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Abstract. In this paper we study the dynamics of an impact oscillator with a modified reset law
derived from considering a problem (the pin-ball machine) with an active impact. Typical studies
of the impact oscillator consider impacts which are governed by Newton’s Law of Restitution where
the velocity after impact is r times less than the incoming velocity. But in this paper we consider an
active impact modelling impacts which occur in a pin-ball machine. In such a machine there exist
bumpers which repel the pin-ball at high velocity when an (even slight) impact is made, imparting
an additional velocity V to the rebounding pin-ball. Such impacts do not obey the normal laws
and in this paper we study how to model them and the subtle dynamics which arises. The analysis
proceeds by deriving a one-dimensional map which models the impacts. This map takes the form of a
piece-wise linear/square-root map with a discontinuity of size proportional to V . The resulting map
is similar in many aspects to a one-dimensional ’map-with-a-gap’ but also inherits features of the
square-root map. We show how the subtle interplay between these two maps leads to the creation
of a very large number of new period orbits, which might explain some of the complexity observed
in the dynamics of a true pin-ball machine.
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1. Introduction. Pin-ball machines are commonly seen in many amusement
arcades and are an excellent example of the potential of relatively simple nonlinear
mechanical devices to exhibit highly complex dynamics. At the heart of such machines
are active ‘bumpers’ which activate when struck by a pin-ball and (through a simple
electro-mechnical/spring mechanism) actively change the momentum of the pin-ball
so that it can rebound with a higher relative velocity than it impacts with. We call this
device an active impact system, in contrast to a passive impact system in which the
relative rebound velocity is directly proportional to the impact velocity. A significant
difference between these two types of problem is that impacts with the bumper at
zero velocity (grazing impacts) rebound at a non zero velocity. This has a profound
effect on the dynamics which we will explore in this paper.

The dynamics of forced passive impacting systems has been a subject of much study
[8] [9] [10] [3] [12] [11] [14] [15] [2] [7] [1] [4] [13] [6], and it is known that it can be
very complex, especially when the impacts occur at a low velocity. A simple model of
such a passive impact oscillator is given by considering the forced motion of a single-
degree-of-freedom particle located at the position u(t) ≥ 0 which impacts with a fixed
obstacle at the position u = 0. If u > 0 then the particle moves in a free motion
and we shall assume that this is governed by the following second-order differential
equation

d2u

dt2
+ α

du

dt
+ k2u = f(t), if u(t) > 0. (1.1)

Here α represents the linear damping coefficient of the system and f(t) is a smooth
periodic forcing function which we will discuss in more detail later. If u(t) = 0 then
the particle impacts the obstacle, and we must apply an impact rule. In the case of a
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Fig. 1.1: A typical pin-ball machine

passive impacting system it is appropriate to use Newton’s Law of Restitution giving

du+

dt
= −r du

−

dt
, u+ = u− = 0 (1.2)

where 0 ≤ r ≤ 1 is the coefficient of restitution, and du−/dt and du+/dt are the
velocities of the impact oscillator immediately before and immediately after impact
respectively. Even such a simple model has profoundly rich dynamics, with a wide
variety of periodic and chaotic forms of motion and unusual transitions (discontinuity-
induced-bifurcations) between them. To illustrate some of the dynamics of the passive
impact oscillator that can be observed in practice, we present in Figure (1.2) a phase
portrait of the asymptotic dynamics of the solution of equations (1.1) and (1.2) with
forcing function f(t) = cos(ω(t+ t0)) + d. In this figure we observe a doubly periodic
solution with a single low-velocity impact. As the value of d changes the orbit evolves
and at about d = 0.135 the impact velocity drops to zero and we observe a grazing
bifurcation [5]. For d > 0.135 we see that a period-1 orbit exists and this represents
a non-impacting periodic orbit. As d decreases then a grazing bifurcation occurs
at d = 0.135 and for d < 0.135 we see a period-incrementing cascade of periodic
orbits with regions of chaos separating regions of periodic behaviour. A plot of the
ω−limit set of the impact oscillator close to the grazing bifurcation is plotted in Figure
(1.3) (this bifurcation diagram was computed by sampling the position of the impact
oscillator at fixed time intervals equal to the period of the forcing function f(t) taking
a large number of random starting configurations). More details, and a classification
of the types of behaviour associated with grazing, are given in [5].

In this paper we consider the changes which occur to this type of behaviour in the
case of a problem with an active impact. In this case, instead of the coefficient of
restitution model alone, we consider an impact which is partly driven by the elastic
collision of the particle with the obstacle, and also an impulsive force giving a step
change to the momentum. Our motivation for studying such a reset law is that in
practise not all impacting systems obey Newton’s Law of Restitution and an impacting
system which we have in mind is the dynamics which occur in a pin-ball machine. In
the center of a pin-ball machine lie circular disks (bumpers) and when the pin-ball
strikes one of these disks a switch is turned on which charges a solenoid and in turn



3

−0.05 0 0.05 0.1 0.15 0.2 0.25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

ve
lo

ci
ty

, d
u/

dt

position, u(t)

Fig. 1.2: A plot of asymptotic dynamics of the system (1.1) and (1.2) showing a
doubly periodic orbit that occurs for parameters r = 0.8, k = 1, α = 3, ω = 2.2, t0 = 0
and d = 0.12.
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Fig. 1.3: A plot of the bifurcation diagram for the system (1.1) and (1.2) for param-
eters r = 0.8, k = 1, α = 3, ω = 2.2, t0 = 0 and varying values of d = 0.12.

forces a ‘popper ring’ to push down on the pinball and mechanically repel the pinball
away at high velocity. The interesting dynamics about such an impact is that the
pin-ball may leave the impact surface with a higher velocity than it strikes the impact
surface. We model the impact dynamics by claiming that the velocity after impact
is a combination of both the mechanical impact which is modelled by Newton’s Law
of Restitution and the momentum change V > 0 due to the impulsive force which
is imparted on the pin-ball due to the mechanical force which is independent of the
incoming velocity. We assume that the velocity after impact is −rv−+V where −rv−
is due to the normal impact law and V is due to the mechanical force of the popper
ring. In this paper we shall typically use a value of V = 0.4 and we shall we see that
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Fig. 1.4: A picture of a typical pin-ball bumper

the dynamics largely depends on the value of V . Accordingly, we consider an impact
law which takes the form

du+

dt
= −r du

−

dt
+ V at u(t) = 0 (1.3)

where V is a positive constant. One key difference between this system and that of
the passive impacting system is that the effect of grazing is more profound, in that
an orbit which impacts the obstacle with a very low velocity is changed a great deal
from one which only just fails to impact.

We now consider the implications of combining this impact law with the dynamical
system described by (1.1). Clearly this is a vast simplification of the true dynamics
of a pin-ball machine which has many bumpers and a ball moving in two-dimensions,
not to mention the effects of human interaction via the flippers. We approximate the
latter action by the use of the periodic forcing as a vast simplification of the action of
the human agent in periodically returning the pin-ball to a region close to the bumper.
However, the subtle dynamics that we see even in this simple problem gives a hint of
the complexity of the dynamics we might expect to see in the true pin-ball machine,
and we leave this as a subject for further research.

We now compare the dynamics associated with this law with that of the passive impact
which arises in the limit of V = 0. To motivate the rest of this paper we plot in Figure
(1.5) a phase portrait of a simple periodic orbit of the impact oscillator with reset law
(1.3). Again as d is varied we reach a point where the orbit just grazes the obstacle.
In Figure (1.6) we plot the resulting bifurcation diagram in the vicinity of this point,
again computed again by sampling the position of the impact oscillator periodically.

This bifurcation diagram Figure (1.6) has both similarities to that presented in
Figure 1.3. In particular we see a sudden (discontinuous) increase in the size of
the attractor after the grazing bifurcation, whereas in Figure (1.3) for the standard
impact oscillator there is a continuous square-root growth in the size of the attractor.
In this figure we also see further examples of a rich variety of dynamical behaviour. A
large number of orbits of high period are created at the grazing bifurcation, with the
period of the orbit increasing as the bifurcation point is approached. We also see the
phenomenon of period incrementation in which a period-n orbit exists in a window
Ωn of the bifurcation parameter, and is replaced (as the parameter approaches the
grazing bifurcation point) by a period-(n+ 1) orbit, with a small interval Ωn ∩ Ωn+1
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Fig. 1.5: A plot of asymptotic dynamics of the system (1.1) and (1.3) for parameters
r = 0.8, α = 3, k = 1, ω = 2.2, t0 = 0, V = 0.4 and d = 0.12.
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Fig. 1.6: A plot of the bifurcation diagram for the system (1.1) and (1.3) for param-
eters r = 0.8, α = 3, ω = 2.2, t0 = 0, V = 0.4 and d = 0.12.

where these two orbits co-exist. Significantly such a diagram is very similar in form
to the bifurcation diagram associated with a one-dimensional map with a gap, see
the many references to such in [5]. In this paper we use the zero-time-discontinuity
method ZDM described in [5] to derive a two-dimensional Poincaré map of the system
(1.1) and (1.3). We then show further that this map reduces to a one-dimensional
map using the zero-time discontinuity technique which is outlined in [5] and references
therein and a one-dimensional approximation is made to allow a fuller analysis of the
problem to be performed. This map takes the form of a piece-wise linear/square-
root map with a discontinuity l proportional to the size of the velocity change at the
active impact. If l = 0 it reduces to the well studied continuous linear/square-root
map. However, the introduction of the discontinuity has a profound effect on the
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dynamics of this map, the main effect being the creation, and persistence of a very
large number of new high period, periodic orbits

The remainder of this paper is organized as follows. In Section 2 a two-dimensional
Poincaré map describing both impacting and non-impacting trajectories is derived
in the case of an orbit which has a low velocity impact with the active obstacle
and a suitable one-dimensional approximation is made by using a suitable change of
coordinates. Then in Section 3 an analysis of the behaviour of this map close to a
grazing bifurcation is made for suitable parameter values, showing the importance of
the active impact parameter l in creating a large number of new periodic orbits.

2. Two-dimensional Poincaré map and one-dimensional approximation.
In this Section we use the zero-time discontinuity map (ZDM) to derive a two-
dimensional Poincaré map which describes the dynamics of the system (1.1) and
(1.3) close to a flow which undergoes a grazing event. We then show how this two-
dimensional map can be closely approximated by a one-dimensional map which we
analyse in Section 3.

2.1. Derivation of the two-dimensional map close to a grazing event.
To derive the (stroboscopic) Poincaré map of this system we sample the position u(t)
and velocity v(t) of the impact oscillator at times t = nT where n ∈ Z and T equals
the period of the forcing function f(t) in equation (1.1). There are two types of
Poincaré map which we derive depending on whether or not an impact (or impacts)
occurs or not during the sampling time-period [nT, (n+ 1)T ).

To determine the Poincaré map in the absence of impacts, we initially rewrite the
periodically forced equation (1.1) in vector form as

ẇ = Bw + c

where w is given by

w =
(
u
v

)
and matrix B and vector c are defined by

B =
(

0 1
−1 −α

)
and c =

(
0

f(t;ω, h, t0)

)
≡
(

0
h+ cos(ω(t+ t0))

)
.

The solution of equation (1.1) (in the absence of any impacts with the obstacle) is
given by the identity

w(t) = eBtw(t∗) + g(t)

where g(t) is

g(t) = eBt
∫ t∗+t

t∗
e−Bsc d s.

If we index the position and velocity at time t = nT as un and vn with wn given as

wn =
(
un
vn

)
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then the Poincaré map PS in general is

PS : wn 7→ wn+1.

For non-impacting orbits we denote the Poincaré map as PT . This can be determined
directly and is given by:

PT : wn 7→ eBTwn + g(T ).

Explicitly, the Poincaré map PT is given by

PT :
(
un
vn

)
7→
(
a b
c d

)(
un
vn

)
+
(
g1
g2

)
(2.1)

where (
a b
c d

)
= eBT and

(
g1
g2

)
= eBT

∫ T

0

e−Bscds.

Of interest to us in the calculation of the dynamics of the pin-ball machine is the
comparison of those orbits which just miss the obstacle, with those that impact at
a low velocity and, due to the effect of the active impact, then rebound at a much
higher velocity. Such orbits will impact the obstacle with a positive acceleration
A > 0. To derive the map for orbits which impact at low velocity just once during
the time interval [nT, (n + 1)T ) we compose the Poincaré map for a non-impacting
orbit PT with the zero-time discontinuity map which we denote as PZDM . A full
discussion of the zero-time discontinuity mapping technique is given in [5] but we
shall derive the zero-time discontinuity map explicitly showing how it works. The
zero-time discontinuity map PZDM is essentially a correction to the Poincaré map
for a non-impacting orbit to take into account the fact that an impact has occurred.
It can be assumed without loss of generality that if we consider the time interval
[nT, (n+ 1)T ) then the impact occurs shortly after time t = nT , this assumption can
be made rigorous by noting that an arbitrary time constant t0 exists in the forcing
function f(t) = cos(ω(t+ t0)) + d. To derive the (local) zero-time discontinuity map
we denote the position and velocity as U and V so as not to confuse with un and vn
which are the position and velocity at times t = nT . U and V are related to un and
vn by the relationship un = U0 and vn = V0. In Figure (2.1) a sketch is given of the
zero-time discontinuity map which is from (U0,V0) to (U3,V3).

The map PZDM can be summarised in the following sequence

(U0,V0) δ7→ (U1,V1) R7→ (U2,V2) −δ7→ (U3,V3)

where δ denotes a flow forwards of the equation (1.1) by an amount of time δ and R
denotes the application of the reset map (1.2). We now compute the terms (U1,V1) ,
(U2,V2) and (U3,V3) in turn.
To compute the ZDM we follow the procedure outlined in [5] and assume that the
starting point of the map is such that δ, the time taken for the flow to reach the impact
surface from the initial position (U0,V0), is small and positive. Here we assume that
U0 is small and positive and V0 is small and negative. Thus, if the initial acceleration
is A, the values of U1 and V1 are approximately

U1 = U0 + δV0 +
1
2
Aδ2 +O(δ3)

V1 = V0 + δA+O(δ2).
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(U0,V0)

(U2,V2)(U1,V1)

(U3,V3)

Rδ

−δ

Fig. 2.1: A sketch of the phase-space representation of zero-time discontinuity map
PZDM : (U0,V0)→ (U3,V3) for and orbit with positive acceleration A which impacts
the obstacle at a low (negative) velocity. In this figure U is given by the vertical axis
and V by the horizontal axis. The obstacle is then represented by the horizontal axis.

When the ball reaches the impact surface it rebounds with the additional momentum
due to the action of the active impact. This leads to a map (the reset map) R from
(U1,V1) to (U2,V2). From the conditions of the active impact, we can write this as

U2 = U1 = U0 + δV0 + 1
2Aδ2 +O(δ3)

V2 = −rV1 + V = V − r(V0 + δA) +O(δ2).

To finish this calculation we consider evolving the flow backwards from (U2,V2) to
(U3,V3) by an amount of time δ. This gives

U3 = U2 − δV2 +
1
2
Aδ2 +O(δ3)

V3 = V2 − δA+O(δ2).

Substituting in the expressions for U2 and V2 gives

U3 = (U0 + δV0 +
1
2
Aδ2)− δ(V − r(V0 + δA)) +

1
2
Aδ2 +O(δ3) (2.2)

V3 = V − r(V0 + δA)− δA+O(δ2). (2.3)

To obtain the value of δ at which the impact occurs we must solve the equation
u(δ) = 0. A Taylor series expansion of the position gives

u(δ) = U0 + V0δ +
1
2
Aδ2 +O(δ3).

Setting this to zero and only looking at the smaller of the two solutions, gives the
following approximation to δ

δ =
−V0 −

√
V2

0 − 2AU0

A .

Observe that as V0 < 0 then δ > 0. Furthermore, impacts only occur if

V2
0 > 2AU0, V0 < 0.

Substituting this expression for δ into (2.2) and (2.3) gives

U3 = U0 +

(
−V0 −

√
V2

0 − 2AU0

A

)
((1 + r)V0 + V )

V3 = V0 + V + (1 + r)
√
V2

0 − 2AU0.
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Thus the lowest order expression for the zero-time discontinuity map is

PZDM :
(
U0

V0

)
7→
( U0

V0 + V + (1 + r)
√
V2

0 − 2AU0

)
.

Equivalently, as U0 ≡ un and V0 ≡ vn the actual zero-time discontinuity map is given
by

PZDM :
(
un
vn

)
7→
(

un
vn + V + (1 + r)

√
v2
n − 2Aun

)
.

To determine the Poincaré map PS for a single impacting orbit we compose the ZDM
with the flow in the absence of any impacts so that PS = PT ◦ PZDM . It follows
immediately that PS is given by

wn+1 = PS(wn) = PT ◦PZDM (wn) =

 aun + b
(
vn + V + (1 + r)

√
v2
n − 2Aun

)
+ g1

cun + d
(
vn + V + (1 + r)

√
v2
n − 2Aun

)
+ g2

 .

(2.4)
For a given set of initial data, we apply this map if an impact occurs, so that v2

n −
2Aun ≥ 0. In contrast, if no impact occurs, for v2

n − 2Aun < 0, we simply apply the
linear Poincaré map PT so that

wn+1 = PS(wn) = PT ◦ PZDM (wn) =
(
aun + bvn + g1
cun + dvn + g2

)
. (2.5)

We observe immediately that this map has a jump discontinuity, caused by the action
of the active impact, across the curve v2

n − 2Aun ≥ 0. Furthermore, as we approach
this curve then we see square-root forms of behaviour. This can be seen clearly in
an actual computation. In Figure (2.2) we do this and make a comparison of the
analytically derived map and the numerically computed map. In this figure we fix the
initial velocity v(0) and vary the initial position u(0). A graze occurs at u(0) ≈ 0.038
and for u(0) > 0.038 there is no impact. For such values of the initial condition,
the Poincaré map is linear and we see that there is exact agreement between the two
expression for orbits which do not impact. For u(0) < 0.038 we have an impact. This
leads to the jump discontinuity seen in the figure and the locally square-root behaviour
for u(0) less than, and close to, 0.038. The figure demonstrates that the approximate
map determined above is in close agreement with the numerical calculations and
demonstrates exactly the correct qualitative behaviour both close to, and more distant
from, the grazing bifurcation. We now make a one-dimensional approximation which
allows a fuller analysis of the bifurcations to be achieved in the next Section.

2.2. The one-dimensional approximation to the impacting Poincaré
map. We now determine a one-dimensional approximation of the two-dimensional
Poincaré map constructed above. This is achieved by identifying an appropriate non-
linear change of coordinates, as outlined in [8] and [7]. To do this we set

xn = v2
n − 2Aun and yn = −[dxn + 2Abvn + 2A(dg1 − bg2)],

so that xn is the distance from the manifold in phase-space of those initial conditions
which lead to an impact. Making a transformation from un and vn into the new
coordinate system xn and yn, the Poincaré map (2.1) for non-impacting orbits becomes(

xn+1

yn+1

)
7→
(

(a+ d) 1
−(ad− bc) 0

)(
xn
yn

)
+
(

2A[(dg1 − bg2)− g1]
0

)
.
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Fig. 2.2: The red line denotes the analytically derived Poincaré map (2.5) and the
blue line denotes the numerical solution for the system (1.1) and (1.3). The map is
from t = 0 to t = T = 2π/ω with parameters are α = 3, ω = 2.1, t0 = 2.2, r = 0.8, d =
0.11, V = 0.2 and 0.01 ≤ u(0) ≤ 0.06 and initial conditions are v(0) = −0.23 for the
system (1.1) and (1.3).

Similarly, the Poincaré map (2.5) for impacting orbits becomes(
xn+1

yn+1

)
7→
(

(a+ d) 1
−(ad− bc) 0

)(
xn
yn

)
+
(
−2Ab(1 + r)

√
xn + 2A[(dg1 − bg2)− g1]− 2AbV

0

)
.

In order to obtain a one-dimensional approximation to this map, we follow the analysis
presented in [3] and iterate the map producing a significant contraction in the influence
of the y coordinate terms. In particular, as

ad− bc = det(eBT ) = etrace(BT) = e−αT

then if αT is sufficiently large

ad− bc ≈ 0.

Accordingly the influence of the y contribution in the impacting Poincaré map rapidly
becomes negligible, especially if α is not small. We deduce that the two-dimensional
map can be approximated by the following one-dimensional map:

xn+1 =
{

(a+ d)xn + 2A[(dg1 − bg2)− g1] if xn < 0
−2Ab(1 + r)

√
xn + 2A[(dg1 − bg2)− g1 − bV ] if xn ≥ 0.

We now rescale xn by introducing a new coordinate x̂n such that xn = (2Ab(1+r))2x̂n
which ensures that the coefficient of the square-root term has magnitude 1. Rescaling
xn and introducing the following parameters

λ = (a+ d), µ =
(dg1 − bg2)− g1

2Ab2(1 + r)2
and l =

V

2Ab(1 + r)2

gives the following map

xn+1 =
{
λxn + µ if xn < 0
−√xn + µ− l if xn ≥ 0. (2.6)
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Observe that this map is a combination of the square-root map associated with graz-
ing, with a linear map with a gap that corresponds to the active impact. If l = 0 then
this is the continuous, piece-wise square-root/linear map that has been widely studied,
see [5]. In contrast if |l| is larger than zero then it is closer in form to the piece-wise
linear map with a discontinuity. Thus we might expect to see characteristics of both
forms of map in the resulting dynamics. We now analyse the dynamics of this map
including determining the structure of the bifurcation diagrams and calculating the
parameter values at which the map undergoes border-collision and period-doubling
bifurcations.

3. Analysis of the one-dimensional map. To begin our analysis, we present
a plot of the map (2.6) in Figure (3.1) for parameter values λ = 0.8, l = 1 and µ =
0.5. For this range of values the map exhibits a stable period-3 orbit, as illustrated.
Observe that this periodic orbit has two iterates on the left-hand side of the diagram
x < 0 in which the linear part of the map is acting, and one iterate on the right-hand
side x > 0 where the square-root part of the map, with larger stretching, is acting. If
we denote any point xn in an orbit by L if xn < 0 and R if xn > 0, then the orbit
illustrated has the symbol sequence LLR or L2R. We define a period-N maximal
orbit to be one with the symbol sequence LN−1R. Such orbits are the most stable,
and the most commonly observed. Such orbits satisfy the conditions

xn+1 = λxn+µ, 1 ≤ n ≤ N−1, x1 = −√xN+µ−l, x1 < x2 < . . . < xN−1 < 0 < xN .

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x
n

x n+
1

Fig. 3.1: A period-3 orbit of the map (2.6) for parameters λ = 0.8, l = 1 and µ = 0.5.

To further motivate the analysis of the map (2.6) we plot in Figure (3.2) a bifurcation
diagram of the map (2.6) for parameter values which are equivalent to Figure (1.6).
In this diagram we give the ω-limit sets of the iterates, which in this case are all
maximal periodic orbits with N − 1 points xj < 0, 1 ≤ j ≤ N − 1 and one point
xN > 0. Comparing Figures (3.2) and (1.6) there appears to be good agreement
with the qualitative features of both bifurcation diagrams which suggests that our
one-dimensional approximate map is a good approximation of the actual dynamics
described by the two-dimensional impacting Poincaré map. Indeed, we see a sudden
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expansion in the size of the attractor, followed by regions ΩN in which a period-N
(maximal) orbit exists. These intervals intersect for this range of parameters. Indeed
what we observe is that ΩN = [µPD,N , µBC,N ] where µBC,N is a border-collision
bifurcation point, which occurs when xN−1 satisfies the condition xN−1 = 0−. In
contrast the point µ = µPD,N arises when the period-N maximal orbit loses stability
in a period-doubling bifurcation.

Fig. 3.2: The bifurcation diagram for the map (2.6) with parameters λ = 0.34 and
l = 0.21 and these correspond to the physical parameters ω = 2.2, r = 0.8, α = 3, V =
0.2, t0 = 1.4.

We now determine the existence intervals ΩN for the period-N maximal orbits of the
map (2.6) and examine how these depend upon l and λ.

Proposition 3.1. The maximal periodic orbits of the form LN−1R is stable for
0 < λ < 1 when µ lies in the following interval

µ ∈ ΩN ≡ [µPD,N , µBC,N ] .

Here µPD,N denotes the value of µ at which the periodic orbit undergoes a period-
doubling bifurcation as µ is decreased and is given as

µPD,N =
(

1− λ
1− λN

)[
λN−1l +

3
4
λ2(N−1)

]
.

Furthermore, µBC,N denotes the value of µ at which the periodic orbit LN−1R under-
goes a border-collision bifurcation as µ is increased and is given by

µBC,N =
(1− λ)2

4(1− λN−1)2

[
2λ2(N−2) + 4lλN−2

(
1− λN−1

1− λ

)
+

2λN−2

√
λ2(N−2) + 4lλN−2

(
1− λN−1

1− λ

)]
.

Proof. Informally, if we suppose that the periodic orbit LN−1R exists and is
stable for some fixed value of µ then as µ is increased the single positive iterate xN−1
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will tend towards x = 0 leading to a border-collision bifurcation when xN−1 = 0.
Conversely, as µ decreases then xN decreases and the gradient of the map tends to
−∞ as xN → 0+. Before this, a period-doubling bifurcation occurs when the iterated
map has gradient equal to -1.

To substantiate these comments, we let xN denote the positive iterate, xN ≥ 0 so
that the value of xN is given by the condition f (N−1)

1 ◦ f2(xN ) = xN where f1 and f2
are given by map (2.6) acting on the sets x < 0 and x > 0 respectively. By repeated
application of the map f1 and one application of f2 it is immediate that

xN = λN−1x1 + µ
1− λN−1

1− λ , x1 = −√xN + µ− l.

Combining these results, the equation satisfied by xN is the quadratic equation

xN + λN−1√xN −
(

1− λN
1− λ

)
µ+ λN−1l = 0.

Hence

√
xN =

−λN−1 +
√
λ2(N−1) + 4

((
1−λN

1−λ

)
µ− λN−1l

)
2

.

Note that the positive root term has been taken to ensure
√
xN ≥ 0 consistent with

the definition of the map. We see immediately that ∂xN/∂µ > 0. The stability of
the resulting maximal orbit is determined by the value of (f ′1)(N−1) ◦ f ′2(xN ) which is
given by

(f ′1)(N−1) ◦ f ′2(xN ) =
−λN−1

2
√
xN

.

Observe that as µ decreases, then xN decreases and hence (f ′1)(N−1)◦f ′2(xN ) decreases
towards -1. A period-doubling bifurcation occurs when µ = µPD,N at which

(f ′1)(N−1) ◦ f ′2(xN ) = −1

and a stable maximal period-N orbit can only be stable if µ > µPD,N . Substituting
the expression for

√
xN the resulting expression for µPD,N is then

λN−1 = −λN−1 +

√
λ2(N−1) + 4

((
1− λN
1− λ

)
µPD,N − λN−1l

)
.

Rearranging once gives

3
4
λ2(N−1) =

(
1− λN
1− λ

)
µPD,N − λN−1l

and thus µPD,N is

µPD,N =
(

1− λ
1− λN

)[
λN−1l +

3
4
λ2(N−1)

]
.
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We now derive the value of µ at which the orbit LN−1R undergoes a border-collision
as µ is increased. This occurs when the greatest negative iterate, xN−1 of the orbit
LN−1R passes through x = 0. The equation for xN−1 is f (N−2)

1 ◦f2◦f1(xN−1) = xN−1

which explicitly is

−λN−2
√
λxN−1 + µ+ λN−2(µ− l) +

(
1− λN−2

1− λ

)
µ− xN−1 = 0.

Setting xN−1 = 0, to give the condition for a border-collision bifurcation then the
equation for µBC,N is

0 = −λN−2√µBC,N + (µ− l)λN−2 +
(

1− λN−2

1− λ

)
µBC,N .

Rearranging this leads to a quadratic equation in √µBC,N which gives(
1− λN−1

1− λ

)
µBC,N − λN−2√µBC,N − lλN−2 = 0

which gives √µBC,N as

√
µBC,N =

(1− λ)
2(1− λN−1)

(
λN−2 +

√
λ2(N−2) + 4lλN−2

(
1− λN−1

1− λ

))
.

Therefore µBC,N is given by

µBC,N =
(1− λ)2

4(1− λN−1)2

[
2λ2(N−2) + 4lλN−2

(
1− λN−1

1− λ

)
+2λN−2

√
λ2(N−2) + 4lλN−2

(
1− λN−1

1− λ

)]
.

NOTE: It is immediate from the conclusions of the Proposition that

µPD,N+1 < µPD,N and µBC,N+1 < µBC,N .

A period-N maximal orbit exists provided that µPD,N < µBC,N .

We see from this Proposition that the width and location of the regions of existence
ΩN of the stable maximal period-N orbits depends significantly on the value of l which
is proportional to the value of V in the active impact. The case of l = 0 corresponds to
the continuous piece-wise linear/square-root map and this problem has been studied
in great detail [5]. It is known that if λ > 2/3 then the bifurcation diagram of the
ω−limit sets of the map as a function of the parameter µ has a simple period-1 orbit
for µ < 0 and a continuous jump to robust chaos if µ > 0. If 1/4 < λ < 2/3 then
instead of robust chaos we see a period-adding sequence for µ > 0 so that as µ→ 0+

there exists a series of disjoint windows of existence, ΩN , of period-N maximal orbits
so that N → ∞ as µ → 0+. These windows do not intersect, and are separated by
intervals in which we observe robust chaos. If λ < 1/4 then the windows ΩN intersect.
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As we increase l from zero then this picture changes significantly. Firstly we note that
the attractor or trapping region for the map (2.6) is the interval

[−√µ+ µ− l, µ]

for µ ≥ 0. For µ < 0 a single fixed point exists and at µ = 0 there is a sudden
jump from this fixed point to an attractor which is the interval [−l, 0]. Furthermore,
the width of ΩN increases in general, leading to regions of intersection which do not
occur if l = 0. To see these effects, we plot in Figure (3.3) three different bifurcation
diagrams of the map (2.6) for l = 0, 0.1 and l = 0.5 for λ = 0.5. We can see clearly

(a) l = 0 (b) l = 0.1

(c) l = 0.5

Fig. 3.3: The bifurcation diagrams for the map (2.6) with λ = 0.5 and the value of l
taking the values l = {0, 0.1, 0.5}.

in these figures that as l increases then the widths of the existence intervals for the
periodic orbits increase. For example, for l = 0 there is a region of chaos which
separates the period-3 and period-4 orbits but for l = 0.1 the period-3 and period-4
orbits co-exist and this region of coexistence increases as l increases further to l = 0.5.
As described above, the size of the jump in the attractor is also dependent on l and
this can be clearly seen in Figure (3.3).

To further understand the dynamics and to see explicitly how the width of the exis-
tence intervals ΩN vary, we plot in Figure (3.4) the values of µBC,3, µPD,3 and µBC,4,
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µPD,4 as functions of the parameter l for λ = 0.5. These values define the existence
intervals for the maximal perodic orbits L2R and L3R respectively. Note that if l = 0
then these intervals do not intersect if l = 0. In contrast, in this figure we can see

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

l

µ

µ
BC,3

µ
PD,3

µ
PD,4

µ
BC,4

Fig. 3.4: A plot of the period-doubling bifurcation values µPD,N denoted by the
dashed line and the border-collision values µBC,N for N = 3, 4 and λ = 0.5. A
periodic orbit exists if µPD,N < µBC,N .

that as l increases then at l ≈ 0.05 the period-3 and period-4 orbits start to coexist.
We note that as l increases further the gap between lines µBC,4 and µBC,3 increases.
This confirms our earlier observations that the size of the interval Ω2 ∩ Ω3 increases
with l.

As a second calculation, we plot in Figure (3.5) three different bifurcation diagrams
for l = 0, 0.4, 0.8 now taking λ = 0.9. If l = 0 then this leads to a region of robust
chaos with no stable periodic orbits over an open interval of values of µ > 0, with
the first periodic orbit, a period-3 maximal orbit, arising when µ ≈ 0.17. However,
as l increases away from zero this picture changes. Firstly, it is apparent from these
figures that stable high N period-N maximal orbits appear to exist for all values of
µ > 0 sufficiently close to µ = 0. For small values of µ these appear to separated
by intervals of chaotic behaviour and for larger values of µ the existence intervals of
the period-(N + 1) and period-N orbits overlap. As l increases the regions of chaos
separating the orbits appear to decrease in width and eventually, the periodic orbits
co-exist. This can be seen to occur for the period-3 and period-4 orbit. There is also,
as described earlier, a sudden jump in the size of the attractor.

To understand this behaviour further, we plot in Figure (3) the values of

µBC,5 < µBC,4 < µBC,3 and µPD,5 < µPD,4 < µPD,3

as functions of l. In this figure we see that if l = 0 then 0.17 ≈ µPD,3 < µBC,3 ≈ 0.22
indicating (as observed above) that a period-3 orbit exists for values of µ > 0.17.
However µPD,4 > µBC,4 and µPD,5 > µBC,5 indicating that neither the period-4 or
the period-5 orbit exists. This result is consistent with the existence of the interval
of robust chaos when l = 0. As l increases then the curves µPD,4 and µBC,4 cross,
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(a) l = 0 (b) l = 0.4

(c) l = 0.8

Fig. 3.5: The bifurcation diagrams for the map (2.6) with λ = 0.9 and l = {0, 0.4, 0.8}.
We see the existence of robust chaos and a period-3 orbit when l = 0. In contrast we
see very many periodic orbits for larger values of l.

implying that the period-4 orbit exists for l > 0.08. Similarly the period-5 orbit exists
for l > 0.19. Each orbit then has an interval of existence which increases as l increases.
We can see from this figure that the regions of existence of the period-3 and period-4
orbits do not intersect if l = 0.4, and do intersect if l = 0.9.

The difference between the cases of l = 0 and l > 0 is most apparent in the case of
period-N orbits for the case of N large and µ small, and we can summarise this in
the following Proposition.

Proposition 3.2. (i) If l = 0 and λ > 2/3 then for sufficiently large N , no
period-N orbits exist.

(ii) If l > 0 then stable period-N orbits exist over an non-empty interval of values
of µ for all 0 < λ < 1 and for all sufficiently large N .

Proof. The result (i) has already been quoted, but for completeness we prove it
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Fig. 3.6: A plot of the period-doubling bifurcation values µPD,5 < µPD,4 < µPD,3
denoted by the dashed lines and the border-collision values µBC, 5

¡ µBC,4 < µBC,3 as functions 0f l and for λ = 0.9. A periodic orbit exists if
µPD,N < µBC,N . We see how the region of robust chaos for l = 0 evolves into a

region in which we have a period-adding cascade of maximal orbits.

here. If N is sufficiently large and if l = 0 we have asymptotically

µPD,N ≈
3
4

(1− λ)λ2N−2 and µBC,N ≈ (1− λ)2λ2N−4.

Thus, µPD,N > µBC,N if

3
4
λ2 > (1− λ) that is if λ >

2
3
.

Hence no period-N orbit exists in this case.

To prove (ii) we note that if l > 0 and if N is large then

µPD,N ≈ lλN−1(1− λ) and µBC,N ≈ lλN−2(1− λ).
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Thus, as λ < 1 we have

µPD,N < µBC,N

and the period-N orbit exists. We note further that the length of intervals of existence
ΩN of the period-N orbits decreases by a factor of λ as N increases by one, and that

µBC,N+1 ≈ µPD,N < µBC,N ≈ µPD,N−1. (3.1)

We illustrate the conclusions of this Proposition by plotting in Figure 3.7 the
bifurcation diagram for l = 0.8 and λ = 0.9 but this time looking more closely at the
high N period-N orbits arising when µ is close to zero. In this figure we can clearly
see the existence of these orbits, the geometric scaling of the length of the intervals
of existence, and the immediate transition from ΩN+1 to ΩN as a result of (3.1).

4. Conclusions. The introduction of an active impact into the normal impact
law for an impact oscillator has led to an interesting map with new dynamics close to
a grazing event. In particular, although the map inherits some of the structure of the
square-root map, the map has many new periodic orbits. These appear also in the
full two-dimensional map describing the more complete dynamics of the active impact
problem. Of course this is only the first step in understanding the true dynamics
of the pin-ball machine which must also include considerations of the effects of the
two-dimensionl motion of the pin-ball and even the effects of human and mechanical
interaction. We leave this as a result of further investigation which will of course
involve close team work between mathematicians and mechanical engineers.
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