we have

n

EbAt3 Vel \’ Ve .
= Z/A< IVW) o dz (4.13)

Up = /an Q(yn) |V¢<g"| dz — /F_nm Q(y-n) lv(;:_;n|da: (4.14)
0 0

szp/u (1+ (|$;O|)) |V¢f Lz (4.15)
Vel o,

RN / o (lw |) 5 (4.16)

i=—n

Proof. We prove both the theorem and the lemma by considering each of the con-
tributions to the energy in turn.

The bending energy The total bending energy of the multi-layer system is given
by equation (4.2). Now, the curvature, &, is defined as 90/9¢ and the tanjent angle
by sin(f) = . Hence
. df dw  df w -
i == —— = — @ = :1—2
" dide = du" = cosg = 0 (170
Therefore, if «; is the curvature on the curve T';a; then the equation (4.2) can be
written as

=

(4.17)

n

EbAt3 Z / (4.18)

i=—n

Using the expression (4.7) it follows that the bending energy is given by

B EbAt3 . Vel \?
i = P e [ (7 ) o

_ EbAt3 Z”:/ < v¢i>2|v¢i|dx
Pt} PN V| P

The foundation energy By definition the vertical displacement w is the same as
y such that ¢(z,y,t) = 0. So that

/OL @u-n) — Qu)]do = [ Q- 'W Has— [ W) g

(4 19)
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The work done by the load We have assumed that each layer undergoes the
same end-shortening under the axial load P and therefore the work done by the load
is the same for one layer as for multiple layers. We arbitrarily choose to measure
the end-shortening of the reference layer, ¢ = 0.

P/OL (1—\/@) da:P/OL(l—xO)d

o (e (i) e L0 (o)) e

The work done against friction If we substitute (4.6) into (4.5) we obtain the

expression
% ) Vo'l
. — dz
<|V¢Z| o

u—qutZ/

1=—n

P&

1 o _
(‘ww)‘ do = pedt

i=—n

(b) The energy close to a singularity

To refine this calculation we briefly consider the form taken by the bending energy
close to a singularity where the curve I'; develops an infinite curvature when ¢t = 7.
In this calculation we will assume that the reference layer I'y i1s a smooth curve,
with maximum curvature of K > 0 occuring at a minumum point where it has a
locally parabolic form. As ¢ — T' = 1/K the maximum curvature of the curve T
increases, and hence the bending energy also increases. To determine the asymptotic
behaviour of the bending energy we will approximate I'y locally by the parabola
y = Kz?/2, with —1 < 2 < 1. Tt then follows from the analysis presented in §2
that if ¢t = 1/K — é with § > 0 small, then the maximum curvature £; of the folded
layer is given by £ = 1/8. Similarly, if t = 1/K then close to the point z = 0
the second derivative of the profile of the singular layer is given by d%y/dz? =
K'Y3Az=2/3 where A = 2'/3/3. Note that 1/6 = K'/3Az=%/3 if z=1 =
A3/2K1/283/2 The function d?y/dz? obtained by a numerical differentiation of the
Lagrangian formulation is illustrated in figure 13(a), where we take K = 1 and
6 = 0.01. In this figure we compare this second derivative both with the function
K3 A2=?/3 and with the maximum estimate of K/§.

For & small, it is clear from this figure that we can estimate the function d?y/dxz?
close to the point z = 0 by

d?y/de® = 1/6 if |z|< L, d’y/de®~ K'Y3A2=%3 if |z|> L.
This estimate allows us to make an asymptotic estimate for the bending energy
in terms of §. As the dominant contribution to the bending energy occurs close to

the singular region at z = 0 where dy/dz is small, we may closely approximate the
curvature by the second derivative so that in the limit of 6 — 0

/nzdx/(dzy/dm2)2dm ~ 8K A3/2§12,
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Figure 13. (a) The numerically computed curvature, compared with the asymptotic esti-
mate of K'/>4z7%/® and the maximum estimate of 1/6 (b) The numerically computed

integral of (cl2 y/d:c2)2 plotted as a function of § compared with the asymptotic estimate
8K A%/2 /6.

Hence we have the asymptotic estimate that as ¢ approaches 1/K there is a constant
B so that

ug ~ B(1/K —t)~'/2. (4.20)

In figure 13(b) we compare a numerically computed integral of the bending energy
with the asymptotic estimate and see good agreement.

(¢) Deformation profile for a particular of reference layer profile

To determine the configuration of the multi-layer material we must determine the
stationary values of the energy functional over all possible configurations of the
reference layer T'g. This is difficult in general as 'y can take many possible forms,
leading to non-unique solutions. A study of some of these for a two-layer material,
obtained by approximating I'y by cubic-splines is described in Hunt et al. (2006). To
make progress in the multi-layer problem, we will, for the present, restrict the class
of solutions to those for which the reference deflection I'y has a sinusoidal profile. Of
course this is a restrictive class of solutions, but an inspection of figure 2 shows this
to be not unreasonable for certain configurations. A fundamental difference between
this calculation and earlier approaches is that we only make the assumption that
the reference layer is a sinusoid, but allow other layers to take different profiles. In
other calculations it has been assumed that all of the layers have a sinusoid form.
This has led to significant underestimates of the total bending energy. Hence, for
this calculation, we make the approximation (see Edmunds et al. (2006)) that Tq
is given in terms of the arc-length ¥ by

To={(z,y) 1 y = wo(o) = Qcos (7;_0')}’ (4.21)

and proceed to calculate the other layer profiles using the LSM. For convenience we
restrict the calculation to the half-wavelength of total arc-length L given by taking
0 < o < L. This profile has a local minimum with maximum curvature K given by
K = Qn%/L? We assume further that the value of I is known a-priori from the
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linear buckling length-scale (Peletier 2001; Budd et al. 2003) and that the value
of @ is to be determined. For a given value of @ the horizontal shortening of the

layers is given
L
E:L—/ /1 —wg,do. (4.22)
0

To determine ) numerically we calculate the level set function ¢, evaluate the
bending energy using the formulae in lemma 4.3, and then find for which values of
@ this is stationary. To calculate ¢ a computational grid is set up over a rectangle
by dividing the horizontal region [0, L — £] into M; — 1 equal intervals of size h
such that z; = jh, j = 1,---, M. A similar division is made of the vertical
region into M5 regions of width A so that yy = kh. The value of h is chosen to be
consistent with the CFL condition, given that the time-step is determined by the
layer thickness At. In practice it is often convenient to calculate the level sets at
more refined intervals than the layers themselves, so we may take a time-step A
for calculating ¢ given by A = At/m where m is a suitable integer. The level set
problem is then initialized by taking

(j)gj:yk—Qcos (TLﬂ) with l‘j—/ \/1—wg,do=0 (4.23)
0

The approximate values of ¢ are then determined at time intervals of A by us-
ing the methods outlined in §3 and the level sets I' found by using the MATLAB
contour function. The integrals (4.13)—(4.16) are evaluated using a 16 point Gaus-
sian Quadrature rule at every m time steps (corresponding to each layer), and
finally, the variation of the total energy V with respect to small changes in @ is
found using central differences. The linear dependence of the total energy on the
(fixed) load P allows us to find P as a function of the single variable @ without
solving nonlinear equations. In particular, setting 9V /9@ = 0 we have simply

_ 0UB/0Q + 0Ur /0Q + x0U,./9Q

F 9E/9Q

(4.24)

A plot of the resulting (£, P) curve in the case of a material with n = 220 layers
of width 0.1mm and with L = 35.9mm is given in figure 14. Here we have taken
M = 180 which corresponds to h = 0.22.

Using the previous theory we can understand the qualitative form of this figure.
If @ 1s small then each of the terms Ug, Up, & are locally quadratic functions of
@ and hence their derivatives vary linearly with Q. However, U, is a locally linear
function of @ and its derivative is linear. Thus as ) — 0 the load P tends to oo
(Budd et al. 2003). In contrast, as @ increases further, so the deflection of the layers
furthest from the reference layer becomes more nearly singular. As the maximum
curvature of the reference layer is given by K = Q(7/L)? and the half thickness ¢
of the total layer is given by ¢ = nAt it follows from the previous subsection, that
the bending energy varies as

B
VIZ/(72Q) — nAt

Up ~
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Figure 14. A plot of axial load against end shortening, showing that the bending energy

re-stiffens the system

In particular, if Qs = L2/ (71'27’LAt) the bending energy Up becomes unbounded
as @ — @5 and there is a constant C so that U ~ C/y/Qs — @. Hence, as the
end-shortening only varies slowly with @ as @ — Qs we conclude from (4.24)
that as @ — Qs we have P ~ (Qs — Q)_S/z. Mechanically, the formation of the
singularity in the material is equivalent to a dramatic re-stiffening of the whole
system, seen also in other folding configurations such as kink banding (Wadee et
a. 2004). Of course we do not see an infinite load in practice, and for the rock
formations considered in this paper we would expect to see some sort of fracturing
or plastic behaviour in this limit, or alternatively the formation of multiple folds.

5. Conclusions

This paper has shown the potential of the level set method when modelling multi-
layer problems. The ability to model parallel folding has been presented and it
is anticipated that it can be adapted to model other folding scenarios. The level
set method naturally encodes the nonlinear terms. The model is designed only to
model the formation of the first hump. If extra humps are to be formed it will be
important to understand what happens as the layers lockup, and the role that the
singularities have in this (Hunt et al. 2006). Tt is interesting that the formation of
singularities is purely due to the geometry and yet these singularities then impact
on the system in a way which is presently unclear.
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