BIFURCATIONS OF PERIODIC SOLUTIONS SATISFYING THE
ZERO-HAMILTONIAN CONSTRAINT IN REVERSIBLE
DIFFERENTIAL EQUATIONS
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Abstract. This is a study of the existence of bifurcation branches for the problem of finding
even, periodic solutions in fourth-order, reversible Hamiltonian systems such that the Hamiltonian
evaluates to zero along each solution on the branch. The class considered here is a generalisation
of both the Swift-Hohenberg and extended Fisher-Kolmogorov equations that have been studied in
several recent papers. We obtain the existence of local bifurcations from a trivial solution under mild
restrictions on the nonlinearity and obtain existence and disjointness results regarding the global
nature of the resulting bifurcating continua for the case where the Hamiltonian has a single-well
potential.

The local results rest on two abstract bifurcation theorems which also have applications to sixth-
order problems and which show that the curves of zero-Hamiltonian solutions are contained within
two-dimensional manifolds of solutions of both negative and positive Hamiltonian.
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1. Introduction. In [25,7, 28,29, 36, 20, 9] the authors find periodic solutions of
systems of Hamiltonian differential equations with the property of having prescribed,
zero Hamiltonian. In particular, existence theorems for even, periodic orbits satisfying
the zero-Hamiltonian constraint in certain fourth-order Hamiltonian systems have
been derived by Peletier et al. and van den Berg using shooting techniques [35, 36].
While such shooting methods rely heavily on the particular form of the nonlinearities
in a given problem and thus suffer from a lack of generality, the techniques do provide
a great deal of quantitative information about the solutions. The problem of finding
periodic solutions of Hamiltonian systems with prescribed non-zero energy has been
studied extensively (see [31, 30] and more recently [4]).

The main contribution of this paper is to view the problem of finding zero-
Hamiltonian, periodic solutions of (1.1) as a one-parameter bifurcation problem from
a zero solution, with either period or an external parameter playing the role of bifur-
cation parameter. To solve this bifurcation problem we formulate two abstract Hopf
bifurcation theorems (Theorems 2.2 and 2.4) and deduce the existence of the desired
solutions as a corollary. The abstract results apply to reversible, fourth-order Hamil-
tonian systems at 1:1 and m:n resonances, provided that the Hamiltonian is indefinite
about the trivial solution. We call these simple and double bifurcations respectively
as the theorems lead to either a single continuum or a pair of bifurcating continua of
solutions. Furthermore, the proofs of the bifurcation theorems are easily modified to
show that the zero-Hamiltonian solutions that we find actually lie within manifolds
of solutions of positive and negative Hamiltonian.

The proofs of our abstract results are achieved using a Lyapunov-Schmidt re-
duction technique, as can be found in many texts [38, 2, 11], and the fact that we
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essentially have only one bifurcation parameter means that some of the global bi-
furcation results of [6] are applicable. Using arguments from the configuration-space
formulation of fourth-order problems [34, 17, 29], we shall be able to find bifurca-
tion invariants which demonstrate that the bifurcating continua form a countable
collection of mutually disjoint sets. Subsequently, we shall be able to show that a
simple bifurcation for fourth-order problems results in the existence of an unbounded
(in a suitable sense) continuum of solutions, rather like the classical global Hopf bi-
furcation theorem described in [1]. The global aspect of the paper is peculiar to
fourth-order equations and does not immediately apply to more general Hamiltonian
systems (like the sixth-order problem [33, equation (2)] for which we also have local
results). Consequently, we have what approaches a nonlinear Sturm-Liouville theory
(which is well-known in the context of elliptic, two-point boundary-value problems
[5]) for zero-Hamiltonian solutions of equation (1.1) given below.

A Lyapunov-Schmidt reduction procedure is specifically available for systems that
are either reversible or Hamiltonian [37, 22], however we do not make use of these
results in this paper. The reason for this is that it is not clear that studying the
problem in a space of reduced dimension helps to elucidate the role played by the
Hamiltonian constraint and consequently we approach the problem ab initio.

So, consider the class of fourth-order differential equations
(1.1) W+ pu” + Fu(u) =0,

where primes refer to differentiation with respect to z, p is a real parameter and the
function F € C*¥(R) satisfies

(F) F(0) = F,(0) =0 and Flu(0) = 1.

Here, C¥(R) denotes the space of real-analytic functions on R and a subscript u
denotes differentiation with respect to u. We shall assume throughout that F' satisfies
assumption (F) and is therefore positive in some neighbourhood of u = 0. Note that
the final condition in (F) is not restrictive as it can always be obtained from a suitable
scaling of u and of time (denoted z), provided that F,,(0) > 0.

Now (1.1) is reversible (see [8] for a discussion of reversible systems) and Hamil-
tonian, with Hamiltonian

(1.2) H=uu" — %u”g + %pu’2 + F(u),
and when suitably scaled (see [36]), (1.1) provides the extended Fisher-Kolmogorov
and Swift-Hohenberg equations, with F,(u) = +u(1 — u?).

Fourth-order equations like (1.1) have a burgeoning literature, as can be seen from
the recent studies in [3, 7, 24, 26, 27, 28, 29, 35, 36, 8, 12, 19, 18]; see in particular
the recent monograph [25] and also [36, 20]. In these references it is shown using a
variety of variational, geometric, functional analytic and elementary techniques that
(1.1) may possess periodic, homoclinic and heteroclinic solutions, with applications
ranging from geology to buckling theory; in particular, zero-Hamiltonian periodic
solutions play an important role in study of cellular buckling (see [12, 19, 8] and the
references therein, see also [9]).

We note at this stage that in order for a bifurcation from the trivial solution to
occur as p varies, no further restrictions will be required on the nonlinearity F than
those already given in assumption (F).
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As an application of the results of the first part of the paper, we analyse the
behaviour of the simple bifurcating branch which connects to (u,p) = (0,2) for the
case

(1.3) F(use) = %uQ —€ (iu4 — éu(s) ,

where € is a parameter which unfolds the degenerate problem from ¢ = 0. In particu-
lar, we prove the existence of a fold bifurcation on this bifurcating branch which was
conjectured to exist in [19] and [12]. Finally, the results of some numerical calcula-
tions performed in AUTO will be presented which indicated that similar behaviour is
observed for the multiple bifurcating branches which connect to the trivial solution at
p > 2. We also compute the symmetry-breaking bifurcations on these branches and
illustrate the subsequent connecting branches of solutions.

2. Bifurcation Theorems. Let X,Y and Z be Banach spaces and BL(X,Y)
denote the space of continuous (bounded), linear maps from X to Y. We write X*
for the dual space of continuous linear functionals BL(X,R). If L € BL(X,Y) and
U C X is a closed subspace of X then L[, € BL(U,Y) will denote the restriction of
L to U. We shall use || - ||x to denote the norm on X and Iso(X,Y’) denotes the set
of continuous, linear, isomorphisms from X to Y. Let Cj_ be the Banach space of
27-periodic, C" functions from [0, 27] to R", endowed with a C" norm.

If f: X — Z is a given smooth mapping then df (z)[h] will denote the Fréchet
derivative of f. For higher derivatives, the k-form d* f(x)[h, ..., h] will also be written
as d®f(z)[h]®®) for brevity. Partial derivatives of a function f € CY(X x Y, Z) will
be written as d, f(z,y)[h] € Z and d, f(x,y)[k] € Z where (h,k) € X x Y, higher
derivatives will be written as in d2,, f(x, y)[h, k]. If X = R we will identify d, f(x, y)[h]
with hd, f(z,y)[1], and we shall also write

d* f(@)[hy, ... ] = (I0E_ hy)dF f(2)[1, ., 1],

although we shall often omit the k-vector [1,...,1] in this expression where no con-
fusion results. Given u,u1,us € X, we will write (u) = R - u and (uj,uz) =
{aqru1 + azus : a1, a0 € R}. For any continuous function v, we denote the delta func-
tional by é(v) = v(0).

For completeness, let us recall the following. A linear mapping L € BL(X,Y) is
said to be Fredholm if its range ran(L) is a closed subspace of Y with finite codimen-
sion, and its null space ker(L) is a finite-dimensional subspace of X. Then

ind(L) = dimker(L) — codim ran(L)

is said to be the Fredholm index of L. We recall the following theorem which gives a
useful collections of facts which can be found in [32].

THEOREM 2.1. If L € BL(X,Y) is Fredholm and K € BL(X,Y) is a compact
linear operator, then L+ K € BL(X,Y) is also Fredholm and ind(L + K) = ind(L).
As a consequence, if L is Fredholm of index zero and it is injective then it is an iso-
morphism. The set F of Fredholm operators is open in BL(X,Y) and ind is constant
on connected components of F.

2.1. Statement of the Abstract Problem. Let ¢ € Z*, M € C“(X x R?)Y)
and g € C¥(X x R?,Z), now consider the bifurcation problem

e o= (g ) = (0)
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where v € X and p,p € R are parameters. Throughout we shall write H = M X 1(g)
for brevity. We intend that (2.1) represents an abstract formulation of finding periodic
solutions of (1.1) with the property of having zero Hamiltonian; accordingly we shall
call the functional 1 o g the energy of (2.1). Since the functional H in (1.2) is of
quadratic order at the origin, we impose this degree of degeneracy into the operator
g. Hence we assume that

(2'2) M(()?p? /J/) = 07
and
(2.3) 9(0,p, ) =0, dug(0,p, ) = 0.

By the term bifurcation from the trivial solution v = 0 of (2.1) at (u,p,p) =
(0, po, tto), we mean that there is a sequence (uy, pn, fn) C X \{0} x R? which satisfies

H(unypna /J/n) = 07 Up — 0 and (pTHMTL) - (p07 /J’O) as n — o0.

2.2. Local Bifurcations. Let us now seek conditions under which there is a
bifurcation of (2.1) from the trivial solution. The implicit function theorem applied
to (2.1) shows that (0, po, f10) can be a bifurcation point for (2.1) only if

(2.4) dy, M (0, po, t0) & Iso(X,Y).

Furthermore, if M is a assumed to be a Fredholm mapping then a bifurcation can only
occur when d,, M (0, po, o) is not injective. Motivated by this, we shall now consider
two such cases:

(i) dimker(d, M (0,po, po)) =1,
(i) dimker(d, M (0, po, f10)) = 2.

Case (i) is reminiscent of the theorem on bifurcation from a simple eigenvalue
and will give rise to a unique bifurcating continuum. In case (4), however, we will be
able to locate exactly two distinct bifurcating continua. Let us now proceed with the
promised results.

THEOREM 2.2 (Simple Abstract Hopf Bifurcation). Suppose that (2.2-2.3) hold
and d, M (0, po, o) € BL(X,Y) is Fredholm of index zero where ker(d, M (0, po, po)) =
(k). Suppose also that X = (k) ® U, V = ran(d, M (0, 10,p0),Y = (K) @V,P:Y —
V' is the projection operator along (K) and Q is the projection onto (K) which is
identified with R.

Suppose further that (diug(O,po,uo)[k,k]) = 0 and that the operator D €
BL(U x R2,V x R?) given by

Pd, M (0, po, o) Pd2,M(0,po, po)[k, 1] Pd2,M(0, po, p1o) [k, 1]
D= 0 QdZ,M(0, po, po)[k, 1] QdZ, M (0, po,uo)[k‘a 1]
P(d,9lk,]) w(diupg[k k, 1]) ¢(diuu9[ 1)

is an isomorphism.
Then, (0,po, o) s a bifurcation point for (2.1). Moreover, there is an interval I
containing 0 and a unique, analytic branch B of solutions of (2.1) on which (u,p, p) =

(u(B),p(B), u(B)) for B € I and which satisfies u(B) # 0 for 5 # 0, (u(0), p(0), u(0)) =
(0,po, po). Moreover, there results ||u(8) — Bk|x = O(B?) as 3 — 0.
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Proof. Let us express u in terms of the decomposition of X as u = gk +r =
B(k + p) € (k) ® U, then (2.1) is equivalent to

(2.5) (P +Q)M(B(k + p),p, ) =0,
(2.6) Y(g(B(k + p),p,p)) = 0.

Using analyticity, it follows that there are analytic mappings M and § such that

M(B(k + p),p, ) = BduM(0,p, ) [k + p] + B>M(B, p, p, 1),

and

2 3
W(al8(k + 9. 10) = ¥ (G g Op b+ bt 1+ T 5 pps) )

As we are seeking non-zero solutions to (2.1), we can divide by appropriate powers
of 8 in (2.5-2.6) and solve the equivalent problems

(2.7) (P +Q)dM(0,p, p)[k + p) + BM (B, p, p, 1) = 0,
(2.8) ¢ (d2,9(0,p, Wk + p, k+ pl + B3(B, p,p, 1)) =0
In turn, (2.7-2.8) is equivalent to

(2.9) p (duM(O,pa Wk + pl + BM (B, p, p, u)) =0€eV,
(2.10) Q (duM(0,p, p)[k + p] + BV (B, p,p, 1)) = 0 € R,
(2.11) ¥ (d2,9(0,p, w)[k + p, k + pl + B3(8, p,p, 1)) = 0 € R,

where the one-dimensional space (K) is identified with R.
Let us now denote (2.9-2.11) as ®1 (5, p, p, ) = 0 where @, is an analytic mapping
of Banach spaces

(2.12) d:RxUxR? -V xR

Under the stated assumptions it is clear that ®1(0,0,po, o) = 0 and one can show
that D = d,, ,®1(0,0,po, f10), noting Q[d, M (0, po, pto)] = 0 by definition. It now
follows by the implicit function theorem that we may locally solve (2.9-2.10) for p,p
and p as a function of 3. The fact that p(0) = 0 completes the proof. [

The following result tells us that Theorem 2.2 is a special case of a more general
result which says that the branch B of zero energy solutions from this theorem is
formed from the intersection of a manifold of solutions of M (u,p, ) = 0 with the
zero-energy surface {(u,p, ) : ¥(g(u,p, p)) = 0}.

THEOREM 2.3. The curve of zero-energy solutions B from Theorem 2.2 is con-
tained within a (locally) two-dimensional, analytic manifold M of solutions of

(2.13) M (u,p, ) =0

of both positive and negative energy.
Proof. (sketch) Repeat the same argument as Theorem 2.2 but for the system

(2.14) He(u, p, p1) = < Mg]‘é(f;’%‘)‘)_e ) = ( 8 ) .
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One obtains a mapping ®1 (0, p, p, i, €), entirely analogous to (2.12), such that
(1)1(07 OaPOa Ho, O) =0and D = dp,p,,u(ﬁl(ov 07p07 Ho, 0)

One can then solve p,p and u locally as analytic functions of (8,¢). O

The following technical lemma shows that one can parameterise the bifurcating
branch from Theorem 2.2 using one of p or u as parameters, and this result will be
used at a later stage in the paper.

LEMMA 2.1. If (u,p,p) = (u(B),p(8),u(B)) is an element of the bifurcating
branch B obtained in Theorem 2.2, then at least one of

dy (M x(g)) or dy (M x 1(g)) € BL(X xR, Y xR)

(evaluated at (u,p, 1)) is an isomorphism for sufficiently small, non-zero |3|.
Proof. Note from Theorem 2.2 that

|QdipM(Oap0a :U‘O)[kv 1} | + |Qd12j,uM(07p07 /’LO)[‘ZC? 1] | 7£ 07
and let us therefore assume for definiteness that

(2.15) Q2 M (0, po, o) [k, 1] £ 0.

Now define the one-parameter family of linear mappings

L = (M@ HEHE) - GUOEEIE) )
U(dug(@(3),p(3), 1(B)  (dpg(u(B),p(3), () )

and note that this is an (at most) rank two perturbation of a Fredholm mapping with
index zero. It follows that we only need to prove that L(3) is injective for 8 # 0.
Using analyticity, a straightforward but lengthy calculation shows that we may

write L(3) = Lo(8) + BL1(8) + & La(B) + O(8%), where

“W)<wﬁwm+0wwb 0 )

and

2 ¢(diuug[k+o(ﬂ)vk+0(ﬂ)v]) w(diupg[k+o(ﬂ)vk+0(ﬂ)v]) ’

where each of the given derivatives is evaluated at (u,p,u) = (0,p(8), u(8)). For
B3 # 0, one can see that L(/) is injective if and only if T'(3) is, where

d M 0
T“*:(wﬁww+mm4>o>+
ﬁ( 242, M[k+0(8), ] 202, Mk + O(5), | >
2\ (dd,.glk+O(B3),k+0(B),-]) ¥(d,,glk+0(3),k+0(3),])
+0(8%).
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Again, each of the derivatives is evaluated at (u,p, u) = (0, p(58), u(5)).
Clearly T(0) is not injective, but the fact that d2,g(0, po, io)[k, k] # 0 implies

ker(T(0)) = (k) C X xR,

where k = (0x,1) € X x R. To prove that T'(3) is injective for small 3 it suffices to
prove that

(2.16) T'(0)x ¢ ran(T(0)).
But
R QdﬁuM[k:, ] 2dipM[k:, ]
0 =3 ( P(d gl k) (dSglks b, ]) ) !

evaluating derivatives at (u, p, 1) = (0, po, o), and ran(7(0)) = ran(d,, M (0, po, 10)) X
ran(¢(d2,,9(0,po, f10))). It follows that T'(0)x € ran(T(0)) can only be satisfied if

deM(O,pO, ﬂO)[k‘a 1] € ran(duM(07p07 NO)))

but this contradicts (2.15). Finally, one can use an analogous argument to cover the
case whereby Qdfml\i(o,po,,uo)[k7 11#0.0

Next we consider case (i) where d,, M (0, po, 110) has a two-dimensional null-space.

THEOREM 2.4 (Double Abstract Hopf Bifurcation). Suppose that (2.2-2.8) hold
and ker(d, M (0, po, t0)) = W where dim(W) = 2 with W = (ky, ko). Suppose further
that X =W ® U and

Y=ZaV, V =ran(d, H(0, po, o)),

where V is closed, dim(Z) = 2 and Z = {uy, us).

Now, let P :' Y — V be the projection along Z and Q@ = 1 — P. Fori = 1,2,
let Q; be the projection of Y onto (u;) (which we identify with R) such that Qly] =
@1lylur + Q2lylua. Put

A= Q/J(diug(O,Po, MO)[kQa k2])7 B= w(diug(ovpm N’O)[klv kQ])

and

C= w(diug(o7p07 MO)[kh kl])

Suppose that C # 0, B% > AC and let v be the two (real, non-zero, distinct) roots
of the quadratic equation Aa® + 2Ba+ C = 0. Suppose also that

det Qldsz[kil + ag ko, 1] QldiMM[kl + atks, 1] 20
Q2d3pM[k1 + ko, 1] QdeuM[kl + atke, 1]

when (U,]L /’L) = (O>p07MO>-

Then (0,po, o) s a bifurcation point for (2.1). Moreover, there is an inter-
val I containing 0 and ezxactly two analytic branches By of solutions of (2.1) on
which (u,p, ) = (ux(B),p+(B), ux(B8)) for B € I, with ux(0) # 0 for B # 0 and
(ux(0),p£(0), u+(0)) = (0, po, o). Moreover, there are analytic functions ay : I — R
and p : I — V such that aL(0) = ay, ||p(B)|ly = OB) as B — 0 and uy(B) =
Bk1 + Bax(B)kz + Bp(3).
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Proof. Using the analyticity of M let us write

and

g(u,p, ) = g(0,p, ) + dug(0,p, )u + duug(O,n w)[u, u] + O(3),

where O(n) represents any function, ©(u, p, u) say, where there is a v > 0 such that
1©(u, p, w)|| < ~l|ul|™ for all (u,p,n) in a neighbourhood of (0, po, po)-

Now let u = B(k1+aks+ap) € WU and note that there is an analytic function
¢1 such that the equation M (u,p, ) = 0 is locally equivalent to

(2.17) Bd, M (0, p, p) [k + aks + ap] + ¢ (e, B, p, p, ) = 0.

We may also use the analyticity of g to write
9(B(ky + aka + ap), p, ) = duug(O,n ) [k + aks + ap]®

(2.18) +%¢2(a,ﬁ,p7p7 1),

where ¢5 is another suitably defined analytic function. Now the equation M (u, p, u) =
0 is equivalent to

(P+ui1Q1 +u2Q2)M(u,p, 1) =0,

and, after dividing (2.17) and (2.18) by 3 and (3? respectively, we obtain the locally
equivalent problem

(2.19) P [d,M(0, p, p)[k1 + ake + ap] + (e, B, p,p, )] =0 €V,
(2.20) Q1 [duM(0,p, u)[k1 + aks + apl + Bér(a, B, p,p, )] =0 € R,
(221) Q2 [d M(O Y2y )[k1+a]g2+ap]+ﬂ¢1(oz 67%7 'z )] *OERa
(222) & (d2,900,p, w)llr + ks + ap)® + Bn(a, B, p,p.11) ) =0 € R

Setting 3 =0,p=0,p = pp and p = o in (2.19-2.22) we find an equation for a:
(223) ¢(diug(07pa :u’)[kl + 0[162, k1 + akQ]) =0.

From the definitions of A, B and C given in the statement of the theorem, (2.23) is
simply the equation C' + 2B« + Aa? = 0 with solutions a = a.

We now write (2.19-2.22) as ®s(p, p, 4, a, 3) = 0, say, where @5 is an analytic
mapping @3 : U x R* — V x R3. The derivative d, p ..o ®2(0, po, pto, @,0) is given
by the operator matrix

Ay By 0
L=| 0 Dy 0 | €BLUxRV xR?
E() FO GO

where

Ag = a+Pd,M°, By = [Pd,,M°[ky + oty 1)| Pdy, M [k + ok, 1]]
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EO = 2ai¢(diugo['a ki + a:l:kQ])a GO = 2¢(diugo[k27 k1 + aikQ])v

Fo = [0(d},,0°[L k1 + axka, k1 + axko))| ¥(d5,,.0° 11, k1 + axks, ki + axks])]
and

Dy = Qldlzf.pMO[kl + a:tk27 1] QldzﬂMO[kl + O[:th, ”
0 Qad2, M°[ky + asko, 1] Qadz, MO[ky + asky, 1] )

and a superscript zero () denotes evaluation of a function at (u, p, 1) = (0, po, to)-

Clearly, for L to be an isomorphism we require Go # 0, that is ¢(d?,¢° k2, k1 +
atks]) # 0, but this is just B + axA # 0 which is true by assumption. Since
Ay € Iso(U, V), L is an isomorphism if det(Dy) # 0 and this is also an assumption.
Using the implicit function theorem we can now determine all of the variables as
analytic functions of 3 locally to the two points (p,p, i, o, 8) = (0, po, po, @x,0). O

As was the case for Theorems 2.2 and 2.3, we can prove that the branches of zero-
energy solutions B from Theorem 2.4 are obtained from the intersection of solutions
of M(u,p,p) =0 with the zero-energy surface.

THEOREM 2.5. The two curves of zero-energy solutions B4 from Theorem 2.4 are
each contained within (locally) two-dimensional, analytic manifolds My of solutions
of M(u,p,n) = 0 of both positive and negative energy. Moreover, My N M_ =
{(0,po, o) }-

Proof. This is almost a ver batim repetition of the proof of Theorem 2.4, but
modified to deal with an energy constraint of the form (g(u,p,p)) =e. O

3. The existence of bifurcations for fourth and sixth-order systems.

3.1. Preliminaries. In this section we shall apply Theorems 2.1 and 2.2 to find
bifurcating branches of periodic solutions of (1.1) which have the zero-Hamiltonian
property. To do so, we shall presume that a periodic solution of (1.1) has period T,
where

T =2n/pu,
and p is a-priori unknown. Upon setting
t = pzx,

a simple rescaling of (1.1) and (1.2) leads us to consider the two-parameter problem

(3.1) M (u,p, p) = p*u"" + pp*u’ + Fu(u) =0,
1 1
(3.2) P(g(u,p,p)) =6 (u4u’u”’ — "+ Spptu” + F(U)) =0,

where primes now denote differentiation with respect to t. With regard to (2.1), v
corresponds to § and ¢ is the Hamiltonian which appears in (3.2); again we shall write
H = M x 1(g) so that (3.1-3.2) corresponds to the equation H = 0.

A natural setting for the application of these Theorem 2.1 and 2.2 is in the space
of even functions of period 2. Accordingly, let X, = {u € C3, : u(t) = u(—t)} and
Ye = {ue CY, :u(t) = u(—t)}, both endowed with their usual norms. We also define
the even-odd subspaces,

Xep = {uEXe:u(g—t) :—u(g—&-t)}
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and
T
~—t

Yeoz{ueYe:u(2 ):fu(ngt)}.

For a given subspace S C Z C L?(0, ) we define its orthogonal complement by S+ =
{u €Z: f027r u(t)s(t)dt =0 Vs e S}. In this way we obtain a map H € C¥(X, x
R2,Y, x R) and if F is even then H also provides a map H € C¥(X., x R?,Y,, x R).

3.2. Simple bifurcation from p = 2. The following theorem shows that the
zero-Hamiltonian problem associated with (1.1) has a simple bifurcation point to a
locally unique and smooth branch of solutions from the point p = 2.

THEOREM 3.1. Suppose that assumption (F) holds. Then there is an interval
I C R and a unique analytic branch § — (u(B),p(B)) € X. x R defined on I of
non-trivial, even, periodic solutions of (1.1) with zero Hamiltonian and period T(3).

Moreover, u(8) # 0 if 5 # 0,
T(0) = 27, u(0) =0, p(0) =2 and ||u(B)(t) — Bcos(t)|c+ = O(5%)

as § — 0. If F is even then the function t — u(B)(t) is an element of X, for all
pgel.

Proof. To prove this result we apply Theorem 2.2 to H(u,p, ) =0 with X = X,
and Y =Y.. Let L(p, p)[a] = d,M(0,p, p)[a] = p*a™" + ppa” + a and note that the
bilinear form (d?2,g(0, p, p)[a, b]) from Theorem 2.2 is given by

B(p, M)[a’ b] -5 (M4(a/bm +adb" — a//b//) +pu2a’b’ + ab) )

In order to verify the hypotheses of Theorem 2.2 let us seek a non-zero solution
a € X, to L(p, p)a = 0, that is

,u4a””—|—pu2a"+a:0, 6(u4(2a’a”’—(a”)2)+pu2(a’)2+a2) =0.

Since a is even and of period 2, we seek solutions of the form a(t) = cos(mt) where
m is an integer. This provides the equations a* — pa? +1 = 0, —a* + 1 = 0 where
a = um, whence o = 1, so that p = 2 and p = 1/m. Seeking the solution of minimal
period, we may put m = 1 and thus define k(t) = cos(t) and record the fact that
ker(L(2,1)) = (k). Let us also define K = k for the purposes of Theorem 2.2 and
note for the moment that k is an even-odd function.

We now form the decompositions X, = (k) ® (k)" and Y, = (k) @ (k)"*, so that
U= (k)" c X, and V = (k)" C Y. in accordance with Theorem 2.2 and define the
projection Q : L?(0,27) — R by

1 27
(Qu)(t) = 7/ u(t)k(t)dz, u e L*(0,27),
m™Jo

and let P = T — k- Q. Now, 9(d2,,9(0,p,m)la,b,1]) = By(p, pla,b] = (u2a’t),
4,90, p, p)[a, 0] = 3 (4p°(@'b" + a'b"" — a"b") + 2ppa’t’) and dy, M(0,p, p)la] =
L (p, p)[a] = 4pPa”"+2ppa”. Finally, %, M (0, p, u)[a, 1] = p?a”. Thus the remaining
hypothesis of Theorem 2.2 is satisfied if the operator matrix D is non-singular. On
inspection of the relevant derivatives we find

PoL(2,1) 0 0

D= 0 -1 0 | € BL(UxR*V x R?),
* 0 —4
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where Po L(2,1) : U — V is an isomorphism and x is irrelevant to the calculation at
hand. It follows that D is an isomorphism and the result follows.

The second part of the theorem is proven in exactly the same way, simply observ-
ing the change of space, using X, rather than X.. The uniqueness of the bifurcating
branch in both X, and X, and the fact that X, C X, implies that u(8) € X, if F
is even. O

REMARK 1. In order to demonstrate that the application of Theorem 2.2 is
not limited to fourth-order problems, we present the following example. In [33] the
authors study the problem of finding periodic solutions for sixzth-order problems using
a variational approach, of which

(3.3) u 4 5u™ 4 pu’ +u —u® =0,

is an example (see also [10]). Equation (3.8) has Hamiltonian

1 1 1 1
(34) H = 7(u///)2+uvu/ w /l+5( / /”fi(u//)2)+g(u/)2+fu2f7u4.

2 2 2 4
THEOREM 3.2. The points (u,p) = (0, 4%) and (0,1+4+/2) are simple bifurcation
points to even, periodic solutions of (3.8) with zero-Hamiltonian and with period near
212 and 27 /\/1 + /2 respectively.
The proof of Theorem 3.2 is very similar to that of Theorem 3.1 so we omit il;
note that the existence of a locally two-dimensional manifold of positive and negative
Hamiltonian solutions also follows from Theorem 2.3.

3.3. Double bifurcations from p > 2. The following result shows that the
interval [2,00) contains a dense set of bifurcation points for (3.1-3.2).

THEOREM 3.3. Suppose that assumption (F) holds. Then to each n,m € N such
that n > m+1 and ged(n,m) =1 there is an interval I C R and ezxactly two analytic
branches 8 — (ux(8),p+(8)) € Xe X R defined on I of even, periodic solutions of

(1.1) with zero Hamiltonian and period Ty (B). Moreover, us(8) # 0 for 5 # 0,
T:(0) = 2my/mm, ux(0) =0, pe(0) = = + =,
and
lux(8)(t) — B (mcos(nt) + ncos(mt)) ||cs = O(6%)
as 3 — 0.

Proof. Let us apply Theorem 2.4 to H(u,p, ) = 0 and to identify the functions
k1 and ks from Theorem 2.4, we consider the linearised problem

L(p,p)la] = p*a" + pp*a” +a =0
of (3.1) with a € X,. This linear equation admits an even, 2r-periodic solution of the
form a(t) = A cos(mt) + Ap cos(nt) with integer m and n provided that oy = (um)?
and az = (un)? both satisfy the equation a? — pa + 1 = 0. From this we obtain
oo =1, so that g = py . ;m = :Lm and p = a1 + o, whence p = py,.;m = % + %
nt), ka(t) = cos(mt) and uy = k1, us = ko. Moreover,
= (— iy, "'V + ab), we have

Hence we define k1 (t) = cos(n
uslng w( uug(o Pnym;s fon, m)[ b]

\.//\

A=mn*-m?*)/n* B=0and C = —-A
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so that oy = £ in the notation of Theorem 2.4. With Q;(v) = 2 0% v(t)u;(t)dt for
i=1,2, we find dipM(O,pnm,;L,wn)[a7 1] = ui,ma”, and diuM(O,pn,m,un,m)[a, 1] =
4pi7ma”” + 2pp mpin,ma”, we evaluate the determinant from Theorem 2.4, which is
—4pd o axn®m?(m

2 —n?) and the result now follows since this is non-zero. [

If F' is even, then all the bifurcations which occur for p > 2 are pitchforks because
u is then a solution of (3.1-3.2) if and only if —u is. The uniqueness properties of
Theorems 2.2 and 2.4 and the symmetry then imply that the parameterisation of the
solution branch satisfies —u(8) = u(—08). From this we infer that the bifurcation
diagram of ||u(8)|| (with any suitable norm) plotted against p(5) has a tongue-like
appearance because of the density of the union of py, ,,, in [2, 00).

REMARK 2. Theorem 3.3 was essentially known some time ago and can be found
in an unpublished letter by Prof. J. F. Toland (1992), as referred to in [9, equation
(5.1) and p.2486] for the case F,(u) = u — u?. This letter was communicated to the
present authors by Prof. A. R. Champneys and we express our gratitude for his help in
this matter. A singularly perturbed version of (1.1) for this choice of nonlinearity was
studied in [15] and more recently in [16], where the authors consider both homoclinic
and periodic solutions, although the latter are not of zero-Hamiltonian; see also [23].

As an aside, consider the equation
1 . 3
(3.5) va + 0" 4 pv+ 0 + ZU(UUH + (v)?),
taken from [21], with first integral

1 1 ‘3
(U”/vlfi(v//)z)Jr5(11/)2+§Uz+%+§(1)/)21)2.

1

(3.6) H= D

Note that a parameter A\? appears in [21] which has been replaced here by p. This is
not in the class of Hamiltonian system given by (1.1), but Theorems 2.2 and 2.4 are
still applicable.

THEOREM 3.4. The point p = 3 is a simple bifurcation point to even, periodic
solutions of (3.5) with zero first integral and with period near wm, For each
n,m € N such that n > m and ged(n,m) = 1, the point pnmm = 12(L + 2)72 is q
double bifurcation point to such solutions with period near w\/(n? +m?2)/3.

The proof of Theorem 3.4 is an application of Theorem 2.4 which is entirely
analogous to Theorem 3.3, so we omit the details.

3.4. Odd solutions for even F. Now let us suppose that F'is an even function.
If we define the spaces of odd functions, X, = {u € C3, : u(t) = —u(—t)} and Y, =
{ue Y, :u(t) = —u(—t)}, then H provides a map H € C*(X, x R?,Y, x R). This
means that one can obtain odd, zero-Hamiltonian solutions of (1.1) in an entirely
analogous manner to the way we found the even solutions. For this reason we give
the following theorem without proof.

THEOREM 3.5. If assumption (F) holds and F is even, then to each n,m € N
such that n > m + 1 and ged(n,m) = 1 there is an interval I C R and ezactly two
analytic branches 3 — (ux(8),p+(8)) € Xe xR defined on I of odd, periodic solutions
of (1.1) with zero Hamiltonian and period Ty (3) = 27 /pu+(8). Moreover, uym(3) # 0
for 8#0,

)

T:(0) = 2mv/nm, us(0) =0, p+(0) = % n

m
n
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and
[us(B)(t) — B (msin(nt) + nsin(mt)) o+ = O(6%)

as 3 — 0.

Of course, there is little point of formulating a version of Theorem 3.1 in this
context, since that theorem already tells us that a branch of odd solutions of (1.1)
can be found by shifting time.

It is possible to formulate an extension of the results proven in this section by
considering a smooth, one-parameter family of reversible vector fields on R™ which
possesses a trivial branch of equilibrium solutions and a first integral. One could use
Theorems 2.2 and 2.4 to formulate sufficient conditions for the bifurcation of zero-
energy, symmetric periodic solutions. However, we have not done this for brevity and
we restrict our attention to the properties of fourth-order systems.

3.5. Disjointness properties of solution sets. Motivated by Theorems 3.1
and 3.3 we define the following non-empty sets, assuming (F) to be true. Let

(3.7) E={(u,p,p) € Xe xR xR:H(u,p,p) =0,u#0,pu >0},

and let 3 denote the closure of ¥ in X, x R2. For any pair (n, @ € N x N such that
ged(n,m) =1, let C(n,m) be the maximal connected subset of ¥ which contains the
point (u, p, 1) = (0, Pp,m, tn,m) and define the functional v : ¥ — (2, 00) by

1
(3.8) v(u,p, ) = llullos + Ipl + [ul + 7k
Also, let
(39) EJr:{(uup»/j‘) 62:p>0}7

3, is the closure of ¥ and let C'y (n,m) be the maximal connected subset of C'(n, m)N
34 which contains the point (u,p, 1) = (0, Prm fin.m)-

We continue with a simple lemma which is used in the subsequent analysis.
Throughout this section, # is used to represent the cardinality of a set and we intro-
duce a potential V (u,u”) by writing equation (3.2) as

1
—,LLQUI(,LLQUW + gu/) — V(u,u”) = —§u4u"2 + F(’LL)

LEMMA 3.1. Suppose that n,m > 1 are distinct integers, then #{t € [0,7] :
ncos(nt) £ mcos(mt) = 0} = max(n,m) and #{t € [0,7] : mcos(nt) £ ncos(mt) =
0} = min(n, m).

The following two theorems provide bifurcation invariants that are invaluable to
the study of the global nature of X.
THEOREM 3.6. If assumption (F) holds and F(u) > 0 for u # 0 then the mapping

13— N;(u,p, p) = #{t € [0, 7] : u(t) = 0}

is continuous and satisfies t1(C(n, m)\{(0, Pn,m, fin,m)}) = min(n, m).

We postpone the proof of this theorem until after the following preliminary lemma.
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LEMMA 3.2. Let (ug,pi, k) C X be a sequence with (uk, pg, k) — (u,p,p) € X
and suppose that there is a pair of sequences (t4.), (t3) C [0, 27] such that |t} —t3] — 0
and u%(t,lcz) =0. Then ug(t})ux(t2) > 0 for sufficiently large k.

Proof. For definiteness we assume that ¢} < 7 and, seeking a contradiction, we
also assume that uy (t;)ux(t2) < 0; we initially also assume that ug(t}) < 0 < ug(¢3).
By the mean-value theorem there is a T} € (t;,t7) such that u}/(T;) = 0 and taking
the limit k& — oo gives the existence of a T such that «/(T") = w”(T) = 0. Using
(3.2) yields F(u(T)) = 0 and therefore u(7T) = 0, and since u is not identically zero it
follows that w”(T) # 0.

We now assume without the loss of any generality that ||uk||cs < ||ul]|ce +1 =B
and that 3y < pp < 3p. By the smoothness of F and since F(0) = F,(0) = 0 we
may assume that there is a C' such that

02
|F(w)| < 7|w|2 if lw| < B.

Since u%(t,lf) = 0 we have V(ug,uy) = —%ui(uﬁy + F(ug) = 0 at t11c72 and
therefore
C 4C
(3.10) uf| < =5 luk] < =5 Jux| at £,
Ky H

If we define the function v(t) = V(ux(t),u)(t)), then the mean-value theorem gives
the existence of a 7, € (t},t7) with v/(75) = 0. From (3.10) the orbit of wy is a
smooth curve in the u,u”-plane that connects (uy,u})(ty) (in the left half-plane) to
(ug,uf)(t?) (in the right half-plane) with end-points in the region {(u,u”) : |u”] <
‘;—ﬂu\} By considering the tangent vector (u’, u”") of this planar curve, it follows that

there is a 7y, € (f},t7) such that

ac

(3.11) uy ()] < Il | (7)) -

When we take the limit & — oo, it follows from the estimate

sup |ug| < |67 — ti| sup [,
(th:42) (th:12)

that u}’(7%) — 0. We therefore find that the limiting solution w satisfies u"’(T') = 0
which is a contradiction.

If the signs of uy at ¢, are inverted, so that ug(t2) < 0 < wuk(tL) then the
argument given above holds unchanged. If exactly one of the two values wug (t,lf) is
zero for all k then the argument holds in a similar way: in this case the curve in the
u, u”’-plane connects the origin to the other point. The existence of 7y satisfying (3.11)
follows as before. If both of the values of uj are zero, then the curve is closed, and
again a value of 75, can be found satisfying (3.11). This concludes the proof of the
lemma. O

Proof of Theorem 3.6. Suppose that (u,p,p) € X and (ug,pr,pur) C X satisfies
(uk, Prs i) — (u,p, ) in C* x R2.

We first note that if four or more zeros of uy, collide (counted according to algebraic
multiplicity), say 0 < t;lC < tz < ti < ti < 27 are all zeros of u; that converge to
T then from the mean-value theorem we have w(T) = «/(T) = v/ (T) = «"'(T) = 0,
contradicting the assumption that u # 0.
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On the other hand, if two or more zeros collide then from the mean-value theorem
again there is a T such that «/(T") = 0 and therefore v”(T') = 0 by (3.2). In order to
avoid the same contradiction as above, necessarily /(1) # 0. This implies that the
zero of u at t = T is topologically transverse which rules out the possibility that two
transverse zeros coalesce.

We therefore are left with two cases: either three simple zeros collide, or two zeros
of which one is a double zero. In the first case, three simple zeros, there exist t,lf such
that uj, (t,lc’Q) =0 and t,lf — T as k — o0, and since the zeros are transverse we can
assume that uy has opposite signs at t}c and ti. The conclusions of Lemma 3.2 show
that this situation leads to a contradiction. In the second case we choose 15,1c to be the
non-simple zero, and 74 € (ti,t7) to be an intermediate point such that u'(7;) = 0.
Again an application of Lemma 3.2 leads to a contradiction and therefore the number
of zeros of uy eventually equals that of u. This shows that ¢ is continuous on 3 and
therefore constant on connected components of ..

In order to evaluate ¢1(u,p, ) for (u,p,u) € C(n,m) with v # 0 we use the
representation of C(n,m) at bifurcation given in Theorem 3.3. From Lemma 3.1
there results

lus(8)(£) — B (m cos(nt) £ ncos(mt)) [lcs = O(5%),

hence #{t € [0,7] : ux(8)(t) = 0} = min(n,m) follows for sufficiently small and
non-zero ( and the theorem is proven. [

THEOREM 3.7. If assumption (F) holds and F(u) > 0 for u # 0 then the mapping
L2 Xy — N;(u,p, ) — #{t € [0,7] : " (t) = 0}

s continuous.
Proof. Let (u,p, 1) € X4 and suppose that there is a T € [0, 27] such that

u(T) =" (T) =0.

The zero-Hamiltonian condition (3.2) then gives

Spiu (T + F(u(T)) = 0,
and the hypotheses on F ensure that «/(7) = 0 and u(T") = 0. It follows that u = 0
which contradicts the definition of ¥, and this contradiction implies that the zeros
of w' are transverse. Consequently, if (un,pn, pn) C X4 is a sequence such that
(Wny Py i) — (u,p, ) in X4, then u/! — u” in the C* topology. Hence u!/ has the
same number of zeros as v’ for all sufficiently large n which shows that o is continuous
as claimed. [

Theorem 3.7 immediately implies that ¢5 is constant on connected components of
3+ and from this observation we deduce the following.

COROLLARY 3.1. Suppose that (F) holds and uF,(u) > 0 for all u € R, then
Y+ =% and as a consequence, Ci(n,m) = C(n,m). Moreover,

LQ(C(TL, m)\{(oapn,mv N'n,m)}) = max(n, m)7

so that C(n,m)NC(n',m') is empty unless (n,m) = (n',m’).
Proof. Multiplying (3.1) by u and integrating gives

2m 2m 27
pu2/ (u)2dt = / pt(u")? + uF, (u)dt > / pt(u)2dt > 0.
0 0 0



16 R. Beardmore, M. Peletier, C. J. Budd and M. A. Wadee

Hence if there is a solution of (3.1-3.2) with p = 0 and p > 0 it follows that v” = 0, so
u(t) = At+ B for constants A and B. As u is periodic, A = 0 and as u must have zero
Hamiltonian, F'(B) = 0 is also true. The hypotheses ensure that F(u) = 0 only when
u =0 so that B =0, hence u(t) =0 and so ¥ = 3, from where C(n,m) = Cy(n,m)
by definition.

Since 13 : X — N is continuous by Theorem 3.7, the set C defined by C =
C(n, m)\{(0, prm;, fin.m)} is a connected subset of X, because the intersection of
C(n,m) with some small ball, C(n,m) N Bs(0, Dn,m, fin,m), is path-connected for all
sufficiently small 6 > 0. Hence ¢5 is constant on C. In order to evaluate to(u,p, 1)
with (u, p, ) € C we use the representation of C (n,m) at bifurcation from the trivial
solution described in Theorem 3.3 and then apply Lemma 3.1. From Theorem 3.3
there results

[t (B)(£) + Bmn (ncos(nt) £ mcos(mt)) [lc= = O(5%),

whence #{t € [0, 7] : v/[(8)(t) = 0} = max(n,m) follows for sufficiently small and
non-zero (3.

Finally, as (F') ensures that F is positive in a punctured neighbourhood of zero,
the condition wF,(u) > 0 then ensures that F(u) > 0 if u # 0. Applying Theorem 3.6,
we obtain ¢;(C(n,m)) = ¢;(C(n’,m’)) for j = 1,2 and the last part of the corollary
follows. O

Finally, we have the following theorem which applies to path-connected subsets of
3, although it provides no information regarding the behaviour of connected subsets
of ¥ which are not path-connected.

THEOREM 3.8. Suppose that F(u) > 0 for u # 0 and let (us,ps) be a continuous
path of solutions of (1.1), where each us is defined on a sufficiently large subset of R
and the path does not contain the equilibrium solution. If two zeros of u, collide, then
multiplicity is preserved in and through the collision.

Proof. We may assume that all collisions occur at s = 0 and ¢ = 0. Note that if
all uy are defined on a common interval I C R, then by standard elliptic estimates the
solution curve is bounded in C¥(I’) for any k € N and any compact interval I’ C I.
Since F' is smooth, we can bound F' by

(3.12) |F(w)| < C*w?/2

for, say, |w| < 1.

Note that u/(0) = v (0) = 0 at s = 0, and therefore by equation (1.2), F(u(0)) =
0 which implies u(0) = 0. The non-constancy hypothesis on each u, implies that
u”’(0) # 0. This proves that multiplicity is conserved in the collision. Note that the
zero at (t,s) = (0,0) is necessarily transverse.

To show that any subsequent perturbation preserves the multiplicity we use some
ideas from the analysis of the configuration space (u,u’) from [34, 17]; [29] contains a
simplified description that is sufficient for our purposes. The structure of the configu-
ration space and the set {V = 0} is shown in Figure 3.1. Near the origin in this plane
the set {V = 0} consists of two curves that intersect in the origin. Near the origin
the direction of these curves is bounded from above by 2C, where C is the constant
in (3.12).

At s = 0, we have u(0) = v/ (0) = v”(0), v’ (0) # 0, and therefore the orbit near ¢t = 0
is represented in the u,u”-plane by a curve that remains inside the set {V < 0} and

intersects {V = 0}. We can choose appropriate translations of us, and small £,5 > 0,
such that
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FiGc. 3.1. The configuration space u,u'’ is partitioned according to the sign of V.
”
u

V<0
— V>0 —<—v>0—"

V<0

Fic. 3.2. Two forms of perturbation: (a) if the curve continues to intersect {V = 0} in the
origin, then the tangent remains vertical; (b) a translation, on the other hand, creates new zeros of

u’ and therefore also conserves multiplicity.

—,
—

« T

(a) (b)

us(t) is defined for (¢,s) € @ = (—¢,t) x (=5,3);
us depends smoothly on s in C*(—Z,#);
u(t) > 0 on Q (if not then reverse time);
For each s € (—3,5) we have +ul(£f) < 0, and V (us(+t)), u’(+f))) < 0.
This implies that no intersections of the solutions with {V' = 0} appear or
disappear through the boundary =-¢;
5. u Jul, > 4C on Q, where C' is the constant in (3.12).
We write 75 = {(us(t)), v () : —t <t <t}

We now consider the alternatives for perturbation away from s = 0. First assume
that 5 can be chosen such that v;N{V = 0} has only one intersection for 0 < s < 5; let
this intersection be at 0 < t; < 5. The lower bound on the angle of the curve ~;, given
by condition 5 above, implies that v intersects {V = 0} only at the origin in the u, u’-
plane. Since u((0) = 0 and uy’(0) # 0, the smooth dependence of us on s implies that
ull'(ts) # 0 for s close to zero; therefore the requirement ' (ts)(u?’ (ts)+pus(ts)/2) =0
forces u(ts) = 0. Combining this with us(¢s) = 0 and taking the limit yields that the
zero of u' at s = 0 is a double zero.

To cover the alternative case we assume that vs N {V = 0} has at least two
intersections for a sequence 0 < s, < 3, s, | 0, at the points 0 < ¢, < 7, < t. We
have lim,, .o t, = lim, o0 7, = 0. With an argument similar to the one above, it
follows that uf (t,) =u, (7,) =0, and therefore the zero at s = 0 is of second order.

At any point where the orbit intersects {V = 0}, either v/ = 0 or v" = —pu//2.
Since at s = 0 we have v/ = 0 and u"’ # 0, under perturbation of s we have v’ = 0

on the intersection of the orbit with {V = 0}. If we assume that under perturbation

=N
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there is only one zero of w’ (locally), then the intersection with {V = 0} necessarily
occurs at the origin in the u, u’’-plane. Therefore the zero remains of multiplicity two.

Note that the only possible scenario is the reduction of multiplicity two to mul-
tiplicity zero. Multiplicity zero implies that while u/(0) = 0 at s = 0, this zero of u’
disappears under perturbation. An inspection of the u,u’-plane (Figure 3.2) shows
that such a perturbation is only possible if v’ + pu'/2, which is non-zero at s = 0,
jumps to zero for s # 0. This contradicts the assumption of continuous dependence
of the curve of solutions in C* on the parameter s. [0

4. Global Bifurcations. Let us now briefly state some results from global real-
analytic bifurcation theory for one-parameter problems as developed in [6]. The utility
of this theory with respect to (2.1) is the fact that Lemma 2.1 identifies either p or
1 which can be used as the bifurcation parameter. So, suppose that f C R x X is a
given set and F' : R x X — Y is a real analytic map, now define the set

S={(Nz)elU: F(\zx)=0,dF(\z) € Iso(X,Y)}.

Throughout this section the space R x X is endowed with the norm |A| + ||z||x and
a pair (A,z) € S is said to be a regular solution of F'(A,z) = 0. While the theory
developed in [6] is more powerful than we require, we shall use the following result
which is the statement of Theorem 7.4(iii) of this reference.
THEOREM 4.1. Let v:R x X — [0,00) be a given function and suppose that
(i) S is non-empty and UNS is open in S, where S = {(\,z) e Rx X : F(\,z) =
O}:
(i1) dyF (N, x) is Fredholm of index zero for all (\,x) € U,
(iii) subsets of S on which v is bounded have compact closure,
(iv) there are § > 0, \g € R and an analytic function h : Ns(Ao)\{ro} — S,
where Ns(No) is a half-neighbourhood of Ao, such that limy_,x, h(X) = 0 but
()‘Oa 0) ¢ Z/{,
(v) if Ap is the mazimal path-connected subset of S which contains the graph of
h and if (§&,) C SNU is any convergent sequence with &, — & € U and
sup,, ¥(&n) < 00, then & = (Ao, 0) and &, € Ao for all n sufficiently large.
Under conditions (i)-(v) the mazimal connected component of SNU that contains Ay
contains a path-connected subset P on which v is unbounded.

If we recall the definition of the sets ¥ and ¥ in (3.7) and (3.9) respectively,
then the reasoning in Corollary 3.1 ensures that ¥y = 3 if uF,(u) > 0 for all u € R.
From this observation we can obtain the following lemma.

LEMMA 4.1. Suppose that (F) holds and uF,(u) > 0 for u € R, then v(u,p, n)
(defined in (3.8)) is unbounded on a path-connected subset of C(1,1).

Proof. Let us verify the hypotheses of Theorem 4.1 in turn, where w = p— 1,2 =
(u,w) and write A in place of p. To keep the notation consistent with Theorem 4.1,
let F =M x1(g) (the symbol H was used for this previously) and

U={Nz)=((puw) ERx X, xR:w>—-1,u#0,1(u) =1a(u) =1}

We remark that S € X C S,SNU C ¥ and the space X referred to in Theorem 4.1
is X xRand Y is Y, x R.

(i) It follows that S is non-empty from Lemma 2.1. (The argument assumes that
dup(M x1)(g)) is an isomorphism from Lemma 2.1, for if this is not the case then we
can repeat the argument of this proof using u for A rather than p.) One can see that
the set Y NS is open in S as follows. Suppose, seeking a contradiction that & NS is
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not open in S, so there is a (Ao, o) = (po, uo,wo) € SNU and a sequence (A, x,) =
(pruu’nvwn) S S\Z/{ such that ()\nvxn) = (pn7un7wn) i ()‘Oa‘ro) = (pOaU07W0)~

Since ug # 0 and u, 24) ug, it follows that u,, # 0 and as wy > —1 then w,, > —1,
both for all sufficiently large n. Since ¢1 and to are continuous functions on ¥ and
Y+ respectively, and ¥ = ¥ by the hypothesis on F, then ¢1(u,) — t1(ug) = 1 as
n — 00, but since ¢; is integer-valued, this means that ¢1(u,) = 1 for all n sufficiently
large. Similar reasoning applies to t5. Consequently, (A, z,) € U for all n sufficiently
large, which is the required contradiction.

(ii) The operator d,F'(A, ) has the form

< duM(gap"“) 8 ) +K € BL(X. xR,Y, xR),

where K is a continuous operator that has rank at most two and d, M (u,p, p)[h] =
p*h"" + pu*h” + F,(u)h € BL(X.,Y.). But the latter is a compact perturbation of
the operator

E:hw p*h® 4 0h, Ec BL(X.Y,).

Since p > 0, using a Fourier series argument one can easily show that there is a 6
such that E is an isomorphism of the given spaces and consequently d,F (A, x) is a
compact perturbation of a Fredholm mapping of index zero, and therefore is itself
Fredholm of index zero.

(iil) If (wn,pn,wn) C S is a sequence such that w, = p, —1 > —1 and

V(tn, Py pin) = [[tnllcs + [pnl + wn + 1]+ 1/]wn + 1]

is bounded then there are pg and wg such that w,, — wg > —1 and p,, — pg > 0. Now
wo # —1 by the boundedness of v and therefore u? = —(w,, +1)"*(pn (wn +1) 20" +
F,(up)ul,) is also bounded, whence (u,,) converges to some ug € C* as the embedding
C5 — (C* is compact, and therefore (p,,, un,w,) converges in R x X, x R.

(iv) This part of the theorem follows from Theorem 2.2 and Lemma 2.1 where the
bifurcating branch is represented by an analytic curve of regular solutions.

(v) If a v-bounded sequence (&,) = (Pn,Un,wn) C S NU satisfies &, — & =
(po, uo,wo) € U then the only viable possibility is that ug = 0, so that (p,u) =
(po,wo + 1) is a bifurcation point from the trivial solution of (3.1-3.2). However,
the only point at which such a bifurcation occurs into the set S is at the point
(u,p, ) = (0,2,1), so that (u,w) = (0,0). Hence property (v) is satisfied if Ag is
defined to be the maximal path-connected subset of S which contains the graph of
the bifurcating branch from Theorem 3.1. In this case let us note that A\g = 2.

This concludes the proof. [
Now define the functional on X, x R? by

7w, p; i) = |lulles + [l +1/]p].

In order to obtain a result analogous to the global Hopf bifurcation theorem of [1], we
show that v can actually become unbounded on C(1,1) if and only if 7 is unbounded
on C(1,1).

THEOREM 4.2. If (F) is satisfied and uFy,(u) > 0, then C(1,1) contains a path-
connected, U-unbounded subset.
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Proof. Suppose that v is unbounded on C(1,1) but that 7 is bounded on this set,
it follows that there is a sequence (un,pn, itn) € C(1,1) such that |luy|/cs + |pn] is
bounded, u, # 0 for each n and |u,| — co. However, since

2m 1 2m 1 2m
/ pu2(u//)2dt > 27/ pM2<Ul)2 —_ (/ M4(UH)2 —|—uFu(u)dt>
0 T Jo 21 \Jo

1 2m
> 40,11 th
Zon ) H (u”)
holds for any non-trivial solution in C'(1, 1) by the Poincaré inequality, it follows that
u? < 27p,, which is a contradiction. Therefore, by Lemma 4.1, v is unbounded on
a path-connected subset of C'(1,1) and the above contradiction implies that 7 must
also be unbounded on this set. O

This theorem represents a partial global trichotomy for bifurcations of periodic
orbits of (1.1) which says that the solution continuum C(1, 1) either has an unbounded
sequence of orbits in phase-space or is unbounded with respect to either the parameter
(p) or with respect to the period (as occurs in the blue-sky bifurcation [13]). Unfortu-
nately, due to assumption (v) of Theorem 4.1, it has not proven possible to use the
same techniques to study the global existence properties of the branches C'(n,m) for
n > 1.

5. Local Secondary Fold Bifurcations. Another advantage of the approach
taken in this paper as opposed to the shooting methods previously used in [35, 36] is
that we can investigate the geometry of each bifurcating continuum by introducing an
unfolding parameter, €, into (3.1-3.2). We will now show that degeneracies present in
(3.1-3.2) at € = 0 can unfold to give secondary fold bifurcations along the bifurcation
branch when € # 0.

To illustrate this we shall consider (1.1) for the particular case given in (1.3).
This has been studied in [19] (see also [12] for an asymptotic analysis of this problem
using multiple scale techniques) as a model for an elastic rock layer on a restiffening
foundation, with corresponding Zs-symmetric ODE

(5.1) M (u,p, ) = p*u"" + ppPu” +u — e(u® —u®),

and even Hamiltonian

_4////14//212/212 1416

(5.2)  Hc(u,p,p) = p*u'u SH U +2p,uu +2u 6<4u GU).

As in the proof of Theorem 2.2, and therefore also in Theorem 3.1, we can obtain
a local representation of the bifurcating branch of the zero-Hamiltonian problem as-
sociated with (5.1) from the bifurcation point p = 2 in the form u.(5) = B(k+ pc(5)),
where pe(8) = O(B) for fixed € and is an analytic function of both 5 and e near
(8,€) = (0,0); here k(t) = cos(t). We now proceed with a calculation to find the Tay-
lor expansion of p.(8) in order to determine the local geometry of the set of branches
C¢(1,1). Throughout this section we shall write

re(8) = Bpe(B).

It is important to note that the existence of bifurcating solutions for this problem
close to p = 2, as determined by Theorem 3.1, does not depend upon the value of e.
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Indeed, using the implicit function theorem we simply find that for each e sufficiently
small and for suitable m,n, there is a bifurcating branch from (p, 1) = (Pn,m, fin.m)
and this branch (that is, the local parametric representation of this branch) varies
analytically with e. This property also holds at € = 0 where the branches are pairs of
lines. We also note that since F,(u) is an even function of u for each €, r() is odd
and p.(-) and p.(-) are even functions, forming a pitchfork bifurcation at p = 2.

We start our analysis by listing the Fréchet derivatives of the operator M.:

D1. dy,M.(u,p, p)[h] = p*h""" + pp?h” + h — e(3u? — 5ut)h,
D2. d? M. (u,p, p)[h1, ha] = —ehiha(6u — 20u?),

D3. d%ME (u,p, ,u)[hl, hz, h3] = —6h1h2h3 (6 - 60u2),

D4. diMe (U,p, ,U,)[hl, hQ, hg, h4] = 120€’Uhlh2h3h4,

D5. diMe (U7p, ,u)[hl, h27 h37 h47 h5] = 1206h1h2h3h4h5,

where h; € X, for each i =1,...,5.

We denote the first derivative of M(u,p, ) evaluated on the trivial solution
branch v = 0 by L = d,,M(0,2,1); this operator is independent of €. Suppose further
that P is the projection of Y, onto ran(L) = (k)" along (k), now define

L(p, p) = dy M(0, p, ).

We can solve the projected differential equation P o N (Bk + r,p,u) = 0 for
some function r = r(8, p, u) near (3, p, u,€) = (0,2,1;0) using the implicit function
theorem (we refer to the proof of Theorem 2.2 for details). From the uniqueness
properties of the implicit function theorem if follows that r.(0,p, u) = 0, and if we
repeatedly differentiate the identity PM.(8k + (8, p, i), p, ) = 0 with respect to 8
then we shall obtain the Taylor coefficients of r.. This is a tedious exercise so we omit
the details, but one eventually obtains

R1. P(d Mk + dar]) =0,

R2. P(d2M, [k + dgr, k + dgr] + d, M_[d3r]) = 0,

R3. P(dy Mc[k-+dpr]®+2d; M [d%r, k+dgr]+d;, Mc[d}r, k+dgr|+d, Mc[d}r]) = 0,

R4. P(dyMc[k + dpr]* + 6d} Mc[d3r, k + dgr, k + dgr] + 3d2 M [d}r, k + dgr] +
3dy Mc[d%r, dZr] + duMc|dgr] + di M [k + dgr, d}r]) = 0

R5. P(dy, Mc[k+dgr]® + 10dy Mc[d3r, [k + d3r]®] +10d; Mc[d}r, k + dgr, k+ dgr] +
3dz Mc|dgr, dgr] + 10d% M [d}r, dZr] + 2d2 Mc[dgr, dgr] + du M [d}r]) = 0.

Evaluating these expressions at § = 0, that is u = r.(0,p,u) = 0, yields the
following information. From R1 we have PL(p, u)[k + dgr(0,p, u;€)] = 0, and be-
cause L(p,p)k = (u* — pu® + 1)k € (k) we have dgr.(0,p, ) = 0. The expression
d%rE(O,p, 1) = 0 then follows from R2. Also, R3 gives

(5.3) PL(p, p)d%re(0,p, 1) = 6eP(k?),

so that the third derivative of r. is not zero in general at (u,p,p;e) = (0,2,1;¢€),
but d%re(O,p, 1) is seen to provide an O(e) contribution to the Taylor expansion of
re. Using Taylor’s theorem to expand r.(3,p, 1) with respect to § and using the
symmetry properties of r. (it is odd with respect to 8) we may write r.(8,p, u) =
%3}%2 (p, 1) + O(B%), for some operator R (p, i) with range in (k)™

We can determine R! as follows. In (5.3) seek an even Fourier series solution
which is also orthogonal to k in X, of the form R!(p,u) = > j—g aj cos(jt), where the
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coefficients a; remain to be determined. Since k*(t) = 1(cos(3t) + 3 cos(t)), it follows
that the only non-zero coefficient is ag and

3e cos(3-)
1 —_
Re(P»/i)— 281“4_91)“2_'_1

Using R4 and setting § = 0 we find défre((), p, 1) = 0, which of course also follows
from symmetry. We may evaluate d%rE(O, p, ) from R5, which simplifies to give

P(d) M (k) + 10d) M[k, k, d}re] + dy Mc[d3re]) = 0.

1

)

To find d}r(0, p, ;1) we solve the following linear equation for w € X, N (k)

3e? cos(3)
5.4 L™ 2w P |60k* —— —————— +120ek” | =0
(5.4) pwrw" + ppfw” 4w+ 281M4—9pu2+1+ € ,
and then dr(0,p, p) = w. Since k(t)° = = (cos(5t) + 5cos(3t) + 10 cos(t)), k(t)* =
1(1 4 cos(2t)) and cos(3t) cos(2t) = 1(cos(5t) + cos(t)), we also solve (5.4) using a
Fourier series expansion. Accordingly, taking w(t) = Z;iz w; cos(jt), we find that

all the coeflicients w; are zero, except when j = 3 or j = 5. In these cases

45¢2

81t — 9pp® + 1 150 — ——— =
(81p" — 9pp® + 1)ws + 150€ ST o 1

)

and

9062
625u* — 25pu® + 1 30¢e — =0
(6254 pp” + 1)ws + 30€ GRSy

3 5 7
It follows that re(8,p, 1) = S RL(p,p) + L5R2(p, 1) + S5d5re(0,p, 1) + O(25%),
where

150 cos(3-) + 30
4(81p* — 9Ipu? 4+ 1) 4(625u* — 25pu? + 1)

RZ(p,p) = —¢ < cos(5~)) +0(e?).

One can show by further differentiating that d%re(O7 p, 1) =0, as we expect from
symmetry, and the equation which determines d;TG(O, p, i) shows this term to be of
order O(€?). Higher derivatives of r. will also be of order O(e?).

Now p.() and p(8) are even functions of 5 and applying the zero-Hamiltonian
constraint gives

655 wls(ko4 9 = (e o = et p) '+ e+ 0.

using a prime to denote 4. Seeking an expansion of the bifurcation branch about

(e, 8) = (0,0) we write
(5.6) pe(B) =2+ € (PLB* + Paf*) + O(?)
and

(5.7) pe(B) = 1+ € (w1 8” + w2 ') + O(e?),
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where P;, Py,w; and ws are real numbers to be determined. The highest power of 3
which exists in these expansions at O(e) is the quartic because of the Taylor series we
have found for r.(3). This is clear from equation (5.5) which contains terms of the
order €32 and €3%, but not €3° or higher.

To determine w; and ws we substitute the expressions for p. = r./0 and p. into
(5.5). Using 0(p) = (550° — 12:8") e+ O(e?) and 6(p") = (— 525 8% + 2z 8*) € +
O(€?), we then find 1/(81u* — 9pu® +1) = 1/64 + O(e) and 1/(625u* — 25pu° + 1) =
1/576 + O(e). Putting v = B(k + p) € (k) ® <l€>L in (5.1) and projecting the result
onto the span of k(t) = cos(t) we obtain

27
(5.8) p it L= e [kl ) = P+ )it =0,
™ Jo

We now use this information to equate coefficients at the appropriate orders to find

(59) P1:—%7P222,LU1:673 and WQZ%.

5.1. Conditions for a Fold bifurcation. The solution branch C¢(1,1) deter-
mined above which branches from p = 2 can be continued from bifurcation in p for
p < 2,orin p for p < 1. When considered as a function of p, the branch has a fold
bifurcation at some point which we label pr and the same behaviour is observed when
the branch is continued in . The numerical calculations presented in the next section
also indicate that the solution branch is restricted to the parameter range p > pr and
w > pp, although we have no proof of this claim.

We can now prove the following theorem.

THEOREM 5.1. There is a neighbourhood I C R of zero such that if € € I, the
zero-Hamiltonian branch C.(1,1) associated with equation (5.1) which bifurcates from
p=2 at u =1 has a fold which occurs with respect to p at

(5.10) pe) =2 — %e +0().

There is also a fold in Cc(1,1) with respect to p which occurs at

243
5120

(5.11) pr(e) =1 — e+ O(e?).

Proof. Using (5.6), (5.7) and (5.9), a fold bifurcation with respect to p occurs
on the C¢(1,1) branch when the conditions dspc(8) = 0 and djsp.(8) # 0 are met.
Applying the implicit function theorem when e # 0, these conditions are satisfied
when 3?2 = 8% = 3/5 + O(e) giving (5.10).

Similarly, a fold bifurcation with respect to p occurs on the branch C¢(1,1) when
dape(8) = 0 and dfmug(ﬁ) # 0 and, provided € # 0, these conditions are satisfied
when 3% = 27/40 + O(e), giving (5.11). O

6. Numerical computations.

6.1. Preliminaries. We now describe a series of numerical calculations to de-
termine solutions of the unscaled differential equation (1.1) with the restiffening foun-
dation whose primary solution branch was studied in the previous section:

(6.1) "+ pu’ +u— e(u —u®) = 0.



24 R. Beardmore, M. Peletier, C. J. Budd and M. A. Wadee

Fic. 6.1. Bifurcations of zero-Hamiltonian, periodic solutions from p = 2,p = 2% and p = 3%,
with p plotted horizontally against ||u'|| Lo vertically; e are even solutions, o are odd solutions and
b are solution with broken symmetry.

0.0

7.5]

5.0

2.5]

0.0]

7.5]

5.0

2.5]

F1G. 6.2. Period of solutions solutions from Figure 6.1 ((1,1) branch is top-left, (2,1) top-right,
(3,1) bottom) with p = 27 /period plotted horizontally and ||u'||Le vertically.
5.0 7.5

2.5] 5.0]
2.5]
0.0/
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5.0
2.5] 2.5]
0.2 T T T T T T 0.2 T T T T T T
0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850
10.Q
7.5
5.0
2.5
0.0}
7.5]
5.0
2.5}
0.0 T T T T T T T
0.550 0.570 0.590 0.610 0.630
0.560 0.580 0.600 0.620

We augment this with the periodic boundary conditions u(0) = u(T"), ' (0) = «'(T)
and w”(0) = «"'(T), and specify the phase by requiring u/(0) = 0. Finally, we impose
the constraint that the Hamiltonian is zero, so that

(6.2) = +/2(u(0)2/2 — e(u(0)*/4 — u(0)6/6)

and set € = 1/2 for the purposes of computation.

In (6.2) the positive root corresponds to the solution which is tangential to the
rescaled eigensolution e_(x) = ncos(x/m/n) — mcos(xzy/n/m) at the bifurcation
point (u,p, ) = (0, Prm, fin,m), Whereas the negative root corresponds to the solution
which is tangential to the eigensolution e4(z) = ncos(zy/m/n) + mcos(zy/n/m).
In order to follow the solution branches in p and to detect fold bifurcations, the
collocation-based code AUTO [14] was used.

6.2. Calculation of the solution branches. We now illustrate three cases
regarding the bifurcation of solutions of (6.1): the case (n,m) = (1,1), for which
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Fi1G. 6.3. Solutions (u(s) for 0 < s < 1) bifurcating from p = 2, away from the bifurcation

point. In accordance with Theorem 2.2 these are even about zero and odd about one-quarter.
2.0

1.5]

1.0

0.5]

0.0

0.5]

1.0

1.5]

2.0
T T
0.00 0.20 0.40 0.60 0.80 1.00

Fia. 6.4. (left) Even solutions (u(s) for 0 < s < 1) bifurcating from p = 2%, away from the

bifurcation point. (right) Odd solutions bifurcating from p = 2%‘
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0.0]
0.5]
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1.0} 1.5]
1.8 T T T T T T T T T 2.0 T T T T T T T T T
0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

there is a unique bifurcating branch; the case (n,m) = (2,1), with py; = 2% and
p21 = 1/v/2 and (n,m) = (3,1), for which p3; = 31 and p13 = 1/v/3. Broadly
speaking, higher values of n and m lead to similar solution branches.

Figure 6.1 shows the bifurcation branches which are proven to exist in Theorems
3.1 and 3.3, with p plotted against ||u'||pe. The (1,1) branch has the form described
in Theorem 5.1, and for the p = 2% and p = 3% cases one sees a similar geometry in
that the branches initially bifurcate to the left, have fold bifurcations and then persist
for all values of p to the right of the fold point.

The following comments are in order regarding Figure 6.1 and the three points
p=2, 2% and 3%. Due to the Zg-symmetry of (6.1) and of the symmetry properties
of the eigenfunctions when (n,m) = (2,1), if u(¢) is one even solution on the (2,1)
branch, then so too is —u(t + 7'/2). Therefore, in order to obtain a second distinct
periodic solution, we apply Theorem 3.5 to give the existence of two branches of odd
solutions. Again, one of these branches of odd solutions can be obtained from the
other by symmetry, and we therefore have plotted one of each even and odd branch
in Figure 6.1. The solutions on this branch are shown in Figure 6.4.

Figures 6.3, 6.4 and 6.5 each show several solutions chosen from Figure 6.1 on
the branches which connect to p = 2,p = 2% and p = 3% respectively, although the
domain of each solution has been normalised to unity. (The information regarding the
period of the solutions is given in Figure 6.2.) If we examine Figure 6.5, we notice that
each of the solutions is even about zero and odd about one quarter. Consequently, the
two branches of solutions shown are in fact identical, up to a shift and a reflection, to
the odd solutions which are obtained using Theorem 3.5.
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F1G. 6.5. Solutions (u(s) for 0 < s < 1) bifurcating from p = 31 away from the bifurcation point.
1.5

37
1.5

1.0} 1.0
0.5] 0.5]
0.0] 0.0
0.5] 0.5]
1.0] 1.0
1.5 T T T T T T T T T 1.5 T T T T T T T T T
0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.90

Since F'(u) and uFy,(u) are both positive for non-zero v when € = 1/2, the global
bifurcation theorem (Theorem 4.2) applies to the (1,1) branch and the nodal proper-
ties are preserved along the resulting global branch in accordance with Theorems 3.6,
3.7 and 3.8. This is illustrated in each of Figures 6.3, 6.4 and 6.5.

Finally, note that the (1,1) branch in Figure 6.1 appears to have no further
bifurcations, whereas the (2,1) and (3,1) branches both have symmetry-breaking,
secondary bifurcation points. What is interesting about the resulting branches of
unsymmetric solutions is that they form connections between the (2,1) and (3,1)
branches. This indicates that it would be futile to seek generalisations of the results
of §3.5 to include the space of all periodic, zero-Hamiltonian solutions of (1.1) and
that the disjointness properties of the solution branches obtained in this paper are
peculiar to spaces of symmetric solutions.
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