Systems Architecture 2
CM10195

Russell Bradford (Operating Systems)
Alan Hayes (Networking)

2021

CM10195

This unit follows on directly from Systems Architecture 1
(CM10194)

These units are to provide the material that everybody who
might like to think they know about computer science should be
able to recite in their sleep

Some of you may already know some of the material in this unit
¢ You are lucky, but don’t assume you know it all!

For most of you this is new
e You are lucky because it’s all good stuff!

Unit Outline

There are two major chunks of material:

1. Introduction to Operating Systems: taught by me
2. Introduction to Computer Networks: taught by Alan Hayes

Both are things that if your computer is working properly, you
shouldn’t notice them at all!

“Operating systems are like underwear - Nobody really
wants to look at them”
Bill Joy

Unit Outline

Structure of this unit:

e Pre-recorded “lectures”, released week-by-week on
Re:View/Panopto. The main delivery of the content of this
unit. These will be in several chunks each week: they will
vary in number and length as is appropriate for the topic
being discussed, but generally there will be several short
videos (instead of fewer long ones)

e These will be uploaded Monday mornings

Unit Outline

e Live Interactive Online sessions:
e Wednesdays 12:15
e Thursdays 15:15
On Zoom. See Moodle for links. These sessions will be
reactive (“make it up as we go along”) for things like
questions, supplementary discussions, coursework, past
papers, or anything (relevant) you want.

Unit Outline

These sessions will be recorded (to Re:View/Panopto) for the
benefit of those people who can’t make the timeslot

If you have a personal issue with being recorded, make sure
your camera and microphone are off. You can still interact via
chat

At first, we shall only be using the Wednesdays session as
there won’t be so much to talk about and to manage our
workload/studyload. We shall use the Thursdays as and when
they are needed

Unit Outline

Assessment

Usual combination of assessed coursework and exam

1. Essay on Operating System issues (15%)
2. Networking Assignment (15%)
3. End of unit exam (70%)

Unit Outline

Assessment

Coursework timelines (approximately, subject to change):

1. set Wed 24 Feb, due Fri 19 Mar
2. set Wed 24 Mar, due Fri 23 Apr

Feedback on coursework will be provided via Moodle.

The week starting 8th March is consolidation week: no new
material

Easter break: two weeks starting 29th March

Unit Outline

Operating Systems

Outline content:

Introduction: What they are and what they do; history
Processes

Memory and memory management

Files and filesystems

(Peripherals and 1/0O)

ok wp -

o~ 0D

Unit Outline

Networks

. Introduction: What they are and what they need to do;

history

Layering models

Addresses and names

Services (DNS, LDAP, SSL)

Application abstractions: data services and web services

Unit Outline

Resources

The subject of Operating Systems is nearly as old as that of
computers and so there are lots of books

Unit Outline

Resources

Some books | found on my shelf:

e “Operating Systems Internal and Design Principles” W
Stallings, Prentice Hall

e “Computer Systems Architecture A Networking Approach”
R Williams, Addison-Wesley

e “Introduction to Operating Systems Behind the Desktop” J
English, Palgrave

e “Operating Systems a Concept-Based Approach” D M
Dhamdhere, McGraw Hill

e “Operating Systems Concepts with Java” A Silbershatz et
al, Wiley

Unit Outline

Resources

N.B. These were given to me by the publishers so I'm not
saying they are the best books out there

The thing to do is look at several and find one that suits you:
they all contain roughly the same material

Unit Outline

Resources

Networking books

e “TCP/IP lllustrated Volume 1” W R Stevens,
Addison-Wesley

e “Computer Networks, 4th Ed” A Tanenbaum, Pearson

e “The Art of Computer Networking” R Bradford, Pearson
(Polish Edition: “Podstawy Sieci Komputerowych”, WKt)

These are definitely all good books!

Unit Outline

Resources

You don’t need me to tell you that there is a large amount of
material out there on the Web?

Wikipedia is fairly accurate in this area: but, as usual with
Wikipedia, you should follow up the references and check with
other sources

Unit Web page: http:
//people.bath.ac.uk/masrjb/CourseNotes/cm10195.html
(link on Moodle)

http://people.bath.ac.uk/masrjb/CourseNotes/cm10195.html
http://people.bath.ac.uk/masrjb/CourseNotes/cm10195.html

Unit Outline

Resources

Contacting me:

If you have a question on the unit, please consider bringing it
along to the LOIL so that everyone can get the benefit

Otherwise, email me — | don’t monitor all the dozens of other
ways of messaging (Moodle, Teams, etc.) and email is the only
way to be sure of getting a message to me

| keep a 9-5 (approx) Monday—Friday week and am unlikely to
respond out of those times (a long time a ago someone said
“Get a life”, so | did)

Standard Introductory Slides

Remember:

You are expected to do some work outside of lectures
Lectures are the start of the learning process, not the end!
These slides are reminders to me on what to say in lectures

They are often abbreviated in style, and so are not the whole
story and would not be suitable to be quoted verbatim in an
exam

Standard Introductory Slides

Do not rely purely on my notes for your revision
People who do this live to regret it

Like every Unit, you are expected to read around the subject for
yourself

You need to take your own notes, read, and participate

You don’t expect to get fit simply by paying to joining a gym...

“If you have college courses in CS, buy the books and
spend day and night the few days before class going
through the books and taking notes and answering
questions and programming examples before the first
class even starts. If you really want to do this in your
life, that's what you should do, not just wait for the
education to be handed you. Those who finish at the
top will always be in high demand. You can learn
outside of school too but you have to put a lot of time
into it. It doesn’t come easily. Small steps, each
improving on the other, is what to expect, not instant
understanding and expertise.”

Steve Wozniak, co-founder of Apple

Standard Introductory Slides

Computer Science is not a spectator sport

Anon

Operating Systems: Introduction

An Operating System (OS) is just a program, often called the
kernel or monitor

Its purpose is to

e Manage the resources of the computer

e Provide the applications programmer (N.B., not the end
user of applications) with a usable programming interface
to access those resources

The interface that the end user interacts with is not part of
the OS

It’s just another program that uses the OS

If the end-user sees it, it’s not part of this course!

Resources

So what are resources?

e Hardware: cpu, memory, disk, network, sound, video,
keyboard, mouse, printer, camera, ...

e Software: anything that controls the above, though use of
the cpu is a primary focus

Resources

Why do they need managing?

1. They are limited with not enough to go round
2. They need protection
3. They need to meet certain criteria

Resources
Limited?

Surely computers are so big and fast these days there is no
scarcity on resources?

Actually, most computers are small and very limited!

E.g., mobile phones have strict limitations on memory, cpu
power and energy consumption

Even big computers are not yet big enough for many people
My laptop is currently running about 370 programs

Resources

Why do they need managing?

1. They are limited with not enough to go round
2. They need protection
3. They need to meet certain criteria

Resources

Protection

Protection comes in many forms

e Preventing one program from accidentally (or intentionally)
corrupting another program or data on the same or another
machine: security

e Ensuring certain resources are only available to those
programs that are allowed: authorisation

e Ensuring that a given program has the authorisation it
claims to have: authentication

¢ Protecting you from your own stupid mistakes (Did you
really want to delete that?)

Resources

Why do they need managing?

1. They are limited with not enough to go round
2. They need protection
3. They need to meet certain criteria

Resources

Criteria

Popular criteria include

e Responsiveness: making a program respond snappily or
processing network packets as they arrive

e Real Time: certain events must be dealt with in a (small)
fixed amount of time, e.g., the controlling flaps on an
airplane’s wing, video streaming

e Security: prevention of accidental or malicious access or
modification

Programming Interface

The other purpose of an OS is to provide an interface for the
programmer:

The programmer who has to write applications for the machine
does not want to have to know the details of the hardware:
think portability (c.f. von Neumann’s model)

e How do | get the best performance out of this disk,
network, video?

e How do | prod this hardware to get it to do what | want?
e How should | deal with interrupts?
e And so on

Programming Interface

We don’t want to have to re-implement everything in every
program

So the OS does this kind of thing for us
Early programmers, before OSs, had to do it all themselves

Much better to let someone else do the hard work
(A common theme in Computer Science)

Programming Interface

Having an expert do this stuff once and provide a standard
interface to it for us to use is much better for us

e We don’t have do it

e The expert is better at it and (presumably) understands the
hardware well

e The expert is a better programmer than us and can get
better performance out of the hardware

e The programmer knows more Computer Science than us
and knows the many pitfalls and necessary tricks that OS
programming involves

Programming Interface

They do it so we don’t have to

Programming Interface

Layer Abstraction:

Applications

(G)UI

System libraries

oS

Hardware

Browser, word processor, game
Command line, windowing, touch
Maths, graphics, sound

Linux, OS X, Windows, Android

PC, phone, PVR, SatNav

Important Point

Reemphasising a very important point:
The GUI is not part of the OS
The GUI is just another program that uses the OS

There was a time when certain OS vendors tried to tie the GUI
into the OS (to gain speed and commercial advantage)

Programming Interface

Bad Layer Abstraction:

Applications Browser, word processor, game
GUI Windows
System libraries Maths, graphics, sound
oS Windows
Hardware PC

Programming Interface

Very Bad Layer Abstraction:

Applications Browser, word processor, game
GUI Windows
System libraries Maths, graphics, sound
oS Windows
Hardware PC

Programming Interface

This is poor design and should be avoided

It was a huge source of problems: bugs in the GUI or the
application would cause the OS to crash, so a poorly written
program could take out the whole machine

It was an easy way to circumvent the security the OS provides,
thus allowing attackers to access the machine

Another Important Point

Only a small number of CPU cycles in the world deal with GUls
or windows: the PC is far from being the most common type of
computer

Embedded systems out-sell PCs by orders of magnitude
This Unit has nothing to do with GUIs

You will lose marks in this Unit if you start talking about GUls
as it means you don’t understand the concept of an OS

It quite possible to have similar-looking GUIs running on
different OSs

But we must be careful as some people don’t realise the
difference between an OS and everything else

Programming Interface

CS view:Marketer’s view:

Applications

GUI

System libraries

0S

Hardware

0S?

OS

OS

OS

One more thing

There are a couple of vital aspects of an OS that are
sometimes overlooked:

1. It should be efficient and lightweight: every CPU cycle that
the OS uses is one that is taken away from the user’s
programs

2. It should be flexible and not get in the way of the
programmer

So a perfect OS would be completely invisible!

Background

Operating Systems have been around nearly as long as
computers

... but not quite as long

So long, though, that some (most!) people don’t distinguish
between computers and their OS

Computer Scientists ought to be more careful

Background

An OS is just a program so

we can have different OSs on the same hardware
we can have the same OS on different hardware

On Intel hardware (“PC”) you can run Windows, MacOS,
Linux (and lots of others)

Current Mac hardware is the same as PC hardware, so
you can run all of the above on a Mac (the new Mac M1 is
effectively only slightly different)

Linux runs on many kinds of hardware, including Intel,
mainframes (IBM, Oracle/Sun), million processor clusters,
phones (ARM), gadgets like satnavs and PVRs

N.B. when we say “Intel” or “x86” we mean Intel, AMD and all
the compatible architectures

Background

A note on portability of OSs

Since an OS has to deal with the details of hardware, it is not
entirely trivial to port an OS from one CPU architecture to
another, e.g,. an Intel CPU to an ARM CPU

Well designed OSs minimise the hardware-dependent parts
and try to keep most code hardware-independent

Most of the difficult code in the OS can be kept hardware
independent, only the stuff that needs the actual physical
access need be hardware dependent

Exercise. Have a browse through the Linux kernel source code

Background
Historically, some OSs tied themselves so closely to the
hardware that porting is very difficult

For much of its lifetime Windows only ran on Intel, so the
assumption of Intel hardware ran throughout the code

Microsoft have recently ported Windows to ARM chips

They are frantically trying to catch up with a market that is
moving to phone/tablet and energy-conscious computing

And they paid the price of not abstracting away the hardware
from the software

And note this will require rewrites of Windows applications, too

Background

In contrast, the Android OS that runs on phones shares a large
amount of code with the Linux that runs everywhere else, even
on supercomputers

The iPhoneOS that runs on iPhones shares code with OS X

Windows Phone 7 shares little with Windows 7 (though the
phone GUI, was adapted to the PC and Windows Phone 8
shares with Windows 8)

Phone OSs are marketed strongly on their GUIs, not the actual
OS; many phone vendors try to make it hard for users to
access the OS

Background

For the new M1 Macs their operating system had to be ported
from x86 to ARM

And Apple provides Rosetta, a clever bit of software that
dynamically translates x86 code to ARM code so that user
applications written for the old hardware will still run on the new
hardware

With a moderate loss in speed

Background

You will often hear “Do you have a PC?” where the asker really
means “Do you run Windows on your PC?”

“PC” means “Personal Computer” and refers to the hardware
| run Linux on my PC; many people run MacOS on their PCs

Such people get confused when | answer “Yes, | have a PC but
it doesn’t run Windows”

“Or MacOS”

Macs are PCs, too

Background

The understanding of the general public is such that they get
the hardware and software confused

And, more, they are usually thinking about the GUI, not the OS

Some software companies encourage and make capital out of
this confusion

Background

There is some reason for this confusion: Microsoft and Apple
tie their GUIs indivisibly to their OSs

Other OSs, notably Linux, allow the user a choice of many Uls
and GUIs all running on the same OS kernel

And typical users base their choices on GUIs, not OSs

But we shouldn’t be talking about GUIs: this Unit is about
Operating Systems, taking the programmer’s point of view

Background

As programmers, we should choose an OS for the features that
it provides:

e Ease of use

Efficiency

Security

Stability

Suitability for the task in hand
And so on

Background

Just a few recent operating systems:

o XP/Vista/Windows 7/Windows 8/Windows 10 from
Microsoft. Large, resource intensive, highly featured,
previously Intel processor only, now Intel and ARM

e OS X from Apple. Large, not quite so intensive, highly
featured. Based on BSD (Unix), on Intel and ARM
processors (Earlier: PowerPC)

e Unixes. Solaris from Sun/Oracle, IRIX from SGl, AIX from
IBM, OSF/1 from DEC, etc. Large to medium.

e Unix derivatives (reimplementations). Various BSD
(including MacOS X), Linux, Hurd, etc. From small to large.

Note, since the advent of smartphones, of the above OSs, Unix
derivatives (Linux) are the most popular

Background

Phones. Palm OS, Symbian, Windows CE/Mobile/Phone
7/Phone 8, Android, iPhone OS

Experimental. Minix, Plan 9, Mach, Singularity, Amoeba,
etc.

Networking. NetWare (Novell), Cisco IOS, DD-WRT etc.
For controlling networking hardware

Distributed OSs. Management of collections of computers,
or making a collection appear as a single large computer

Background

e Embedded. nCLinux, Windows Embedded, RTOS, etc.
Small, resource frugal

e Real-time. QNX, pCLinux, etc. For controlling systems
where a fast response is critical

e OSs for gadgets (MP3 players, etc.) Conservation of
battery power is the largest problem

e Other. 0S/2, MacOS 9, RISC OS, BeOS, z/OS (IBM).
Various sizes

Again, remember that embedded OSs outnumber PC OSs by
an order of magnitude

And we’ve not even mentioned historical OSs yet

Background

There are lots of operating systems out there, most we don'’t
notice

The ones we do notice are failing in their purpose!

ARX project Arthur OS RISC OS AmigaOS Amiga Unix AEGIS
Domain/OS vikek OS Apple DOS UCSD Pascal ProDOS GS/OS
SOS Lisa OS Newton OS Mac OS 8 Mac OS 9 A/UX MkLinux Mac
OS X v10.x iOS Atari DOS Atari TOS Atari MultiTOS XTS-400 BeOS
Blue Eyed OS Cosmoe GCOS Burroughs MCP COS SIPROS
SCOPE MACE KRONOS NOS NOS/BE RDOS AOS DG/UX CTOS
DOS Deos HeartOS CP/M DR-DOS OS/8 ITS TOPS-10 WAITS
TENEX TOPS-20 RSTS/E RSX-11 RT-11 VMS Domain/OS TSB
Digital UNIX HP-UX Ultrix Guardian OSS OSE Towns OS Google
Chrome UTX-32 INTEGRITY HDOS HT-11 HP-UX HP MIE OLERT-E
Multics HeartOS DEOS iRMX ISIS-Il BESYS CTSS GM OS GM-NAA
I/0 IBSYS IJMON SOS UMES 0OS/360 OS/VS SVS OS/VSn MVS/SE
0S/390 z/0OS DOS/360 z/VSE CP/CMS VM/370 VM/XA VM/ESA
z/VM AIX/370 OpenSolaris UTS z/Linux BOS/360 MTS MUSIC/SP
ORVY WYLBUR PC DOS/IBM DOS OS/2 J MultiJob GEORGE 2/3/4
TME ICL VME iVideOS LynxOS MicroC/OS-1l Xenix MS-DOS
Windows Singularity Midori TMX NetWare MontaVista RTXC

History

We are now going to look at some history: this is useful as it
will illustrate the many important parts of OSs and why they are
necessary

At first, computers had no operating systems (1960s)

e Every programmer had to write their programs for the
particular machine they were using

e So no portability

¢ And lots of repeated code between programs (“write a
character to the teletype”)

Remember: the more we make programmers do, the more
likely they are going to make a mistake

History

Furthermore, programmers rarely even saw the computer

The program and the data (collectively called a job) would
be prepared on paper tape or punched card

Jobs would be given to operators who would the load and
run them, then give the results back

Usually, there would be a bug and the programmer would
have to fix the program and go round the loop again

As computer time was limited, there was an issue of
scheduling jobs, initially done by hand

Turnaround on jobs could be days

This concentrated the programmer’s mind wonderfully!

History

e | 1" m
knnn e Y L
i I

From Wikipedia. Encodes a single 80 character line

History

From Wikipedia. 5 and 8 hole paper tapes

History

It was soon found there was a lot of repeated code between
programs, so useful tools (programs and libraries of code) were
developed to help manage repetitive tasks

e collecting common functions in system libraries (sqrt, open
file, etc.)

e program management (loaders)
e debuggers

e Interfacing to hardware: I/O drivers (send file to printer,
etc.)

This made programming and program management easier, but
there was still lots of human intervention needed

History

The issue was to keep the big and expensive computer as busy
as possible, running programs all the time

Idle time was a waste of money

So the operators would load many programs on to a fast
medium, such as magnetic tape, and the computer would load
and run them as fast as hardware allowed

This was called spooling, the first instance of addressing the
disparity between human and computer speeds

History

Spooling would also be used on output: the output would be
written to a mag tape, which could then later be attached to a
printer

Again, this was because printers are slower than computers

History

Soon it became clear this could be automated: have a little
program, called a monitor (or supervisor), that loads and runs
programs and puts the results somewhere sensible

This would be directed by a job control language

History

A famous job control language from IBM was called JCL

Of course “JCL’ means “Job Control Language”, but JCL was
just one of a few job control languages

History

//IS198CPY JOB (IS198T30500),’COPY JOB’,CLASS=L,MSGCLASS=X
//COPY01 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=0LDFILE,DISP=SHR

//SYSUT2 DD DSN=NEWFILE,

/7 DISP=(NEW,CATLG,DELETE),
/7 SPACE=(CYL, (40,5) ,RLSE) ,
// DCB=(LRECL=115,BLKSIZE=1150)

//SYSIN DD DUMMY
(From Wikipedia) Any guesses?

This copies OLDFILE to NEWFILE
This would be set on 9 punched cards

History
A Fortran program, with data:

//CONVERT JOB USER=UGA001,MSGCLASS=6,NOTIFY=UGA0O1
//*MAIN CLASS=NITE,LINES=40,0RG=UGAIBM1.LOCAL
// EXEC FORTVCLG,REGION=2000K
//FORT.SYSIN DD *
READ(5,10) CENT
10 FORMAT(F6.2)
FAHR=(CENT*9.0/5.0)+32.0
WRITE(6,20) CENT,FAHR
20 FORMAT(F6.2,’ CENT = ’,F6,2,’FAHR’)
STOP
END
/%
//G0.SYSIN DD *
100.00
/%
//

History

JCL also allowed

o different classes of job: some people are allowed more
time or memory space than others

e automatic accounting: who to charge for what. Charges
would be made for CPU time, memory usage and anything
else they could think of (another recurrent issue in CS)

e programmers could specify things like when they want the
program to run, how much disk or memory it needs, etc.
E.g., at certain times of day it might be cheaper to run a
program

If a job ran out of its allotted time or space it would be killed

History

JCL allowed several programs to be collected and loaded
together in a single bunch

This is called batch processing

Running in batches is more efficient, as we spend more time
running our programs and less time messing around in the
overheads of loading and unloading

History

This might seem like ancient history, but these things are still
happening

Modern large computers (like Bath’s Balena cluster) are
managed in just this way: and for the same reasons

We still run jobs; charges are made for time and memory; and
so on

Turnaround is seconds or minutes rather than days, but the
principle is the same

Exercise: look up Portable Batch System, PBS and compare
with JCL

History

So the monitor was just a program

It would load an application into memory (from tape or
wherever)

And then jump to the start of the application and start executing
it

When the application finished, it would (be expected to) jump
back to the monitor, so it could deal with the next program

History

But if the application was badly written, it could overwrite the
monitor

Monitor User program

Machine memory

Either accidentally or deliberately

History

It was soon found to be more efficient to load more than one
program into memory (when there was space)

Monitor Program 1 Program 2

The advantage being that if Program 1 was doing something
like writing to a tape that takes a lot of time, but no CPU, the
computer could run Program 2 in the meanwhile

When Program 2 pauses and Program 1 needs to run again,
the computer could switch back to it

The decisions on what to run and actually doing the switching
between programs was the job of the monitor

History

Now Program 1 could corrupt Program 2 as well as the monitor!
Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed

History

So the “monitor runs the programs”: what does this really
mean?

Nothing sophisticated. The monitor code just jumps to the
program code so the machine is now running the program

Take care over this point: the monitor doesn’t sit and watch the
program running, the monitor is not running while the program
is running

History

.

5

\

Monitor

program 1

program 2

Monitor runs Monitor jumps to program 1 Program runs Tape
needed Program calls monitor Monitor sets up tape Monitor
decides to run another program while waiting for the tape Monitor
jumps to program 2 Program 2 runs Etc.

History

Less graphically:

Monitor starts program — Prog 1 it runs. .. tape needed —
Monitor sets up tape... Monitor decides to run another
program — Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa

History

This changing between multiple user programs is called
multitasking. But only one thing is ever running

Multitasking improves the efficiency of use of a computer since
while one program waits for a slow peripheral another program
can run

History

So the monitor needs to make decisions on what to program to
run next: it is scheduling the programs

The choices can be made according to many criteria

how long a program has been running

a priority of a program

whether a program is likely to need CPU very soon, or can
wait

how much the owner of the program has paid

And many more things

History

Early scheduling algorithms were very simple, e.g., keep
running the same program until it's done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later

History

A badly written (or malicious) program can bring the whole
system down

If the program never hands control back to the OS (we’ll call the
monitor the operating system from now on), the OS never gets
to run and schedule another program

If the program goes into an infinite loop the whole computer is
jammed

This cooperative approach needs something extra

History

Interrupts can be used to solve the problem of runaway
programs

A hardware clock or timer can be set to send interrupts
regularly after an appropriate period of time has elapsed

When the interrupt is taken, the interrupt service routine jumps
to the OS and so it can decide what to do next, including:

e resume running the interrupted program

e Kill (no longer run and remove resources from) the program
if it has used up its allotted resources

e switch to running some other program

Similarly, interrupts from peripherals like terminals or disks
pass control to the OS

History

This is called preemptive scheduling and enables timesharing

Timesharing is where several programs share the available
CPU time and so appear to be running simultaneously

Usually in a fairly transparent (to the programs) manner

Always mediated by the OS, of course

History

The same interrupt mechanism allowed the use of terminals,
where users could now interact directly with the computer, not
just via job submission

A program can sit and wait (i.e., not be scheduled to run by the
OS) until the user hits a key on the terminal

When a key is hit, an interrupt happens, the OS takes over,
schedules and runs the appropriate program to deal with the
keystroke

History

Thus the waiting program uses no CPU resources until they are
needed

Of course, while we say “the program is waiting”, is important to
realised that it's not “waiting”: the program is not even running

So interrupts like this are another way of bridging the gap
between slow humans and fast computers

History

Typically, timer interrupts are set to go off fairly often

e Frequent interrupts mean several programs can get a slice
of the CPU quite often

o With sufficiently frequent interrupts it appears to a human
observer that several programs are running simultaneously

e An interactive program, one where a human is involved,
will appear to be dedicated to that user: in reality humans
are so slow we can’t appreciate how little time the
computer gives us

e |t is important to remember that a single processor can
only do one thing at a time: it is only the appearance of
multiple programs running simultaneously

History

On the other hand, too frequent interrupts mean the OS is
forever being called and using CPU time, so less time is
available for the programs

This is another tradeoff: frequent interrupts for good interactive
behaviour, rare interrupts for good compute behaviour

Clever scheduling algorithms in the OS try to give high priority
but small slices of time to interactive programs; and lower
priority but larger slices to compute-intensive programs

A “large slice of time” means the OS will allow a program to
continue running for a relatively long amount of time before
scheduling a different program

History

A “small slice of time” means the OS will deschedule the
program after only a brief amount of running time

Thus, the OS can deal out CPU time to the programs in
appropriately sized chunks

This is all part of the scheduling decision computations that
happen potentially every time the OS runs

My PC is running at about 150 interrupts per second (timers
and other stuff)

History

Low power gadgets like to keep the number of interrupts down,
too, as it increases the amount of time the CPU can be idling in
low power sleep states

Tuning an OS is very difficult and depends critically on the
application

When an OS spends more time deciding what to do than doing
useful work, it is called thrashing

Many early OSs had a big problem with thrashing

Question

Exercise. To think on: should the OS be subject to timer
interrupts and preemption?

History

The programs and OS all live in the same computer memory:
we need some way of protecting programs and the OS from
each other

This has to be done by hardware support as it needs to be fast
and unobtrusive: potentially every memory access needs to be
checked

We shall start by looking at general hardware protection
mechanisms

History

Certain operations, like accessing tape or a printer, must be
reserved for use by the OS and not be accessible by a random
user program

So in the hardware (CPU) machine instructions are divided into
two (or more) classes

e Unprivileged operations. Like addition, jumps. Any
program can execute these

e Privileged operations. Like access peripherals, reboot the
machine. Only certain privileged programs can run these

And the processor can run in two (or more) modes

e Unprivileged. Normal computation, called user mode
e Privileged. For systems operation, called kernel mode

History

Modern processor architectures can have four or more levels of
privilege, but for the most part it is rare that more than two
levels are used in commodity computers

For example, the Intel x86 architecture has four rings. Ring 0
can execute any instruction, while Ring 3 is for user mode.
Rings 1 and 2 are rarely used these days

OS/2 used Ring 2

The latest Intel and AMD architectures added a Ring —1 (for
OS virtualisation)

History

Note that privilege is a state of the processor, not the program,
but we tend to say “a privileged program” rather than “a
program running with the CPU in privileged mode”

If an unprivileged program (i.e., a program running in an
unprivileged mode) tries to execute a privileged operation the
hardware causes an interrupt (also called a system trap) and
sets the processor to privileged mode. The interrupt service
routine then jumps to the OS

The OS can then decide what to do

For example, the OS may decide to disallow the operation, and
kill the program (i.e., not run it any more)

History
The system starts in kernel (privileged) mode

1. The OS decides which process to schedule

2. It uses a special jump-and-drop-privilege instruction to
start running the program

3. The program runs user mode (unprivileged)

4. The program finishes or decides it needs a system
resource

5. The program executes a special “call OS” (or syscall)
instruction that jumps to the OS

6. This enables privileged mode, so the OS regains control,
with privilege
7. The OS decides what to do next

Of course, even if the program does not do a syscall, a timer
interrupt will come along at some point, anyway

History

The syscall instruction always jumps to the same place in the
OS. So the program cannot use it to gain privilege for itself and
run its own code privileged

This to-ing and fro-ing between modes ensures that the OS is
running in privileged mode and the user program is running in
unprivileged mode

And the user program can never manage to get into privileged
mode as every transition to privileged mode is tied by the
hardware to a jump to the OS

History

Applications

GUI User mode

System libraries

0Ss Kernel mode

Hardware

There is a strict divide between kernel (OS) code and user
code, controlled by the hardware

History

Unless there are bugs in the kernel code. . .

Incidentally, the system libraries usually include a bunch of
“nice” interfaces to the syscalls: wrapping them to make using
them easier

E.g., the “open file” syscall might need certain values (file
name, etc.) to be placed in certain CPU registers; and the
“open file” opcode to be placed in a register before the syscall

The open system library function simply hides these details
from the programmer

History

Warning!

Switching back and forth between OS and programs is, in many
operating systems, a relatively time-consuming operation, due
to overheads that should become clear later

For now, just think of the overheads of saving and restoring the
CPU state of the running program, just as for an interrupt

These overheads are another reason why you don’t want timer
interrupts too often

History

The result of all this messing with modes is certain operations
like loading programs, or accessing hardware like a printer, are
only available to the OS

If an unprivileged program tries to access the printer directly,
that again trips an interrupt and the OS takes over anyway

Forcing access to hardware via the OS also provides protection
and management for other system resources, like access to
files or the network

In kernel mode, everything is possible

In user mode, only “safe” things are possible

History

Preemption and protection appeared in OSs for large
mainframe computers and Unix for minicomputers in the late
1960s

When microcomputers (IBM PC) arrived in the early 1980s
much of OS knowledge was thrown away and DOS (Disk
Operating System) was non-preemptive, single process and no
protection

This was because the earliest PC hardware did not support
such things (no rings)

History

Support was rapidly added in later PC hardware, but DOS and,
later, Windows 3.1 took no advantage of it: the lack of
protection meaning a single bad program could mess up the
OS and crash the entire computer

Windows NT was the first true OS from Microsoft (mid 1990s)
for PCs, possibly as much as a decade after other OSs (such
as Unix derivatives) were providing preemption and protection
on the same hardware

Incidentally, Microsoft’s need for backwards compatability with
these early systems is a major reason why they have so many
problems with security

History

The next issue is memory protection: this must stop a program
from writing and/or reading the memory used by another
program or by the OS

The OS must be allowed to read and write any part of memory
Again, there must be hardware support to do this to make it fast

There is a table of flags in a special piece of hardware: the
memory management unit (MMU). These flags say whether the
currently running (user mode) program can read or write a
given area of memory

History

interrupt

address address

CPU MMU

memory bus

Krowowr

One bit to say if an area is readable; another to say if it is
writable

It is often useful to separate ability to read from ability to write

History

Setting these flags in the MMU is a privileged operation, of
course

And if an unprivileged program tries to read or write to an area
of memory for which it does not have the required permission
(say some other program’s or the OS’s memory) the MMU
raises an interrupt and the OS takes control again

It would not be feasible to have control like this on a
byte-by-byte level, so memory is divided into blocks called

pages

A page is just a contiguous area of memory: 4096 bytes is
popular on modern machines, though current hardware can
support 4MB pages

History

A page is marked as read/writable as a whole: this makes this
technique practical

Exercise. How many flags (bits) are needed to cover 2GB?
How many bytes of flags does that correspond to?

Note that these flags are part of a program’s state that must be
saved and restored when that program is re-scheduled

There is usually also an executable flag: can you execute code
from this memory address?

History

Every read or write to memory is checked by the MMU before it
is allowed: this means the hardware that does this check has to
be very fast

We shall not be going into this in depth here, because in
modern machines this is enhanced by the notion of virtual
memory

This we shall cover later, but it builds on the ideas above and
provides a much more flexible method of protection

History

Thus we can see some of the requirements of an operating
system

¢ Resource management
e in particular program scheduling (CPU time)
¢ also disk, network, ...
e Protection
e in particular memory
e also files, network data, ...
e Efficiency

e in particular with regards to time
e also size, energy, ...

History

By making privileged operations only available to the OS, the
OS can enforce policy on access and ensure fair distribution of
shared resources

History

In current large OSs we have:

e Windows. Preemptive multitasking from Windows NT
(1996) onwards. Previously (Windows 95 etc.) was little
more than a monitor with a pretty interface on top

e Linux. A Unix re-implementation. Preemptive multitasking
from inception (1991). (Recall that Unix had preemption
from early 1970s)

e MacOS. MacOS X is a Unix derivative (BSD), from 1999
onwards. Earlier systems (MacOS 9 and earlier) were
completely different, with no preemption, only cooperative

History

e Solaris. A Unix derivative (System V). Preemptive
multitasking from inception (1992), an extensive rewrite of
the earlier SunOS (1983), another Unix variant (BSD)

e OS/2. Initially from Microsoft and IBM (1997), then just IBM
as Microsoft went off to do its own thing. Intended to be the
followup to DOS. Multitasking when the hardware could
support it: OS/2 2.0 (1992) could run multiple copies of
DOS/Windows simultaneously. Previously used a lot in
bank ATMs (until IBM ended support in 2006). OS/2 3.0
became Windows NT

History

And thousands of others: but the major players in the PC
market are either derived from Windows NT, or from Unix

In contrast, in the embedded market are things are much more
mixed, with both purpose-built OSs and slimmed-down
derivatives of the general-purpose OSs all having major
representation

History

With Windows, rebooting is the first thing an admin
tries to fix a problem; with Unix, it’s the last

Anon.

Processes

We now look at the programs we want to run

The word process is used to describe

e the executable code and
e its data and
e the associated information the OS needs to run it

Note this is different from processor and program

Other words: task, job

Processes
A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes

An OS needs to keep a lots of information about a process,
including

where in memory its code is

where in memory its data is

what permissions it has on those parts of memory (MMU
flags)

how much time it is allocated

how much time it has used

similarly for other shared resources, e.g., the amount of I/O
or networking done

the cpu’s PC and registers
flags from the MMU
and lots more as we shall see later

It uses this information to schedule and protect the process

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1.
2.
3.

5t

New. A process that has just been created
Running. It is currently executing on the CPU

Ready. It is ready to run, but some other process (or the
QOS) is currently using the CPU

. Blocked. Waiting for some event or resource to become

available. E.g., waiting for a block of data to arrive from the
disk
Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

We shall assume, for simplicity, that we have just one processor

The OS will have lists of processes in each state, so the
scheduling decision is making the choice of which process to
move between which states

Again, in real OSs, these will not be simple lists. They might be
arranged in priority order, or might be some more sophisticated
datastructure: e.g., a pair of lists, one for real-time processes
and the other for non-real-time; or a tree

Processes

Example: in Unixes, processes are arranged in trees

systemd-+-ModemManager---2% [{ModemManager}]
| -NetworkManager---2* [{NetworkManager}]
| -Thunar---3*[{Thunar}]
| ~accounts-daemon---2* [{accounts-daemon}]

|-agetty
|-atd

| -auditd---{auditd}
| -avahi-daemon

| -chrome-+-2*[cat]

| -chrome-+-chrome-+-chrome---12* [{chrome}]

|
|
|
|
|
|
|
4

-chrome-+-chrome

| -chrome---19* [{chrome}]
|-3* [chrome---11*[{chrome}]]
| -chrome---15* [{chrome}]
| -chrome---17* [{chrome}]
| -chrome---16* [{chrome}]
| -chrome---10%* [{chrome}]
¢—chrome---23* [{chrome}]

-nacl_helper

‘~7*[{chrome}]

Processes

This allows control of a whole bunch of processes as a group
A group within the tree has a session leader

For example, killing the session leader would typically kill all the
processes in the group

In the example above, exiting the chrome session leader would
kill it and all its subprocesses

Processes

So we have these five main states: New, Ready, Running,
Blocked and Exit, and a process will be moved by the OS
between them

A new process will begin in the state New
A process just finished will be in the state Exit

In between the OS must decide, as part of its scheduling,
where to place each process

There is a standard finite state machine that describes the
allowed transitions between states

Processes

Release
New Running Exit

Admit Dispatch

Interrupt or
relinquish

Block or
sleep

Blocked

Wakeup
Process State Transitions

Processes

A typical transition is

1. The OS decides to schedule a process on the ready list

2. The process is dispatched, i.e., the OS marks its state as
running and starts executing it (jump and drop privilege)

3. The process may choose to voluntarily suspend itself:
relinquish (e.g., a clock program displaying the time might
suspend itself for a minute)

4. Or an interrupt may arise, e.g., from a packet arriving on
the network card, or a key being hit on the keyboard

5. Or a timer interrupt may happen when the process has
used its time slice. In any of these three cases the OS
moves the process to the Ready state

Processes

6. Or the running process may need some resource the OS
must supply (e.g., for disk access) so it does a syscall and
must wait until the resource is ready (e.g., the disk returns
some data); the OS moves it to Blocked

7. In the case of a blocked process, perhaps data has
returned from the disk and the process can wake up and
become Ready again. Note that the process won’t
necessarily start running immediately, it is just ready to run
when it gets its chance

And to make it clear: it's not the processes moving themselves
between the states, it's the OS moving them between the lists
of processes in each state

Processes

Remember, early OSs without timer interrupts had to rely on
processes relinquishing control every once in a while:
cooperative multitasking

User programs running on such OSs had to be explictly written
to be cooperative

And so were often not
For example, Windows 3.1, MacOS 9

Exercise. Write a program that voluntarily relinquishes
occasionally

Processes

New and Exit states happen just once per process

e New. For a process just created, perhaps code and data
are not yet loaded into memory. The OS datastructures
needed to manage the process have been created and
filled in

e Exit. For a process that has just finished. Some tidying up
is usually needed after a process ends, such as closing
files or reclaiming memory or other resources it used

A real example:

USER
rjb
rjb
rjb
rjb
rjb
rjb
rjb
rjb
rjb
rjb

PID
3974
4495
4538
4540
4664
4831
7839
7851
7856

14880

PPID PRI %CPU
0.

4831
4831
4530
4534
4556
4829
4831
7839
7851

1

22
24
23
24
21
24
15
14
24
16

O O OO OO O Oo0Oo
ONOOOOOOOoOOo

Processes

%MEM

o

[ure
W oo O OO OoOOoON

P ORFR, P, NONNDOR

STAT

R+
S
Ss+
Ss
S+
Ss+
Ss
S
Sl
Dsl

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

TIME

00:
01:
00:
00:
00:
00:
00:
00:
&l g
06:

00
11
00
00
08
00
00
00
47
43

COMMAND

ps

emacs

bash

bash

pine

bash
firefox
run-mozilla.sh
firefox-bin
recollindex

Example processes under Linux

Processes

S. Sleeping: like blocked (interruptible sleep; waiting for an
event like a timer or other interrupt)

D. Disk wait (uninterruptible sleep; waiting for requested
1/O)

R. Running or ready to run
It is hard to catch new and exiting processes

s: session leader; +: foreground process group; I: multithreaded

Processes

Other columns of interest

e User. The user who owns the process

e PRI. Priority. In Linux, priorities are integers, larger
indicates less important

e PID. Process identifier. An integer that uniquely identifies
this process

e PPID. Parent PID. The PID of the process that started this
process. This allows processes to be grouped in trees.
Process number 1 is the parent of all processes

e CPU, MEM, TIME. How much of these resources this
process is using

Processes

So we can see some more of the information that a process
needs to collect and maintain:

User identifiers (userids)

A priority

Statistics like memory and CPU used
The state

But there are still more that will become clearer as we go along

This collection of data a process needs is called the process
control block, or PCB

Processes

To pause and restart a process (e.g., on an interrupt) requires
the saving and restoring of the process state: CPU registers,
stack pointers, MMU flags, etc.

This will also be stored in the PCB

So process handling is very similar to the way interrupts are
handled

Processes

Process creation is quite involved

e Allocate and create PCB structure
Find a free PID

Determine and allocate the necessary resources (in
particular memory)

Determine the initial priority of the process
Insert PCB into the relevant list

This is what happens in the New state; it can now move to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first

Processes
Most processes are created (forked/spawned) by other
processes: of course, only the OS can actually create
processes

A user process that wants a new process will ask the OS to
create one (using a syscall)

Processes use resources like memory and CPU, so the OS
must be involved

e A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

e |t calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

e The OS can now create a new process according to the
specifications given

e The new process can now be scheduled

Processes

The original calling process will generally be the parent of the
new process

Of course, the OS can choose not to create the new process if
some policy says not to, or there is not enough memory, or
some other reason

In that case, the original process usually gets a message back
from the OS (via the value returned from the syscall) explaining
the problem

Processes

The question arises: if processes are created by other
processes, how do we get started?

This is the bootstrapping problem

In Unix, there is an ancestor process, sometimes called init or
systemd, PID 1, that gets created at switch-on time and it
serves to create all other processes

Bootstrapping is complicated as it has to determine the
hardware and how it is connected and initialise it, set up all the
appropriate datastructures the OS needs, start lots of service
processes running, all before it can begin to look at what the
user wants

This is quite often simply called booting

Processes

How does process 1 get started?

To get going, the system needs a small chunk of non-volatile
memory, i.e., memory that doesn’t lose its content when power
is removed

The details of booting are very messy, but in essence:

¢ When the machine is switched on the processor jumps to a
specific location in the non-volatile memory (OxFFFF0000
on PCs)

¢ At this location is a small program (the boot loader, or
bootstrap loader) that is just big enough to load and run a
larger program (from bigger non-volatile memory, or
perhaps disk)

Processes

This might be repeated until we have a big enough
program running that is capable of reading from, say, the
start of the hard drive

This is often itself another bootstrap program (NTLDR, and
GRUB are common) that might give the user a choice of
operating systems to load, but usually just goes ahead and
loads one from disk (or network, or whatever)

This may require the bootloader to have some
understanding of how data is laid out on the disk, which
itself is non-trivial (see later)

Eventually, enough of the operating system kernel is
loaded that it get itself going properly, e.g., start init

Processes

Exercise. Some machines do not have disks (or other
persistent storage), for example thin clients. Read about how
these can boot

Scheduling

We now look at scheduling: how to choose which process to
run next

This is an extremely difficult problem and still has not been
solved to everybody’s satisfaction

Scheduling

A list of scheduling algorithms, from Wikipedia:

Borrowed-Virtual-Time Scheduling (BVT), Completely Fair Scheduler (CFS), Critical
Path Method of Scheduling, Deadline-monotonic scheduling (DMS), Deficit round robin
(DRR), Dominant Sequence Clustering (DSC), Earliest deadline first scheduling (EDF),
Elastic Round Robin, Fair-share scheduling, First In, First Out (FIFO), also known as
First Come First Served (FCFS), Gang scheduling, Genetic Anticipatory, Highest
response ratio next (HRRN), Interval scheduling, Last In, First Out (LIFO), Job Shop
Scheduling (see Job shops), Least-connection scheduling, Least slack time scheduling
(LST), List scheduling, Lottery Scheduling, Multilevel queue, Multilevel Feedback
Queue, Never queue scheduling, O(1) scheduler, Proportional Share Scheduling,
Rate-monotonic scheduling (RMS), Round-robin scheduling (RR), Shortest expected
delay scheduling, Shortest job next (SJN), Shortest remaining time (SRT), Staircase
Deadline scheduler (SD), “Take” Scheduling, Two-level scheduling, Weighted fair
queuing (WFQ), Weighted least-connection scheduling, Weighted round robin (WRR),
Group Ratio Round-Robin: O(1)

Scheduling

And they are just the ones people can be bothered to write
about on Wikipedia

Scheduling

Think of the problems

e Try to give each process its fair share of CPU time

e and no starvation of any process

¢ Try to make interactive processes respond in human
timescales

e Try to give as much computation time as possible to
compute-heavy processes

e Ensuring critical real-time processes are dealt with before
it is too late

Scheduling

Try to service peripherals in a timely way

Understanding the various requirements of hardware: mice
and printers are slow; networks and disks are medium;
memory is fast

Try to distribute work amongst multiple devices; e.g, CPUs
and networks

Try to make best use of the hardware and use it efficiently

Try to make behaviour predictable: we don’t want wildly
erratic behaviour

Try to degrade gracefully under heavy load
And so on

Scheduling

And do it all quickly!

Scheduling

Here we shall concentrate on CPU scheduling, but remember
the CPU is just one resource of many

A related problem is I/O scheduling, managing requests and
responses to other devices, such as disks, to make best use of
them

I/O scheduling is important, but we shall not talk about it here

But we will note in passing that the various schedulers for the
various resources may not agree on what should be done next!

Scheduling

All this needs to be quantified somehow so we can use the
numbers to make choices

Example measurements include:

e CPU cycles used
Memory used
Disk used
Network used

e Etc.

Scheduling

And we can quantify results

e Throughput; more or fewer jobs finished in a given time

e Turnaround; response time: interactive response is snappy
or sluggish

¢ Real-time; we must deal with this data now else the car will
crash (deadlines)

e Money; we’ve been given money to get this data ready in
the next hour

e Etc.

Scheduling

All this information was originally collected to figure out how
much money to charge the user

These days most people are not so worried about charging as
we all have our own computers. We are more concerned about
making the best use of our computer

Though it’s still important: cloud services (e.g., Amazon,
Google, Microsoft) sell time on their machines

They charge based on disk storage, data input and output and
compute (CPU) used

There’s nothing new in Computer Science: just recurring
fashions!

Scheduling

Algorithms

We now look a just a few of the simplest scheduling algorithms

Exercise. Have a look at textbooks for gruesome detail on the
relative performances of these algorithms

Scheduling

Algorithms

Run until completion

First in, first out (FIFO); non-preemptive batch, as on pre-OS
machines

Good for large amounts of computation

No overheads of multitasking

Poor interaction with other hardware; can’t process while
printing (recall spooling)

No interactivity

Clearly not suitable for modern machines?

Actually still the basis for large supercomputers

Scheduling

Algorithms

Shortest Job First

Shortest-time-to-completion runs next; non-preemptive

No multitasking
Good throughput
Similar behaviour to FIFO on average

Long jobs suffer and might get starved

Difficult to estimate time-to-completion, so reliant on the
job description for this information

Scheduling

Algorithms

Run until completion plus cooperative multitasking

Non-preemptive

e Weak multitasking

Uses round-robin or similar to choose another task on
relinquish

Poor interactivity
Easy for a process to starve other processes
Hard to write “good citizen” programs

Was used on millions of personal computers for a long time

Scheduling

Algorithms

Preemptive Round Robin

Give each process, in turn, a fixed time slice

Multitasking

Gives interactive processes the same time as compute
processes

No starvation
Better interactivity than cooperative systems

Not good for either interactive or real-time; may have to
wait a long time for a slice of time

Scheduling

Algorithms

Round Robin

More suited to systems where all the processes are of equal (or
nearly equal) importance; e.g., dedicated appliances like
network routers that have to decide how share network
capacity fairly

Scheduling

Algorithms

Shortest Remaining Time

Time slice, pick next process by the estimate of the shortest
time remaining; preemptive

Good for short jobs

Good throughput

Long jobs still can be starved

Still hard to make estimates of times

Scheduling

Algorithms

Least Completed Next

The process that has consumed the least amount of CPU time
next

e All processes make equal process in terms of CPU time

¢ Interactive processes get good attention as they use
relatively little CPU

e Long jobs can be starved by lots of small jobs

Scheduling

Algorithms

These algorithms have good points, but they also have bad
points: so “obviously” we just need to tweak them a bit

But beware of patching and tweaking without having a good
overview of what’s happening

Many a system has ended up with a scheduler that’s large,
slow and impossible to understand

And impossible to fix when you stumble across the next
deficiency

Scheduling

Algorithms

At the very least we need to take interactivity, priority, and more
into account

How do we know if a process is interactive or compute
intensive?

Watch how much I/O is happening and how long we are waiting
for it: high I/O per compute is interactive, low is compute
intensive

A process can be a mix of both, of course: it might move
between the two over time

Scheduling

Algorithms

Similarly, priorities can be

e Static. Unchanging through the life of the process. Very
simple, but unresponsive to change (e.g., a process that
alternates interactivity with urgent computation)

e Dynamic. Priority responds to changes in the load. Harder
to get right, more expensive to compute.

e Purchased. Pay more, get higher priority!

Scheduling

Algorithms

Highest Response Ratio Next

A variant of SRT, where we take the time a process has been
waiting since its last time slice into account

time so far in system
cpu used so far

Dynamic priority =

e A process executes repeated time slices until its priority
drops below that of another process

e Tries to avoid starvation
e Long jobs will eventually get a slice

Scheduling

Algorithms

Highest Response Ratio Next

e New jobs get immediate attention as CPU time is near 0

e But now critical shorter jobs might not finish in time as they
could get scheduled after a long-waiting job

e This needs frequent re-evaluation of priorities to get good
behaviour, which implies small timeslices, and so lots of
scheduling overhead

Scheduling

Algorithms

Multilevel Feedback Queueing

Can be used when we have no estimates on run times

e There are multiple FIFO run queues, RQq, RQ1, ... RQ.
with RQq the highest priority, RQp, the lowest

Queues are processed in FIFO fashion, in priority order, so
RQ1 does not get a look-in until RQg has emptied

Each process is allocated a quantum of time (a timeslice)
¢ A new process is admitted to the end (last) of RQq

When the running process has used its quantum of time, it
is interrupted and placed at the end of the next lower
queue (demoted)

Scheduling

Algorithms

Multilevel Feedback Queueing

e If the running process relinquishes voluntarily before the
end of the quantum, it gets placed back at the end of the
same queue

e If it blocks for I/O, it will be promoted and placed at the end
of the next higher queue (when ready to run)

e Demoted processes in RQ,, get placed back at the end of
RQ,

Scheduling

Algorithms

Multilevel Feedback Queueing

relinquish

admit

end of quantum

end of quantum(

tail head
Multilevel Feedback Queueing

Scheduling

Algorithms
Multilevel Feedback Queueing

e This gives newer, shorter processes priority over older,
longer ones

¢ |/O processes tend to rise, getting more priority

e Compute processes tend to sink, getting less

Old processes tend to starve with this, so a variant doubles the
quantum for each level: RQq gets 1, RQy gets 2, RQ gets 4,
and so on

So compute intensive processes get a big bite, whenever they
get a chance, at the potential cost of responsiveness to a new
process

Scheduling

Algorithms

Another advantage of MFQ is that it does not need to do any
arithmetic: it just moves processes between queues

Remember, in early machines, arithmetic was a lot more
time-consuming than it is now

This scheme was used by Windows NT and Unix derivatives,
as we shall see next

Scheduling

Algorithms

Traditional Unix scheduling

As used in older Unix derivatives — modern scheduling is
much more sophisticated

Everything is based on timer interrupts every 1 /60"h second
A priority is computed from the CPU use of each process

CPU time used

Priority = base priority + 5

Scheduling

Algorithms

Traditional Unix scheduling

A process with the smallest priority value is chosen next (thus —
mostly — a process that has used less CPU)

Processes of the same priority are treated round robin

Note that this is actually very similar in effect to Multilevel
Feedback Queueing where a priority of n corresponds to RQj,

The base priority depends on whether this is a system process
or a user process, with user priority being lower (i.e., with a
larger value)

Scheduling

Algorithms

The CPU use of a process is recorded and halved every
second: this decays the influence of CPU usage over time and
makes the priority based on recent behaviour

This algorithm gives more attention to processes that have
used less CPU recently, e.g., interactive and I/O processes

decayed CPU time
2

Priority = base priority +

Scheduling

Algorithms

Traditional Unix scheduling
Processes can choose to be nice
Generally, —20 < nice < 19, but only certain users

(administrators) can use negative nices

PU ti
Priority = base priority + decayedzC U time + nice

A process that has nice —20 can really jam up the system

But nice also enables a purchased priority

Scheduling
Algorithms
Traditional Unix scheduling
There are a few problems with the traditional technique

The priorities were recomputed once per second, all in a single
pass, taking a significant chunk of time (on old machines)

It does not respond quickly enough to dynamic changes in the
system

And does not scale to large numbers of processes

So this is not used in modern systems, where many 100s of
processes is common

Scheduling

Algorithms

Fair Share Scheduling
And there are other problems that should be addressed

Modern machines can support many users simultaneously:
what happens if user A has 9 processes and user B just 17?

Should A get 90% of the CPU time and B 10%?

Fair share scheduling is where each user (or group or other
collective entity) gets a fair share, rather than each process

Scheduling

Algorithms

Fair share Scheduling in Unix

Recall processes are collected in groups in a tree

Priority = base priority + CPU time used by process

CPU time used by process group
2

+ nice

Scheduling

Algorithms

Fair share Scheduling in Unix

Modern Unix derivatives use much better, and much more
complicated, scheduling algorithms than this

They can afford to be more complicated as CPUs are now
much faster

Exercise. Read up on O(1) scheduling and The Completely
Fair Scheduler

Also have a look at scheduling for real-time systems: for when
a process must absolutely get scheduled within a given time

Scheduling

Scheduling the CPU is clearly a difficult problem

It requires the collection and manipulation of many statistics
about processes

Scheduling one resource (the CPU) is hard enough

We now look at a new problem that arises when we want to
schedule multiple resources

Deadlock

Processes compete for resources like disks and network and
the OS mediates this

To read from a disk, a process must call the OS kernel and wait
for the kernel to reply

Terminology

When we say “a process walits for the kernel” we mean, of
course, something entirely different

What actually happens is the kernel marks the process as
blocked, and does not consider it for scheduling until the
requested resource has arrived

There is no “waiting” happening: the process does not run
when blocked

Deadlock

Processes compete for resources like disks and network and
the OS mediates this

To read from a disk, a process must call the OS kernel and wait
for the kernel to reply

Sometimes the delay is infinite!

Deadlock

B [S b I

LoLolLglg j]
p— N S— [E—

el o

el

Gridlock/Deadlock

Deadlock

Hhup e

—J

Gridlock/Deadlock

Deadlock

This can happen in an OS

Process P; wants to copy some data from disk D; to disk Do,
while process P, wants to copy some data from disk D, to disk
Dy

e Initially Py is running and makes a request for access to Do

e The OS takes over and gives P; exclusive access to D»
(not a smart OS)

e The OS decides to run P,
e P» runs and makes a request for access to D,
e The OS takes over and gives P» exclusive access to Dy

Deadlock

The OS decides to run P;
P4 runs and makes a request for access to D,

The OS takes over and notices P, has locked D;, so P;
must wait until P, has finished with it; Py moves to state
blocked

The OS decides to run P»: it can’t run Py as it is blocked
P> runs and makes a request for access to D»

The OS takes over and notices P, has locked D, so P»

must wait until Py has finished with it; P, moves to state
blocked

Now both P; and P> are blocked and the OS can’t run
either process!

Deadlock

P4 can’t run until Dy is free, but Dy won’t be free until P> runs
P> can’t run until D is free, but D> won’t be free until Py runs
This is called deadlock

Deadlock can happen on any kind of shared resources that
require exclusive access

And with more than two processes: think of three or more
processes in a circle

Deadlock

A formal definition:

A set of processes D is deadlocked if

1. each process P; in D is blocked on some event g;
2. event g; can only be caused by some process in D

Deadlock

Note that you can only get deadlock if

e there is more than one resource
« there is more than one process'?

"It could technically happen with just one process, but that would be quite
dumb programming to request for a resource you already have
2I've seen it happen

Deadlock

Deadlock is only possible if certain necessary conditions are
met: the Coffman Conditions

1. Mutual exclusion Only one process can use a resource at
atime

2. Hold-and-wait A process continues to hold a resource
while waiting for other resources

3. No preemption No resource can forcibly be removed from
a process holding it

All of these must hold for it to be possible to deadlock

Deadlock

It might seem easy to avoid these, but in practice it's harder
than you think

Suppose we ensure Hold-and-wait never happens, e.g.,
requiring a process to drop other resources it holds whenever it
gets blocked on a new request

When it gets the new resource it will have to go back and pick
up the other resources again

Which may require it to drop the new resource while waiting. . .

It is easy to get into a situation where the process never
manages to get all the resources it needs: called indefinite
postponement

Deadlock

A deadlock may be possible but will only actually happen if
4. Circular Wait There is a circular chain of processes where
each holds a resource that is needed by the next in the
circle

This says that deadlock is happening as in the formal definition

Deadlock

Dining Philosophers

A popular illustration of deadlock is The Dining Philosophers

Some Philosophers wish to share a plate of spaghetti, but they
have only been provided with chopsticks

Unfortunately, there is not quite enough chopsticks to go around

Deadlock

Dining Philosophers

Dining Philosophers

Deadlock

Dining Philosophers

Each Philosopher needs two chopsticks to eat, one from each
side of their plate

We have

1. Mutual exclusion. Only one Philosopher can use a
chopstick at a time

2. Hold-and-wait. Each Philosopher wants to eat and won’t
let go of a chopstick until they have eaten

3. No preemption. No-one is going to tell a Philosopher what
to do!

Deadlock

Dining Philosophers

And if they all grab the left chopstick simultaneously

4. Circular Wait. There is a circular chain of Philosophers
where each holds a chopstick that is needed by the next in
the circle

Of course, if the Philosophers were a bit more friendly, or polite,
there would not be a problem

Deadlock

Dining Philosophers

Exercise. Identify the conditions in the car gridlock scenarios

Deadlock

There are two approaches to the problem of deadlock

1. Prevention. Stopping it happening ever by preventing one
of the conditions occurring

2. Detection and Breaking. Letting deadlock happen, but
spotting when it does and then breaking it by destroying
one of the conditions

Deadlock

Prevention can be further refined

1a. Prevention. Constrain resource allocation to prevent at
least one of the four conditions (e.g., ensure hold-and-wait
never happens)

1b. Avoidance. Be careful not to allocate a resource if it can be
determined that it might possibly lead to a deadlock in the
future: keeping the system in a “safe” state

Avoidance is harder to manage as it needs to predict future
requests for resources, but tends to be more efficient as it can
allocate resources that prevention would disallow

Deadlock

Prevention

We can prevent deadlocks by disallowing any of the conditions

Deadlock

Prevention

Breaking Mutual Exclusion
This, quite often, cannot be broken

For example, trying to read a disk at the same time as another
process is writing to it is a physical impossibility

A lot of hardware only works if there is exclusive access, e.g.,
printers, sound cards, etc.

Therefore we should take care to not hold on to such a
resource for longer than is absolutely necessary

Deadlock

Prevention

Breaking Hold-and-wait

We can require a process not to hold any resources if it ever
gets blocked on another resource

This has the non-progress feature, as noted previously, and can
be very inefficient with much grabbing and releasing to no avalil

Deadlock

Prevention

Breaking Hold-and-wait

We might require a process to request all necessary resources
simultaneously, blocking until all are available

e This might prevent the process from doing useful other
work while one of the resources is unavailable but not yet
needed by the process

e Resources given to a process might be only needed much
later, denying them to other processes in the meantime

¢ |t may be that a process does not even know what
resources it might need in advance, so this can be
impossible to do anyway

Deadlock

Prevention

Breaking Hold-and-wait

A variant of this is not even to admit a process until all
resources are available: this is even worse

Perhaps a process only needs to write to disk at the end of a 2
hour compute session: do we really want to lock the disk for 2
hours?

Deadlock

Prevention

Breaking No Preemption

This may only be possible for certain kinds of resource, namely
those whose state can easily be saved and restored

The OS might choose to preempt the holding process and take
the resource away from it, giving it back later when the process
is scheduled again

This would be confusing for the holding process as the
resource might change while it was owned by another process

Deadlock

Prevention

Thus, the resource should be given back to the process in an
equivalent state to it was in when it was preempted, so the
process can continue from where it left off

For some resources this is possible, e.g., memory

For others, not. For example, a printer

Deadlock

Prevention

Breaking Circular Waits
One possible solution is to put an ordering on resources

R1<R2<R3<...

E.g., (much simplified)

disk 1 < disk 2 < printer < ...

Deadlock

Prevention

Then:

A process that holds resource R may then only
request resources that are after R in the order

In our example, if you have grabbed the printer, you cannot
grab a disk

If a process makes such a request, the OS simply refuses to
grant it

The process might choose to drop the printer and re-request
the disk

Deadlock

Prevention

Breaking Circular Waits

Now we cannot deadlock, as a deadlock would imply A has
grabbed R; and requested A;; while B has grabbed R; and
requested R;

For this to happen we would have both
i <j and j<i

and this is impossible

Deadlock

Prevention

Breaking Circular Waits

This suffers the same problems as Hold-and-wait, namely
inefficiency and unnecessarily holding resources

Further, it works only if the process can make requests in
increasing order; not always possible as it is not always
possible to know what you need in advance

And if you have Ry and Rs, but then want R, you have to drop
Rs, get Ry, then regain Rj3; very inefficient

This usually effectively reduces to the request-all-at-once
scenario

Deadlock

Avoidance

In contrast, deadlock avoidance does not break the conditions,
but rather is careful not to do anything that might possibly
create a deadlock in the future

For each request, we have to decide whether granting the
resource will potentially lead to a deadlock immediately or in
the future

Not so easy, as it requires knowing what might possibly happen
in the future

An unsafe request will not be granted by the OS

Deadlock
Avoidance
The Banker’s Algorithm

This algorithm, proposed by Dijkstra, is an example of how to
do deadlock avoidance

The name comes from the concept of a bank lending money
and then having it repaid

It makes two tests

1. Feasibility test. To see if a request is possible

2. Safety test. To see if a request is safe (cannot lead to
deadlock)

Deadlock

Avoidance

The Banker’s Algorithm
Only requests that are both feasible and safe are granted

Note that a request that is feasible but not safe implies a
resource is lying idle

But we are erring on the side of safety at the cost of efficiency

Deadlock

Avoidance

The Banker’s Algorithm

A request is feasible if, after granting the request, the total of
allocated resource does not exceed the actual resource

That is, if we can actually satisfy the request. Don’t allocate
10GB of memory if you only have 2GB

Sometimes it can be all-or-nothing: allocate access to the
sound card, or not

Deadlock

Avoidance

The Banker’s Algorithm

A state is safe if there is at least one possible future sequence
of resource allocations and releases by which all processes can
complete their computation (never deadlock)

So make sure there is always an escape route of allocations
and releases

More than one route is better, but make sure there is at least
one

A request is safe if, after granting the request, this leads to a
safe state

Deadlock

Avoidance

The Banker’s Algorithm

Dijkstra’s Banking Algorithm:

Grant an allocation request only if this leads to a safe
state

This will ensure we are always deadlock-free, but can
sometimes deny an allocation that might have been OK: it
might have caused a deadlock, but by chance didn’t happen to
do so on some particular occasion

Deadlock

Avoidance

The Banker’s Algorithm

In the implementation of this algorithm, for each process we
need to know

e The current allocation to that process
e The maximum allocation that process might ever want

Deadlock

Avoidance

The Banker’s Algorithm

Example. There are 12GB of memory and three processes
sharing it

Current Maximum
allocation need
Process 1 1 4
Process 2 4 6
Process 3 5 8

Available 2

Deadlock

Avoidance
The Banker’s Algorithm
Current Maximum
allocation need

Process 1 14 4
Process 2 460 6

Process 3 58 8
Available 20637412

This is a safe state because all three processes can finish: we
can demonstrate a path to completion for all processes Process
2 currently has 4GB, but might eventually need 6 If the 2GB
available are given to Process 2 Process 2 can finish releasing
6GB Then 3GB can be given to Process 1 which can then

Deadlock

Avoidance

The Banker’s Algorithm

Thus there exists a path to completion for all processes where
every process gets all the resources it might need: this is what
the Banker’s algorithm requires

This path may or may not be the actual one taken, e.g.,
Process 3 might exit without requiring that extra 3GB,; this, of
course, leads to another safe state

But we still need to be careful with allocations, as it is possible
to move from a safe state to an unsafe one

Deadlock

Avoidance
The Banker’s Algorithm
Current Maximum
allocation need

Process 1 1 4
Process 2 4 6
Process 3 56 8
Available 21

If Process 3 requests 1GB and this is granted This is an unsafe
state Not necessarily deadlocked, but now we can’t guarantee
completion No process can be guaranteed to get enough
resources to complete If we are lucky, a process might be able
to finish without its maximum possible need But an OS can’t

Deadlock

Avoidance

The Banker’s Algorithm

There are several problems with this algorithm

e There must be a fixed number of resources to allocate: a
fair assumption, but not always true

e The population of processes must remain fixed: not in a
general-purpose OS

e Processes must know their maximum needs in advance:
very unlikely

o Safety detection is quite expensive to compute, particularly
with multiple resources

¢ |t can sometimes refuse a request that could have turned
out to be OK (by luck, perhaps): this leads to idle resources

O

Deadlock

Detection and Breaking

Next: deadlock detection systems allow deadlocks to happen
but rely on noticing and breaking them

The hope is that detection and breaking will be cheaper than
avoidance: this is not always clear

The earliest detection system was Detection by Operator

“The machine seems to have stopped...”

Deadlock

Detection and Breaking

The chief method employed is to spot when the circular wait
happens

One method for deadlock detection uses resource request and
allocation graphs (RRAG)

D Process @ Resource with three units of resource
l:‘—> @ P1 requests a resource of type R1
P1 R1

M One of the unitsis now allocated to P1

P1 R1
RRAGs

Deadlock

Detection and Breaking

[(—— |

P1 R1 P2
P1 requests from R1, but it has no free units, so P1 will be
blocked

Deadlock

Detection and Breaking

R1

R2

Circular Wait

P1 requests from R1, but it has been allocated to P2;
P2 requests from R2, but it has been allocated to R1:
deadlock

Deadlock

Detection and Breaking

So deadlock detection is just finding these kinds of loops in
RRAGs

This can be done by graph reduction

For each process repeatedly

1. Remove all request links from the process to resources
that are available (perhaps available after a reduction step)

2. When there are no requests links left, remove all links from
allocated units of resource to the process

Deadlock

Detection and Breaking

If we can reduce a RRAG by all processes, then there is no
deadlock

1. Removing request links to available resources is allocating
the requested resources to the process

2. Removing allocated links is the process finishing and
returning its resources

An example:

Deadlock

Detection and Breaking

R2

A RAAG
P1 R1 P2

No more links, so this'grdaph @ be ompletely reduced and

there will be no deadlo P3
R2

We can satisfy P3’s requests (none)
P1 R1 P2

Deadlock

Detection and Breaking
R1

P1 P2
R2

Circular Wait
We can’t reduce this as no request links are removable
Thus this is deadlock

An advantage of this technique is that it isolates the parts that
are deadlocking: we can see them in the graph

Deadlock

Detection and Breaking

So that leaves breaking the deadlock: as always there are lots
of ways we can do this, none terribly satisfactory

¢ Kill one or more or all of the deadlocked processes: a bit
drastic, but sometimes the only solution. But which
process? For example, out of memory “OOM Kkillers” are
tricky to get right

e Preempt the blocking resources: better, if possible. If there
are multiple resources causing the deadlock we have to
choose which, as preempting just a few might free things
up enough

e Add resources: rarely possible

Deadlock

Detection and Breaking

Exercise. Think about how you might apply deadlock prevention
or breaking to a) Dining Philosophers and b) the car deadlock
scenarios

Deadlock

In real life, a popular approach is simply to ignore the possibility
of deadlock happening

Sometimes called the Ostrich Algorithm

There is not entirely stupid, as it argues that the costs
associated with prevention or detection are large, and if
deadlocks are rare, then the cost of an occasional reboot of the
machine is small in comparison

In a carefully written OS, you can eliminate many of the
possible causes of deadlock, or, at least, reduce the chances of
them happening

Deadlock

Some resources are preemptable, e.g., memory (as we shall
discuss in depth later), but a more general solution (also
applied to memory) is virtualisation, where the OS pretends
each process has sole access to a resource

We have already seen this for printers in the form of spooling

A process thinks it is writing to a printer, but it is actually writing
to a tape, and the tape is later written to the printer

Deadlock

Similarly, for example, a process thinks it writes to a network
card but the data is actually buffered by the OS somewhere in
memory, to be sent later when the card is free

And so on for other kinds of devices: a process interfaces with
its own virtualised device, there is no possibility of deadlock as
every process can progress without waiting, and the OS sorts

out transferring the data to or from the real device

But, of course, this new perspective just shifts the actual
problem: when and in what order should the OS do the I/O?

This is called I/O scheduling

Deadlock

A printer could have simple first-in-first out queue, but other
devices (disks, etc.) require something more sophisticated

For example, a typical disk driver will re-order writes to a disk
match the physical movements of the write head

This is a topic we won’t have time to go into!

Deadlock

Priority Inversion

One last word on deadlock, this one caused by process
priorities and non-preemptible resources

Recall processes have priorities for scheduling purposes

e Suppose a low priority process L holds some resource
A high priority process H is scheduled

H requests the resource

It can’t get it as it is still held by L, so H is blocked
Eventually, when L is done, H will be able to run

Deadlock

Priority Inversion

The low priority process is preventing the high priority process
from running

This is called priority inversion

What is worse, other processes M of intermediate priority (that
don’t need the resource) can preempt L, preventing it running,
and thus make the time H has to wait indefinitely long

If H is some real-time operation this can be serious

Deadlock

Priority Inversion

Fixes include

Priority inheritance The priority of H is temporarily loaned to L
for the time it needs the resource. This ensures L can run and
get out of the way

Deadlock

Priority Inversion

Priority ceilings Each resource is given a priority equal to the
highest priority of any task that might want to grab that resource

When L gets the resource its priority is temporarily boosted to
the priority ceiling of the resource: either immediately, or when
another process tries to grab the resource

No other process that would want to grab the resource can be
scheduled

Determining the ceiling is tricky, as it needs knowledge of the
possible needs of processes

Deadlock

Priority Inversion

Disable scheduling preemption during use of
non-preemptible resources. Only feasible if you keep the
periods of use very short. Quite a popular solution for some
resources, e.g., networks and disks, that are serviced very
quickly

Exercise. Read up on these and other solutions

Process Protection

We now need to re-visit the idea of process protection

Recall by forcing access to resources via the kernel we can
ensure that one user cannot interfere with the processes of
another user

Thus a process must include the notion of user
This is usually encoded as a simple integer, the userid

Each user has their own unique userid and the OS uses this to
determine whether one process can access files, other
processes and so on

The userid also plays a role in Fair Share scheduling, of course

Process Protection

Userids are used everywhere

e Memory: a chunk of memory has a userid associated. This
tells the kernel which processes are allowed to access it

e Files: each file has a userid associated. This tells the
kernel which processes are allowed to access it

o Similarly for other resources

We shall see more of this when we get to memory and files

Exercise. Find out the userid allocated to you on the Uni’s
linux.bath.ac.uk machine

linux.bath.ac.uk

Process Protection

A new process (usually) inherits the userid of its parent process

Of course, this lead to another bootstrapping problem: how can
a user get a process going in the first place?

If there are no processes running with my userid, how can |
ever get a process to be created?

So there is a distinguished user, variously called the superuser
or root or administrator

This is a normal user, but the OS allows it full access to other
users’ files, processes, etc.

In particular, root can suspend or kill any user’s processes

Process Protection

Don’t confuse the root user with kernel mode

Root’s processes run in user mode, just like other users’
processes

Hardware access is still mediated by the OS, but the inter-user
protections are not enforced by the OS

In the OS there is the equivalent of

if uid_of_process == uid_of_resource or
uid_of_process == uid_of_root

then
allow access

else
disallow access

Process Protection

Note that the privilege separation between superuser and
normal user is used for protection of OS resources in exactly
the same way as kernel mode and user mode is used for
protection of hardware resources

It is the same idea being used in two different contexts

Process Protection

Critically, root can change the userid of its processes: by doing
so it gives away its privileges, but thereby allows a normal user
to have a process

When a user logs in to a system a process, owned by root,
starts up, changes its userid to the user, and then starts other
processes as that user

Process Protection

Many resources are restricted by the OS so only the superuser
can use them: this provides an extra level of protection to
resources that are sensitive

For example, shutting down the computer. We can’t allow any
user process to turn off the computer, so this operation is
restricted by the kernel to the root user

Any shutdown program will need to have root ownership and
this will be carefully policed by the system

Process Protection

Root is generally trusted by the kernel

So root-owned processes can completely trash everyone’s
programs and data on the machine if they want to

This is why you should keep the use of the administrator
account to a minimum

Doing everyday stuff as administrator is just asking for trouble,
and is throwing away many of those protection mechanisms
that OSs have developed to provide

Process Protection

This user-level protection is what prevents my processes from
interfering with your processes: as we have different userids,
the kernel knows to keep them separate

In particular, if | download an application or web page that
contains a malicious worm or virus, properly working protection
will limit the damage that malware can do to just my files and
my processes

Not ideal, but better than letting the malware have full reign
over the entire machine

Process Protection

A big part of the spread of malware in Windows OSs is the
weakness of this kind of barrier to their spread: too many
programs run as administrator and this can ultimately cause the
entire system to be affected

Note that if your OS requires the use of a virus checker, this is
a strong sign that your OS is not confident in its implementation
of process protection

Virus scanners address the symptom, not the problem

Process Protection
Capabilities

Root access is a bit all-or-nothing: it allows the root user all
access to all (user mode) resources

And this is quite dangerous as it can too easily lead to
accidental or malicious damage to the system through misuse

Process Protection
Capabilities

A refinement of the root idea is capabilities

This breaks access rights down into small parts

Rights to access to the network driver
Rights to access to the sound card
Rights to access to the filesystem
Rights to reboot the computer

e And so on

This can be broken all the way down to rights to access to
individual files, say

Process Protection
Capabilities

We now have

if uid_of_process == uid_of_resource or
process_has_capability(uid_of_process, resource) or
uid_of_process == uid_of_root

then
allow access

else

disallow access

Process Protection
Capabilities

These capabilities are like tokens or keys that can be passed
around, inherited by processes and so on

Capabilities allow finer control of security at the cost of a more
complicated checking system

A few OSs, notably Flex, were built around the notion of
capabilities and required hardware support to make things work
with an acceptable speed

These never took off, though

But the idea has come back to modern OSs

Process Protection
Capabilities

In Android access to system resources are protected by
capabilities: it calls them permissions

At either install time or the first time the application tries to
access a resource the OS (not the application) asks the user
whether that application should be allowed to access that
resource

For example, WiFi network access, phone contact list access,
SD card access, initiate phone calls, and so on

If so allowed by the user, the application can access those
resources and no others

This mechanism would be great if only the user could be
trusted to read and understand the list of requests. ..

Process Protection
Capabilities

Summary: user protection is useful and helpful

So don’t run things as root/administrator unless absolutely
necessary

And don’t confuse it with kernel/user mode

Inter-Process Communication

We now look at how processes communicate amongst
themselves

Many processes can be created, process, then exit without
needing to refer to any other process

But there are many processes that need to send data to, or
receive data from other running processes

For example, a new program starting might wish to tell the
process managing the display that it wishes to pop up a window
on the display

Or one process has to wait for another to finish some action
(e.g., pop up a window) before it can progress itself: this is
synchronisation

Inter-Process Communication

Inter-Process Communication (IPC) can be achieved in many
different ways, but all must be, at base, supported by the OS;
recall that by default the kernel tries to stop one process

interfering with another

Process

No direct
communication

Process

User
mode

Kernel
mode

Inter-Process Communication

IPC contradicts this non-interference, and so must be treated
very carefully by the kernel

There must be rules and restrictions, or else one process could
just blast another process with data, preventing it from doing

any useful work

Inter-Process Communication

We shall be looking at

Files

Pipes

Shared memory

Signals

Semaphores (synchronisation)
Software buses

as a sample of IPC mechanisms

Inter-Process Communication
Files

A simple way for two processes to communicate is using an
existing resource, namely files

On the face of it this is just

e Process A wishes to send some data to process B
e A writes it to a file
e Breads it

This seems easy

But it's much harder than this

Inter-Process Communication
Files

e Which file to use? A and B need to agree on a filename to
use, but this is not so easy. They can use a single
“well-known” file, but this is problematic if many processes
are all writing to the same file simultaneously. For example,
C wants to communicate with D at the same time via the
same file.

They could have a separate file for each pair of processes,
but to agree on a file name A and B must have previously
communicated. ..

e How does B know when data has arrived? B might have to
repeatedly poll the file until the data arrives. This doesn’t
scale well to large numbers of files or processes

Inter-Process Communication

Files

¢ The file protections must be set properly (recall userids) to
allow only the authorised processes to read/write to them

e Files are quite slow relative to the mechanisms we are
going to see later

In general, files are not used for IPC

But they should be considered as a choice when huge amounts
of data need to be transferred

Exercise. Read about the mechanism of choice to transfer the
data describing the first ever image of a black hole (April 2019)

O

Inter-Process Communication
Pipes

A pipe is an IPC mechanism provided by some OSs

Conceptually, a pipe connects two processes together, taking
output from one and feeding it as input to the other

keybd Proc 1 Proc 2 screen

This might be part of a larger pipeline

And the pipes go via the kernel, not directly between processes

Inter-Process Communication
Pipes

Pipes have a fixed size: 4096 bytes is common

A writes to the pipe, B reads from the pipe and they do so
independently of each other

This is like the way we pass data via files

But pipes also provide synchronisation

Inter-Process Communication
Pipes

A writes bytes into the pipe: if the pipe gets full, A is blocked by
the OS until space is freed up by B reading some

B reads bytes from the pipe: if the pipe gets empty, B is blocked
by the OS until bytes are available by A writing some

Thus the scheduling of A and B can be affected
Bytes are read out in the same order they were written in: FIFO

Note there are two kinds of communication here: (1) the data,
and (2) synchronisation on production/consumption of the data

Inter-Process Communication
Pipes

A pipe is implemented as a buffer (chunk of memory) held by
the kernel, not directly accessible by user processes

A write to or read from the pipe involves a syscall

This is how the kernel can control blocking A and B, making
sure A does not overfill the buffer and making sure B is not
reading data that is not there

Inter-Process Communication
Pipes

A B User

/

\

Implementation of a Pipe

Kernel

memory

If A wants to write to the pipe, it makes a system call: the kernel
can check for space in the buffer and block A if necessary

Symmetrically for B reading from the pipe

Inter-Process Communication
Pipes

Pipes are supported well by Unix and are very easy to create
and use when using a shell

% ps | sort

The % is the shell prompt; ps is the “list processes” command;
sort is a sorting program; the | is the notation for a pipe in this
shell

So this displays a sorted list of processes

Aside

A shell is just a program that waits for you to type something
and then possibly creates some new processes according to
what you typed: the command line interface

Popular with Unix derivatives, unpopular with Windows
derivatives

Inter-Process Communication
Pipes

Pipes are supported well by Unix and are very easy to create
and use when using a shell

% ps | sort

The % is the shell prompt; ps is the “list processes” command;
sort is a sorting program; the | is the notation for a pipe in this
shell

So this displays a sorted list of processes

Inter-Process Communication
Pipes

Pipes are also easy to create within programs: see the POSIX
function pipe

Aside

POSIX is a library standard: it contains a list of standard
functions that provide a simple and uniform front end to OS
syscalls (amongst doing useful other things) and describes
their expected behaviours, e.g., open, close and sqrt

This helps portability between OSs by hiding some OS specific
details (e.g., details of syscalls)

Unix derivatives are usually mostly compliant, Windows less so

Warning: remember some people regard such systems
libraries as part of the OS

Even though they live and operate in user mode

Pipes

A typical sequence in a program is for a process to create a
pipe then create a child process (i.e., ask the kernel to create a
pipe then ask the kernel to make a new process)

(After a bit of technical fiddling) the pipe is now ready to use for
IPC between parent and child

Inter-Process Communication
Pipes

Pipes are

e simple and efficient

e easy to use from programs and from a shell

¢ a powerful way of combining processes and programs
e used a great deal

Inter-Process Communication
Pipes

But also

e are unidirectional

e technical detail: are only between related processes.
Often one is the parent of the other

e can trivially create deadlocks if you use them carelessly (A
creates a child process B with two pipes A—B and
B—A...)

Inter-Process Communication
Pipes

Pipes are so useful there have been a couple of extensions:

e Named Pipes: these can can be shared by unrelated
processes (but have the naming problem that IPC using
files have)

e Sockets: pipes between processes on different machines.
The basis of the Internet

Inter-Process Communication
Sockets

A socket allows bidirectional IPC between two processes (pipes
are unidirectional for mostly historical reasons)
The processes may be on the same or widely remote machines

The technical issues behind implementing sockets are clearly
much more complicated than basic pipes, but they present the
same kind of FIFO, byte oriented, blocking channel

We shall see some of those issues later in this Unit

A lot of the modern world is built on top of sockets!

Inter-Process Communication
Shared Memory

Next: shared memory

In early computers, all memory was shared between
processes: one process could easily write to the memory
allocated to another process

This is generally a bad idea, so is now prevented by the kernel
(recall MMUs and read/write flags)

On the other hand, access to memory is very fast, so we might
want to use it for IPC

Just like using files: A writes to memory, B reads from it

Again, this goes against the original design of an OS, so must
be carefully set up and controlled

Inter-Process Communication
Shared Memory

And, also just like files we have the issues of

Which area of memory to use? A well-known area, or
per-process areas?

How does B know when data has arrived? Memory is
“always there” unlike files which can be created and
removed; so when polling memory it can be hard to know if
you are reading the data you want or some previous junk
that happened to be lying around

So A might write a special value to a specific memory
location to flag that the data is complete; but again B must
poll this location to see when this is done

The memory protections must be set properly to allow only
the authorised processes to read or write it

Inter-Process Communication
Shared Memory

The speed of shared memory means that it is very good for
IPC, as long as it is supported by further mechanisms like
signals or semaphores to flag when data is ready

More on shared memory when we get to memory management

Exercise. Compare shared memory and pipes

Inter-Process Communication
Signals

A signal is a software equivalent of a hardware interrupt: they
can be sent to a process by the kernel or by a process

Also: raised and initiated

Just like a hardware interrupt, when a process receives a
signal, it stops what it currently doing and goes off to execute a
signal handler, in direct analogy with an interrupt handler

Handled within the user program: the signal handler is just
some code in the program, written by the programmer

Inter-Process Communication
Signals

Again, what we lazily say is not quite what really happens

When a signal is raised (which needs a syscall) the OS takes
over and notes the signal in the receiving process’ PCB

When the OS next runs that process, it jumps to the signal
handler code within the process, rather than to the place where
the process was preempted

Inter-Process Communication
Signals

A process can send a signal to another process (or even itself)
that has the same owner (same userid)

The normal restrictions on userids applies: only root can send
a signal to another user’s process

But remember that all signals are delivered to processes via the
kernel

The kernel can also itself initiate a signal, e.g., a signal to
indicate activity of a peripheral

Naturally, the kernel can send signals to any process

Inter-Process Communication
Signals

Use the POSIX function ki11() to send a signal in a user
program

And functions like signal(), sigaction(), sigaddset () and
more to manage signals

Inter-Process Communication
Signals

A signal is in essence a flag (a single bit), but there are many
different types of signal, e.g., HUP, INT, SEGV, KILL, PIPE, etc.,
to indicate different kinds of events

A process can, to some extent, choose how to react to a signal

e ignore it: that is, inform the kernel that it does not want to
receive a particular signal, so the kernel will not note
delivery in the PCB as above

e accept it and act on it: run the signal handler code
e suspend (voluntarily relinquish)
e terminate

Inter-Process Communication
Signals

Some signals cannot be ignored or otherwise acted upon, in
particular a KILL signal, which always terminates the process
(i.e., that process will be moved to the exit state)

This is why signals are regulated by the kernel; a user can kill
their own processes, but not others’

And root (administrator) can kill any process

Signals are asynchronous, that is they might arrive at any point
during the running of the program

Programs that use signals must be written accordingly

(And they will always arrive at the most inconvenient time. . .)

Inter-Process Communication
Signals

There exist default signal actions for each type of signal, but a
program must include its own handler functions if it wants to do
something other than the default action when it receives a
signal

When a process receives a signal, it stops what it is doing,
saves its state and calls the signal handler

Exercise. Rewrite the above sentence to describe what really
happens. (No program you have ever written includes code to
save its statel!)

So this is very analogous to an OS interrupt

If and when the handler code finishes, the process continues
from where it was interrupted

Inter-Process Communication
Signals

Example signals

1)

5)

9)
13)
17)
21)
25)
29)
35)
39)
43)
47)
51)
55)
59)
63)

SIGHUP
SIGTRAP
SIGKILL
SIGPIPE
SIGCHLD
SIGTTIN
SIGXFSZ
SIGIO
SIGRTMIN+1
SIGRTMIN+5
SIGRTMIN+9
SIGRTMIN+13
SIGRTMAX-13
SIGRTMAX-9
SIGRTMAX-5
SIGRTMAX-1

2)

6)
10)
14)
18)
22)
26)
30)
36)
40)
44)
48)
52)
56)
60)
64)

SIGINT
SIGABRT
SIGUSR1
SIGALRM
SIGCONT
SIGTTOU
SIGVTALRM
SIGPWR
SIGRTMIN+2
SIGRTMIN+6
SIGRTMIN+10
SIGRTMIN+14
SIGRTMAX-12
SIGRTMAX-8
SIGRTMAX-4
SIGRTMAX

3)

7
11)
15)
19)
23)
27)
31)
37)
41)
45)
49)
53)
57)
61)

SIGQUIT
SIGBUS
SIGSEGV
SIGTERM
SIGSTOP
SIGURG
SIGPROF
SIGSYS
SIGRTMIN+3
SIGRTMIN+7
SIGRTMIN+11
SIGRTMIN+15
SIGRTMAX-11
SIGRTMAX-7
SIGRTMAX-3

4)

8)
12)
16)
20)
24)
28)
34)
38)
42)
46)
50)
54)
58)
62)

SIGILL
SIGFPE
SIGUSR2
SIGSTKFLT
SIGTSTP
SIGXCPU
SIGWINCH
SIGRTMIN
SIGRTMIN+4
SIGRTMIN+8
SIGRTMIN+12
SIGRTMAX-14
SIGRTMAX-10
SIGRTMAX-6
SIGRTMAX-2

Inter-Process Communication
Signals

INT: a general interrupt

ILL: sent by the kernel to a process when it has tried to use
a privileged or non-existent machine instruction

KILL: non-ignorable terminate

SEGV: sent by the kernel to a process when it has tried to
access memory it shouldn’t

ALRM: a timer signal (not the preemption timer!)
USR1 and USR2: signals for the use of user programs

RT: a large number of signals are provided for real-time
processing

Signals 32 and 33 are not used in the OS in this example

Inter-Process Communication
Signals

Each signal has a default action

e INT, ILL, ALRM, SEGV, USR1, USR2: exit the program
e TSTP: suspend

e CONT: continue after a TSTP

e CHLD: ignore

Most default actions can be overridden by the program, some,
notably KILL, cannot

Inter-Process Communication
Signals

Signals are

e Fast and efficient
Asynchronous

Used a very great deal

Only transmit a small amount of information

So often are used in concert with other IPC mechanisms
Are a bit fiddly to program correctly

Inter-Process Communication
Semaphores

The action of process A waiting for process B to finish
something before A can continue is very common

E.g., waiting for data to be written to an area of shared memory
It is a very simple form of IPC
Signals can be used, but an alternative is to use a semaphore

A signal is appropriate when you want to continue computing
on something else while waiting; a semaphore is for pausing
and waiting (i.e., blocked)

Inter-Process Communication

Semaphores

Invented by Dijkstra, semaphores have been used widely for
may years

A semaphore is a variable whose value can only be accessed
and altered by two operations V and P (Dijkstra is Dutch)

Alternative names are: signal and wait; post and wait; raise and
lower; up and down; lock and unlock and others

Inter-Process Communication

Let S be a semaphore variable, usually residing in a chunk of
shared memory

Start with S = 1

P(S):
if S=1thensetS=0
else block on S

V(S):

if one or more processes are blocking on S then allow one to
proceed

elseset S=1

(There are many technical issues we are ignoring here. . .)

Inter-Process Communication

Semaphores
For synchronisation:
P(S) P(S) # wait for resource
...modify a resource... ...use resource...
V(s) V(s)

The second process will wait until the first has done a V to
signal the resource is ready

Inter-Process Communication
Semaphores

If multiple processes attempt a P(S) simultaneously only one
will succeed and continue; the others will be blocked

So if we have code like

P(S)wait(S)
some code
V(S)signal(S)

being run by multiple processes using the shared semaphore
S, only one process can execute the code at a time; the others
will be blocked and get their turn later

More suggestively using names signal and wait (not the same
signal as in signals, earlier!)

Inter-Process Communication
Semaphores

Generally, the code would be to access some shared resource
(often shared memory, e.g., B shouldn’t read until A has
finished writing), so the semaphore makes sure only one
process can access the resource at a time

The protected code is called a critical section: it is critical that
only one process runs it at a time

P(S) P(S)
...resource... .. .Same resource...
V(S) V(S)

To be effective, all accesses to the resource must be protected
by the semaphore

Inter-Process Communication
Semaphores

This is a binary semaphore, as it take just two values, 0 and 1
There is a simple generalisation to a counting semaphore
Startwith S=n

P(S):
if S>0thensetS=S -1 else
block on S

V(S):

if one or more processes are blocking on S then allow one to
proceed

elseset S=S+1

This allows no more than n processes into the region at once

Inter-Process Communication
Semaphores

Semaphores were first used within OS kernels to protect
shared resources but can be used in user programs to protect
resources there, too: for example, a chunk of shared memory
(e.g., shared memory IPC)

Inter-Process Communication
Semaphores

Correct implementation of user mode semaphores is very hard

We have to ensure that it works even if

1. the process is rescheduled in the middle between the test
and the decrement of the count

2. there are multiple parallel processors accessing the
semaphore simultaneously

Exercise. Read about the implementation of semaphores

Inter-Process Communication
Semaphores

Semaphores are widely used

e each semaphore only needs a few bytes of shared memory
¢ they are small and fast given hardware support
e and OK in software

e used both in OSs and user programs to protect critical
resources

e and are widely available in POSIX libraries

Inter-Process Communication
Semaphores

On the other hand, semaphores are a very low-level
mechanism and it is easy to cause deadlock

Suppose we have semaphore S; protecting file F; and
semaphore S, protecting file F». Process A wants to read from
F; and write to F», while process B wants to read from F, and
write to Fq

To make things consistent in the read/writes, both processes
must grab both semaphores

e Process A grabs semaphore S;
e Process B grabs semaphore S,
e Atries to grab S, and blocks

e B tries to grab S; blocks

Inter-Process Communication
Semaphores

Exercise. Identify the four conditions for deadlock in the above

Exercise: use a counting semaphore to solve the Dining
Philosopher’s problem

Inter-Process Communication
Application Level

Finally we look briefly at IPC at the application level, namely
high level mechanisms for passing data between processes

Again, at base, this goes via the kernel (often using a
mechanism we have already mentioned, e.g., pipes or shared
memory, assisted by signals or semaphores), but the idea is to
provide high level constructs so we (as programmers) don'’t
have to be bothered with details

These are always implemented by system libraries and a fixed
interface presented to the programmer regardless of the
underlying implementation

Inter-Process Communication
Application Level

These came back into prominence with windowing GUIs where
it was found necessary for applications to communicate with
each other and with the system

Cut-and-paste and drag-and-drop are basic examples, where
structured information needs to pass between components
(processes)

The idea is much older than GUIs, of course: originally this was
called a software bus in analogy with hardware buses that
connect hardware components

Inter-Process Communication
Application Level

Popular implementations include

CORBA (Common Object Request Broker Architecture)
DCOP (Desktop COmmunication Protocol)

Bonobo (based on CORBA)

D-Bus

COM (Component Object Model) and variants,
including .NET

Inter-Process Communication
Application Level

These try to be language independent with each language
having a set of bindings (standard functions) to access them

They focus on passing objects between components

So they need a standardised method of representing the
data/objects in a message

This is called message passing, another important paradigm for
IPC

Inter-Process Communication
Application Level

These kinds of framework tend to be very complicated as they
need to support a wide variety of communications between a
wide variety of components

For example, passing a picture from a program written in C to
one written in Java

Exercise. Read up on some of these

Inter-Process Communication

So there are many IPC mechanisms: they are not mutually
exclusive

Any of these mechanisms can be used in tandem

e Our program might employ D-Bus to pass data from one
application to another (e.g., cut and paste)

e D-Bus might use pipes to communicate between
processes

e And pass a filename between them
e and the data is communicated in the file

Inter-Process Communication
So, which IPC mechanism to choose?
As always, it depends on the application

The best way to choose is to have lots of experience of using
them

e The level your program is at: low or high?

e The amount of data to be communicated: just a bit or a
huge datafile?

What is available?
What your boss tells you to use
and so on

Memory

We now turn to the next major topic: memory management

In the earliest computers the purpose of memory management
was to share out a very limited resource, but it was soon found
that inter-process protection was vital

Both needs are still true, particularly the limited aspect: you
might have 2GB in your PC, but it's not enough!

Gates’ Law: programs double in size every 18 months

(Really Wirth’s Law: Software is decelerating faster than
hardware is accelerating)

Memory
Physical Memory

We first consider how processes (code and data) should be laid
out in memory

This is called physical memory layout to distinguish it from
virtual memory, which comes later

Memory
Physical Memory

Memory in a process might be allocated or freed at several
points

Allocation only at process initialisation. Called static
allocation. Featured in the earliest OSs

Allocation while the process is running. Called dynamic
allocation. Early systems did not support this and you had
to know in advance how much memory your process would
need at initialisation

Freeing while the process is running

Freeing at process end

Memory
Physical Memory

But also the kernel needs memory:

¢ Allocation and freeing within the kernel. The kernel has to
be dynamic otherwise it would be very difficult to get
started, e.g., creating processor control blocks

Memory
Physical Memory

Early operating systems were not dynamic
So they could only run a fixed number of processes
And the processes were of a fixed size

Reflecting this, early computer languages did not support
dynamic allocation, e.g., FORTRAN, every array must be of a
fixed size, declared in the source code

Dynamic allocation for both kernel and the processes was soon
introduced in OSs, but computer languages took a while to
catch up with the new facility

Memory
Physical Memory

Physical memory in an early computers looked something like
this:

process data

code

process

kernel code increasing
and data addresses

Memory Layout

Memory
Physical Memory

Remember the kernel itself needs code and data space

A gap above the kernel area allows for dynamic allocation of
memory to itself

Memory
Physical Memory

But the earliest systems had no dynamic behaviour at all, both
OS and programs were completely static

Again, some early languages (FORTRAN, again) did not have
a stack, and thus no recursion

Memory
Physical Memory

Partitioning

The earliest and simplest memory layout is a static system
called partitioning, where areas are allocated at boot time

equal size
partitions
pre—
allocated

kernel pro
and data

A process is Ipaded into the smallest free partition it will fit into

equg! size variable size
partitions partitions
pre— pre—

Memory
Physical Memory

If you don’t have dynamic allocation even in the kernel (e.g., for
allocating new PCBs), then having fixed partitions is ideal

Equal size is easy to implement, but usually causes wasted
space when a process does not fill its allocation

And it can’t cope with larger processes

Variable size is not much harder to implement, but efficiency
depends heavily on the choice of partition sizes as ideally they
should match the expected process sizes

Memory
Physical Memory

Partitioning is a good arrangement if you only run a fixed set of
applications that you know in advance, e.g., a stock manager
plus a payroll system plus a employees record system

IBM’s OS/360 (mid 1960s) had three partitions: one for
spooling punched cards to disk; one for spooling disk to
printers; and one to run jobs

Memory
Physical Memory

Overlays

In early systems, if a process was too big to fit in the memory
allocated, the programmer could use overlays

This is where only part of the process code is loaded into
memory at once: only partly resident

If a non-resident part of the process is needed, the programmer
must know this and include code to load the needed part of the
process into memory, overwriting a part of the process they do
not need at the moment

If that part of the process is needed again later, the
programmer has to reload the code

Memory
Physical Memory

This works, at the cost of some speed of execution, but only if
you are an excellent programmer who can keep track on what
parts of code are loaded at any particular time

A similar trick works with data: but with newly generated data
you have to save it somewhere (e.g., disk) first, before
overwriting it, so that it can be loaded back in later, when
needed

This trick of swapping memory back and forth to the disk gets a
big boost later

Memory
Physical Memory

We need to fit a process into a single contiguous chunk of
memory as we can’t spread it amongst several areas since

e it will be very complicated for the OS to keep track of which
areas of memory are allocated to which process

e more importantly, you can’t split code up in this way, having
one instruction in one place and the next instruction
somewhere else entirely

e similarly for data: we will have to keep track of what data is
where

But when we come to virtual memory we shall see that exactly
this is possible with modern hardware!

O

Memory

Language Support for Dynamic Allocation

These days dynamic allocation is common in languages

e Implicit memory management, e.g., Java. Where the
language controls the creation and deletion of objects

bigobject x; // memory is allocated for x
x = foo(); // that memory is now inaccessible

e Explicit memory management, e.g., C. Where the
programmer controls the creation and deletion of objects
(malloc and free)

And several other approaches!

Memory
Physical Memory

Dynamic Partitioning

So we need to to be dynamic: create and allocate a partition as
needed

A lot more complicated to implement, but this allows the
process (i.e., the job submission) to say how big a partition it
needs and the OS allocates just that

Memory
Physical Memory

We can allocate sequentially, moving up memory

13

3

kernel prog
and data

Memory
Physical Memory

The problem is when a process ends and we get memory back:
it creates holes

4
2

7

3

kernel prog
and data

We have space enough to run a process of size 5, but nowhere
to put it

Memory
Physical Memory

This is a general problem, called fragmentation and is very
difficult to solve effectively

The more processes come and go, the worse the fragmentation
gets

Memory
Physical Memory

We need to keep a list of free blocks so we can track free
space: a freelist

4
7
free
list 9
kernel prog
and data

Memory

Physical Memory
When a block is freed, put it in the freelist. It helps to keep the
freelist sorted in address order:

4
2

7

free
list 3

kernel prog
and data

free 3

Memory
Physical Memory

Slightly more clever is to coalesce physically adjacent blocks

10

free

list

kernel prog
and data

Memory
Physical Memory

When we want some space, we search the freelist

We don’t want to waste space, so after choosing a big enough
block we slice off the chunk we need and return the unused
part to the freelist

But there might be several blocks on the freelist that we could
use: which one to choose?

Strategies for choosing blocks include:

e Best Fit. Find the smallest available big enough hole. Slow
as we always have to search the entire freelist and results
in lots of small fragments that are effectively useless as
they are too small to be allocated

Memory
Physical Memory

o First Fit. Use the first available big enough hole. Initially
faster than Best Fit and tends to leave larger and more
useful fragments. But fragments tend to be created near
the front of the freelist, so we have to search further and
further each time

e Worst Fit. Find the biggest available big enough hole.
Strangely this works out better than you think. Slicing
chunks off bigger blocks tends to leave larger fragments
that are more likely to be useful. Marginally faster than
Best Fit as we have larger and therefore fewer blocks in the
freelist to search through

Memory
Physical Memory

e Next Fit. Continue looking from where we last allocated
and take the next available big enough hole. Fast, and
improves on First Fit by spreading small fragments across
memory

e And many others

There are plenty of other memory management systems (e.g.,
Buddy memory allocation; Slab allocation; etc.) targeting the
fragmentation problem

Allocation is still a problem in current machines where certain
kinds of hardware need large contiguous chunks of physical
memory, e.g., GPUs

Memory
Physical Memory

Note that fragments are created in two ways:

e when carved off a bigger block in the allocation
e when returned at process exit

The second generally gives us larger fragments, but both need
to be addressed

Memory
Physical Memory

If we can’t find a big enough free space, we can consider
compaction of memory using a technique called garbage
collection

The OS stops all running processes (i.e., stops scheduling
processes); shifts their code and data around to close up the
gaps; then lets the processes continue (i.e., starts scheduling
again)

Memory
Physical Memory

4
7
2
GC| 2
7
7
S
kernel prog kernel prog
and data and data

Memory
Physical Memory

GC is not often used in general-purpose OSs

it is a very expensive operation to move all these blocks
around

this takes a lot of time away from running of processes

the pause while things are moved is bad for interactive and
real-time behaviour

the erratic nature of when GCs are needed leads to
unpredictable behaviour from the OS

given the right kind of hardware support, better solutions
completely avoiding the need for GC are possible

Memory
Physical Memory

GC is successfully used in user languages, e.g., Lisp, Java

There are ways of implementing GC to avoid the stop-and-copy
(ephemeral GC), or mitigating the overhead (generational GC)
but even so it is not popular for OSs

Memory
Physical Memory

Notice that all these rely on relocatable processes, namely
ones that don’t refer to specific locations in memory

Note that the code in a process now can’t use an absolute
“lump to memory location 42”, but must use a relative “jump by
n bytes”

And similarly for referencing data in memory

Unless we know in advance where our process is going to be
placed in memory, we cannot have code that has fixed absolute
addresses in it

These issues develop when we move to virtual memory later,
but in general code should not assume it lives in a given place
in memory

U

Memory
Physical Memory

So what happens when we can’t find a suitable free space for a
new process (even if we have GC)?

We may choose not to admit the process in the first place

Another possibility is the option of killing existing processes: we
usually don’t want to and only if the new allocation is for a
process that is sufficiently important

Better is to preempt memory: take it away from one process
and give it to another

Memory
Physical Memory

Remember that preemption takes a resource away from a
process and returns it later in the same state

For memory this means the bits in the memory when it is
returned are unchanged from what they were when it was taken
away

Even though that memory has been used by some other
process and written its own data or code into it

Memory
Physical Memory

We can preempt a process and copy the contents of the
memory it occupies to somewhere else: usually disk

Note that only the data need to be saved: the code is already
on disk in the file that contains the program

Copying to disk is a (relatively) very slow operation: even the
fastest disks are quite slow

Even solid state disks
So this kind of memory preemption has a large overhead

This is a tradeoff of speed (time spent copying to and from disk)
against process size (memory allocation)

Memory
Physical Memory

Swapping

The simplest case is preemption of the memory of an entire
process

When a process makes a request for an allocation that the OS
cannot immediately satisfy the OS can try swapping

This is where one or more other processes are selected by the
OS and they are copied out to disk to make space

The best choice is usually a blocked process that couldn’t have
been run right now anyway

Memory
Physical Memory

When a swapped process is scheduled again it must be copied
back by the OS into memory first

Which might require swapping out something else to make
room

Data is retrieved from where it was saved, while code is copied
back from the original program file — this is why some OS’s
don’t like you deleting programs while they are running

Memory
Physical Memory

This differs from overlays in that it is the OS that does the
swapping, not the process itself

This makes it transparent to the process and the programmer
doesn’t have to think about it

... but they should as swapping is very time consuming, and
slows down the speed of execution of programs immensely

A good programmer will try to avoid the need for swapping by
requesting memory allocations carefully

Something that often is forgotten these days!

Memory
Physical Memory

The OS will take swapping into account when scheduling

There is a clear interaction of scheduling and swapping
processes: each will affect the other

Memory
Physical Memory

Variants:

e Only one process ever in memory, swapped as a whole
when scheduled: simple, and used on very early systems

e Swapping of processes: only marginally harder, and fits
well with a partitioning system and fits well with scheduling

e Swapping parts of a process: not so easy as the OS has to
work harder to determine which parts of a process’s code
or data might not be needed in the near future

Memory
Physical Memory

The OS still has the difficult task of deciding which process or
processes to swap to make room: e.g., one large one or two
small ones? I/O intensive or CPU intensive?

An 1/O intensive process is less likely to need to be scheduled
soon; but it would a like fast response when it is needed and
not wait for a slow swap back into memory

A CPU intensive process would like to be scheduled often; but
is not so sensitive to a delay through being swapped

Memory

Virtual Memory

Paging

This is all augmented by the idea of paging

Paging is similar to swapping, but simpler in concept
And much harder in the hardware required

To describe paging we must first go back to pages

Memory

Virtual Memory

A big problem is memory fragmentation due to the irregular
sizes of processes/partitions

So to fix this we chop everything up into equally sized chunks

Recall (from memory protection) a page is just a contiguous
area of memory: e.g., 4096 bytes

Hardware is designed so copying pages in and out of memory
from disk is as efficient as possible

Memory

Virtual Memory

Next, we introduce virtual vs. physical addresses

A physical address is what we are used to, just a numbering of
the actual bytes in the system from 0 to n

A virtual address is a per-process fictional address

The user process sees only the virtual addresses: the system
will translate them on the fly into physical addresses

Memory

Virtual Memory

The OS has tables, one per process, called page tables, that
contains the virtual-physical address mappings for each page
in each process

For example, with a page size of 4096 bytes, address 12298 is
10 bytes from the start of page 3: 12298 = 3 x 4096 + 10

Under the entry for page 3 in the page table for this process we
might find the number 7, meaning physical page 7

So virtual address 12298 in this process refers to physical
byte 7 x 4096 + 10 = 28682

Memory

Virtual Memory

In another process, virtual page 3 could be mapped to physical
page 42

And then the same virtual address 12298 in this process
refers to physical byte 42 x 4096 + 10 = 172042

The same virtual address in different processes is mapped to
different physical addresses

We use pages, of course, to make this translation manageable

Memory

Virtual Memory

The table only contains entries for pages that are actually in
use by that process: this keeps the tables to a reasonable size

V page P page
3 7
4 9123
5 121
10 1232
etc.

Note: page tables contain page mappings, not pages

Note: though still called “tables”, in modern OSs they are likely
to be more sophisticated datastructures, such as trees

Memo

ry

Virtual Memory

process 1 (O}

process 2

J

-

kernel prog
and data

virtual real

virtual

Every process gets its own complete and separate address
space, mapped into the physical address space

Even for the same userid: this is usually what you want,
protection of one process from another

Memory

Virtual Memory

Where are these page tables?

In memory, of course: and a link to the table is kept in the
process’s PCB

But it sounds like, on every memory access, we have to do (a)
a memory read of a page table to find the V to R mapping and
then (b) a calculation to get the physical memory location and
then (c) a memory access to the physical address we wanted

e every data read
e every data write
e every execute of an instruction

This is clearly not sensible as it would be very slow

Memory

Virtual Memory

So, to be practically useful, this is supported by a piece of
hardware called the translation lookaside buffer (TLB), part of
the memory management unit (MMU)

The TLB maintains its own copy of a few of the virtual-physical
mappings from the page table of the current process and can
translate very quickly between them

Memory

Virtual Memory

To repeat that: the table in the TLB is a small subset of the
OS’s page table mappings of the current process

Only a small subset as TLB memory is very limited since it is
very expensive to make memory that runs fast enough to make
this mechanism useful: it contains perhaps just a few dozens of
the virtual to physical mappings

Note (again): the TLB contains copies of the page mappings,
not pages

Memory

Virtual Memory

The Intel Nehalem architecture has a 64 entry data TLB (and a
512 entry level 2 TLB); and a separate 64 entry instruction TLB

Note that 64 entries typically corresponds to an area of
64 x 4k page = 256k bytes, so while not huge, this isn’t so bad
as it might seem as first

Memory

Virtual Memory

page
interrupt e
,,,,,,,,,,,,,,,, \
: : page
. . table
virtual p}(11y51cal
address |MMU | address

AIouwraur

CPU
TLB

memory bus

ssaooxd ssa001d

The MMU and TLB are often physically part of the CPU
package, for speed of access

Memory

Virtual Memory

When presented with an address from the CPU the TLB first
looks the virtual page up in its table. If it is there is—a TLB
hit—the memory access goes ahead at full speed using the
physical address computed from the real page index found
there

If there is a TLB miss then it has to work a bit harder

There are two popular techniques used

Memory

Virtual Memory

In a hardware managed TLB, the CPU/TLB itself stops what it
is doing and searches for the page number in the page table (in
memory) for the current process: this is called a page walk

If it finds it, it installs it in the TLB table and carries on with the
memory access

The OS is not involved in the page walk, it is purely hardware

Memory

Virtual Memory

The second technique, a software managed TLB, simply raises
a TLB miss interrupt on a TLB miss

The OS then has to do the page walk

Memory

Virtual Memory

This deals with the case of when the requested page has
already been allocated by the OS to the current process, so
there is an entry in the page table for the page walk to find

In either software or hardware case, if the requested virtual
page is not yet allocated by the OS to the process and so not in
its page table, the OS needs to allocate a page

Memory

Virtual Memory

A hardware managed TLB will now raise a page fault interrupt
to pass control to the OS

A software managed TLB is already running the OS

The OS allocates a physical page, installs the new page
mapping into the page table for that process for that page and
writes the relevant page mapping into the TLB

(When the process is rescheduled) the memory access can
then proceed

Memory

Virtual Memory

Of course, the OS may choose not to allocate a page and it
would likely then send a segmentation violation signal to the
process

x86 and ARM processors have hardware managed TLBs
SPARC and MIPS are software managed

Terminology warning: a TLB miss when the page is already
allocated and indexed in the page table is sometimes called a
minor or soft page fault; while a miss on an unallocated page is
a major or hard page fault

Memory

Virtual Memory

Speed relies crucially on the TLB containing a good proportion
of the addresses currently being used: if a process writes wildly
all over memory we are guaranteed to get TLB misses and slow
memory access: lots of TLB misses and page walks or page
fault interrupts

Fortunately, most well-written programs behave sensibly and
tend to use the same addresses over and over, meaning lots of
TLB hits

After a while, the TLB settles down, caching the indices of the
pages the process is using, the working set

Memory
Virtual Memory

Note that a page fault can cost a lot of time

Register access 1 cycle

(L1 memory cache hit ~ 2 cycles)
(L3 memory cache hit ~ 50 cycles)
Main memory access ~ 200 cycles

TLB miss (page in memory) = 10,000 cycles
Page fault (page on disk) ~ 1,000,000, 000 cycles

These are very rough figures and are the combined overhead
of OS operations and memory architecture

Memory
Virtual Memory: Paging
At last we can talk about paging
Paging is copying pages to and from disk
Suppose there is a memory access
If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit

Memory
Virtual Memory: Paging

But if the page has been swapped out (“paged out”), then its
contents need to be read back from disk: thus a large cost in
this case

Memory
Virtual Memory: Paging

If there is a TLB miss when the TLB table is full, the OS must
choose which mapping to remove from the TLB to make space
for the new one

Usually a least recently used (LRU) strategy is used as pages
that haven’t been touched recently often are not needed in the
near future: this is called temporal locality

Thus the TLB hardware must also keep track of when pages
are used, e.g., using a timestamp

Again, temporal locality is a feature of many programs, but it is
easy to write programs that confound the LRU strategy

Memory
Virtual Memory: Paging

The OS may use the opportunity of a TLB miss to choose some
pages to swap out

Note there are two separate issues here:

e which entry in the TLB to remove when the TLB table is full

e which page in physical memory to swap out when physical
memory is full

They are related in that an infrequently used TLB entry implies
an infrequently used page; but conversely an infrequently used
page is probably not in the TLB table at all

Memory
Virtual Memory: Paging

Paging Strategies

Many strategies exist for choosing pages to evict (swap out)

Random. Pick a random page. Simple and better than you
think

FIFO. First in first out. Poor, as pages that have been
around for a long time tend to be the ones that are needed
LRU. Least Recently Used. Good, but needs to keep track
on a when a page was last used (different from the TLB
page timestamp)

LFU. Least frequently used. Increment a counter on the
page on each access; remove pages with low counts. Not
so good as pages just brought in because you need them
tend to have low counts

And so on.

Memory

Virtual Memory

The first time a (virtual) page is touched by a process it will
cause a (major) page fault

The OS needs to allocate a new physical page for this process

Allocation of new pages is facilitated by the fixed page size: just
find any unallocated page in physical memory and set it as the
physical page mapping from the requested virtual page

This simplification over earlier allocation methods is the big
benefit of using pages

The first page on the freelist of pages is always suitable. No
need to search, no size fit issues, no fragmentation issues

Memory

Virtual Memory

A single large datastructure (e.g., a vector, which you normally
think of as a contiguous region of memory) in your process
might actually be spread, in chunks, all over the place in
physical memory

programmer’s view ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

compiler/
loader

process’s view
virtual

TLB

kernel’s view
physical

80 81 82 83 400 401 402 403 2000 2001 2002 2003

Memory

Virtual Memory

Similarly for code: a chunk of code spanning multiple pages
may well be distributed all over physical memory

Code or data might be contiguous in the virtual address space,
but definitely not contiguous in the physical address space

Memory

Virtual Memory

OSs often use lazy page allocation: don’t allocate anything
until the process actually accesses a page, so physical memory
is only actually allocated on a page fault when we know we
really need it

If process requests 10GB and only uses 1GB, this is not a
problem: only 1Gb will be mapped in the page table

And the process’s virtual size can easily be bigger than the
physical memory size, either through unmapped or swapped
pages

Memory

Virtual Memory

The cost is kept low though the use of the TLB, but remember a
page fault is relatively expensive

And swapping is orders of magnitude slower still: we want to
avoid swapping if at all possible

This is something in the hands of the programmer: don’t use
memory stupidly!

Memory

Virtual Memory

Note that the terms “paging” and “swapping” are
near-indistinguishable these days

Swapping used to mean entire processes
Then segments (certain large areas) of memory
Now just pages are swapped

Note that when swapping a page back into memory, it doesn’t
matter where in physical memory we put it : the page table/TLB
ensures the process sees it in the same virtual place

Memory

Virtual Memory
TLBs are good but have limitations:

e they are quite small capacity, but usually big enough to be
highly effective

« they rely on temporal locality to be effective: again OK for
all but weird programs

Perhaps the biggest problem is whenever the OS does a
context switch, i.e., chooses to schedule to run a different
process. The TLB must be flushed as the incoming process will
have a different set of virtual-physical mappings

The TLB will then be re-populated by a bunch of TLB misses
and page faults as the incoming process runs

Memory

Virtual Memory

This is a major reason why a context switch is so expensive: on
top of the cost for the save/restore of process state there is a
large overhead for the subsequent TLB misses

Exercise. Read about the Spectre and Meltdown hardware
bugs

Exercise. Think about the difference between vectors and
linked lists in terms of virtual memory and TLBs

Exercise to think about: the page tables in memory can grow so
large they need to be swapped themselves. ..

Memory

Virtual Memory
Examples. A “Hello world” program in C, Java, Python and Perl

C Java Python Perl

Resident size KB 430 16500 4300 1850

Minor Fault 150 3800 1200 530
Major Fault 0 0 0 0
Context switch 2 150 8 4

In Linux 3.11.10; 8GB memory

Numbers are approximate and vary on runs due to scheduling

Memory

Virtual Memory

So a page table is a list of pages a process has accessed and
the relevant virtual-physical mapping. We have already seen
every page also has some permissions attached:

e read: the process can read from this page
e write: the process can write to this page
e execute: the process can execute code on this page

Memory

Virtual Memory

If a process tries to access a page it does not have the
appropriate permission for an interrupts happens and the OS
sends a segmentation violation signal to the process

Even though, through the virtualisation, “all” memory is owned
by the current process, it is still useful to have these
permissions

This is so the process knows it is trying to read from/write
to/execute some unexpected place in memory, rather than
some place it should be. This catches many stupid
programming errors

Further, permissions are useful when we have shared memory,
too

Memory

Virtual Memory

Another big benefit of VM is the natural protection of one
process from another: as all user mode memory accesses go
though the TLB, the TLB will simply prevent it even being
possible for one process to overwrite the memory of another

Or enable it if we want shared memory. Thus the TLB solves
two big problems: memory protection and memory sharing

A process only sees the virtual address: it can access
anywhere it wants and the TLB takes care of things

The kernel bypasses the TLB lookup and sees physical
addresses, but can map back and forth for each process

Memory

Virtual Memory

Shared Memory

So now shared memory is very easy: just let the TLB do the
mapping of virtual pages from different processes to the same
physical pages

This allows shared libraries (.so in Unix; DLLs in Windows;
.dylib in MacOS X/macOS)

Many programs need to do mundane stuff like read or writing to
files, formatted printing, drawing on the screen and so on

So libraries of such code are provided that the programmer can
use and not have to reimplement it all themselves

Memory

Virtual Memory

If 10 processes are in memory, each of them using the library
read function, does that mean there are 10 copies of the code
for read scattered about in memory?

Before the advent of shared libraries, yes

But now the use of virtual memory can let us share code
between processes

Memory

Virtual Memory

process 1 oS process 2

J

ﬁ%&:red \

kernel prog
and data

virtual real virtual
Shared Libraries

Memory

Virtual Memory

Now the OS can load the code for read just once and direct all
other processes to use that single copy

This reduces memory usage, reduces pages faults and has
other beneficial properties (see caching)

This works well as all processes can share identical and
unchanging code pages. But data in libraries couldn’t be
shared like this though?

Perhaps we would need a private copy of the data pages for
each process, since if one process updates the data that would
mess things up for another process also using that data

But there is another trick. . .

Memory

Virtual Memory

Copy on Write

Different processes can easily share data as long as they don’t
try to update it

Some data is read-only (e.g., a document containing an exam
paper), so this could be stored in a page marked read-only, and
this can be safely shared

Other data you do want to update (e.g., a document containing
an exam answer template)

Such pages can be marked with another flag: copy on write —
again, as long as the hardware supports this

Memory

Virtual Memory

With copy on write, a page is shared up until a process tries to
modify it

At this point a page fault occurs and the OS takes over

It makes a physical copy of the page and changes the page
table and TLB for that process to point at the new copy

The write can then proceed on the private, unshared copy

Other processes still see the original, unmodified data

Memory

Virtual Memory

™

stuff

process A physical process B
memory

Some data is shared; process B tries to update the data

Memory

Virtual Memory

This works really well for when a majority of data is shared with
only a few changes here and there

And it only uses an extra amount of memory proportional to the
size of the changes

So another reduction in memory use, page faults and so on

Memory

Virtual Memory

This is excellent, but comes at the cost of extra complexity as
the OS now has to track if a shared page has already been
loaded and where it is physically

And complexity in swapping as now it has to track which
processes are using a page and it can’t swap a page until
no-one is using it

But this is offset by the fact we will need to swap less as we are
using memory more efficiently

Memory

Virtual Memory
Other Tricks

OSs often keep a page full of zeros

If a process asks for a big block of zeroed memory, the OS will
supply the appropriate number of virtual pages, all pointing at
the single zeroed physical page: much faster than allocating
and clearing out a load of physical memory

If the process writes to that block, the OS does a copy-on-write
shuffle behind the scenes, allocating and clearing a new
writable page

Thus only allocating and clearing pages that are actually used

Memory

Virtual Memory

Other Tricks
process memory
0
0
0
0
shared
f> library
ernel code
and data
virtual physical

Zero Page

Memory

Virtual Memory

Other Tricks

process memory

0
data

0 \ﬁ data
0
shared
f> library
ernel code

and data

virtual physical

Zero Page after a write

Memory

Virtual Memory

Other Tricks

Virtual memory has other useful features like memory mapping
of devices

Parts of the virtual address space can be mapped on to things
other than memory, e.g., files, the screen, sound card

The OS can mmap (all or parts of) a file into memory: this
means that reads and writes to “memory” are converted by the
OS to reads and writes to that file (or screen, etc.)

Memory

Virtual Memory

process 1 oS
disk
shared
library
sound ernel prog|
card and data
virtual real

Memory map

Memory

Virtual Memory

The hugely simplifies the problem for the programmer: rather
than having to work out the fiddly details for a given piece of

hardware, they can simply write to what looks like an area of
memory and the OS sorts out all the details

Memory

Virtual Memory

Conclusion: TLBs solve many problems!

Filesystems

We now turn to files and filesystems

Current technology has main memory being limited in size (a
few gigabytes) and volatile: the values disappear when you
remove the power

To be able to manipulate more data and to make it persistent
we turn to larger, but slower, devices like disks

And to organise everything we need filesystems

Filesystems

Note: not all applications want to use filesystems, in particular
enterprise databases like to have direct access to disks
themselves in order to optimise access for their very specific
needs

Some people have experimented with making ordinary
applications use DB-like access, mostly to a resounding failure

In general, a filesystem is what people want: a simple, efficient
way of accessing their data

Filesystems

Another note: a filesystem is just an organisation of data, and
doesn’t need to be associated with disks

Filesystems can be found whenever we have large amounts of
data that needs organising

USB keys, iPods, phones, ...

It's even occasionally useful to have a filesystem in memory,
again as an organisational mechanism

Filesystems
Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write

Exercise. Compare with using virtual memory to do the same

Filesystems

But, for now, we shall think of files in the traditional sense

A file is simply a named chunk of data stored somehow on a
disk

Humans like easy names like prog. c, so there needs to be a
mechanism to convert names to the place on disk where the
data is stored

And when we have thousands or millions of files, meaning
thousands or millions of names, we need some way of
organising the names (even before we have thought of
organising the data itself!)

Filesystems

Names

Notice the distinction between the name and the data

This is very important and the distinction runs throughout
computer science

The same name can refer to different data (otherwise the whole
thing would be useless, we could never fix bugs in prog. c)

Different names can refer to the same data. We tend to forget
that, in real life, we can use different names to refer to the same
thing: “Lewis Carroll” and “Charles Dodgson”

All but the simplest filesystems allow the same data to have
multiple filenames

Filesystems

Names

For the philosophers:

It is possible to have a thing without a name (so how can we
refer to it?)

It is possible to have a name without a thing it refers to
It is possible for names to have names

Exercise: read the introduction to the poem “Haddocks’ Eyes”,
in “Through the Looking-Glass” by Lewis Carroll and explain the
relevance

And explain the use of quotes ' in the above

Filesystems

Names

So names need to be organised; this is usually (but not always)
done as a simple hierarchy

Rather than simply presenting all filenames to the user (a flat
filesystem), we gather together related files and put them into a
directory. Also called a folder

A directory is just a collection of (names of) files, but it allows
us to simplify our thought processes

And (names of) directories can be collected in other directories
and so on until we get to the top of the hierarchy, the root

Filesystems

Names

Files can appear at all levels But always within a directory In
some systems, a file can be in more than one directory
Generally, directories can only be within exactly one directory,
for implementation reasons Directories can be empty

Filesystems

Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/1s refers to a file named 1s inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/1s

Filesystems

Names

The directory hierarchy forms a directed acyclic graphs (DAG)
This means: no loops

No loops means we can simply traverse the whole hierarchy
and never get stuck in a loop and no unconnected loops if we
delete a directory

We might find the same file twice, though

This is a tradeoff of flexibility vs. ease of system implementation

Filesystems

Names

To make referring to files even easier, each process has a
current working directory (cwd)

This is just a prefix, stored in the PCB for each process, so that
whenever the process asks for a file by an incomplete filename
(not starting with a /), the kernel glues the cwd prefix on to the
given name and uses that full name instead

So, with a cwd of /u/cs/1/cslabc a process that asks for file
prog.c gets file /u/cs/1/cslabc/prog.c

With a cwd of /u/cs/1/cs1def a process that asks for file
prog.c gets file /u/cs/1/csldef/prog.c

Filesystems

Names

This is how different processes can refer to the same name
prog. c but get different files

The cwd is a convenience for the programmer and may be
changed as often as you like (cd, chdir)

Filesystems

Requirements

There are a lot of things we want from files

e create a new file

e delete afile

e open a file to access it

e read data from a file

e write data to a file

e close a file when we are done
e rename a file(rename a file)

That last one is actually a directory operation as we shall see in
a moment

Filesystems

Requirements

And directories

e create a new directory

e delete a directory

e scan a directory for a filename or directory name
e add a file to a directory

e remove a file from a directory

e rename a file

The last three are intertwined

Filesystems

Requirements

This all is before we come to things like

e speed of access

e speed of update

e scalability to large numbers of files
o efficient use of disk space

e reliability

e protection/security

e simple backup and recovery

Filesystems

We shall be looking at the classical Unix filesystem as an
example

Other filesystems are similar in their principles, though modern
filesystems are immensely tweaked and tuned

They vary in their choice of datastructures and algorithms to
implement the hierarchy for efficiency or other reasons

Filesystems

Records

Modern files tend to be essentially long arrays of bytes with no
further structure

Early files had structure, namely records

This was a hangover from early systems using things like
punched cards

A record is a fixed-size block of data, say 80 bytes

Records could only be read or written as a whole: this meant
implementation on the hardware of the time was easy

Filesystems

Records

It also aligned with the way data was regarded at the time:
records of peoples names, job classification, salary and so on
(fields)

They would expect an entire record to be read or written at once

Modern filesystems are byte oriented and you can access them
however you please

Filesystems

Inodes

The design of the traditional Unix filesystem is based on the
inode

Each file has its own inode

The inode is a fixed size structure (stored on disk) that contains
all the information about a file, its metadata

Filesystems

Inodes

Information in the inode includes

e Timestamps. Dates and times this file was last accessed
and last modified

e Ownership. The userid of the owner of this file, for
protection purposes

e Size. How big the file is currently

e Type. Whether this is a plain file, or a directory, or some
other kind of special file

e Access permissions. Who can read or write or run this file
(if it is a program)

e Reference count. The number of names this file has

¢ Pointers to areas on the disk where the actual data lives

Filesystems
Inodes
Notice that flenames are not in the inode
Filenames are stored in directories

A directory is essentially just a list of names of files and
subdirectories, together with their inode numbers

Name | Inode

foo.c 23
ff.html 42
mydata 7

Originally just a table, these days clever datastructures are
used to manage the large numbers of names we use

Filesystems

Inodes

This is how a file can have many names: multiple directory
entries referring to the same inode

As a consequence a file cannot know its own name(s) as the
names are independent of the file

In some sense, the inode number is the true name of the file

Filesystems

Inodes

As inodes are a fixed size, it is easy to put them in a simple
array on disk and just refer to them by their index in the array:
the inode number

disk info inodes data blocks

Disk blocks

Filesystems

Inodes

directory directory

foo.c: 23
bar.c: 123
dup: 123
prog.c: 42

another:123

bar.c:99
foo.c:42

Info

inode] iz

blocks
42 —

Filesystems

Inodes

There are a couple of special names always to be found in
every directory

The name .. refers back to the parent directory. This allows us
to crawl up the hierarchy until we reach the root

So ../foo/bar.c is a name of a file in a sibling directory: up;
across; then down in the hierarchy

The .. of /is/

The name . refers a directory back to itself. This often turns out
to be useful to do

Filesystems

Inodes

3
50

Filesystems

Inodes

The inode contains a reference count: the number of names
the file/inode has

If the count drops to zero, the OS can remove the file

Deleting a file is a matter of

e Removing the name reference in the relevant directory
e Decrementing the reference count in the inode

¢ |f the count reaches 0, we can free the inode and the disk
blocks it refers to

Filesystems

Inodes

In fact, each time a program opens a file the OS increments the
count; and decrements it when the program closes the file
(possibly when the program exits)

So it is possible for a program to create a new file (inc); open it
(inc); delete it (dec); and still be able to read and write to it

The file will only disappear when the program ends (dec)

No other process can see this file: there is no name in any
directory

Filesystems

Inodes

The data on the disk is in disk blocks, fixed size areas on the
disk, e.g., 512 or 1024 bytes

Having a fixed size allows for easy and fast allocation and
deallocation

This is similar to pages in memory; but now physical location of
blocks is important as discs are mechanical devices

Whole numbers of blocks are always allocated to files

This can lead to wastage, e.g., a 1025 byte file might need two
blocks, but uses just over half of the space. Though there are
lot of tricks in real filesystems to avoid the worst of this

An inode is
pointers Bu
10 x 1024 -

Filesystems

prog.c: 42 | directory

_

Hen y
B

This gives
Bigger files

6

oin

Info /D disk

directory
|ze and has space for, say, 10 block

Inodes

@@a @'t have filesiligger than

R8s uch-filesie have an indirect block,

to-anl arrdy Jof 256, say, block pointers

e btog

= 7 2L

2 Skl

ks..which is 256KB more space

e a double indirect block This gives us

ol o ¥ o T P D Y Y ol WY, [o D e P

Filesystems

Inodes

Now every indirect block is overhead occupying space on the
disk that could otherwise be storing data

But this is not so wasteful as you might think as most files are
quite small; the overhead for large files is relatively small, too

Filesystems

Inodes

Caching the inode and the indirect blocks in memory helps
reduce the lookup overhead

The space for the pointers is used for various other things when
the inode refers to something other than a disk file

Filesystems

Inodes

For example, a soft link (similar to a Windows shortcut) to a file
or directory

This is a special inode whose purpose is to say “don’t look at
me, look at this file instead”

If you had a soft link named foo that linked to bar its content
would be just the name “bar”

But the action of the OS when a program opens foo is not to
present the data “bar”, but to close inode foo and open inode
named by bar instead

In effect, this is another way for files to have multiple names, but
it is very different from normal multiple names, called hard links

Filesystems

Inodes

A hard link is the normal reference to (the inode of) a file; a soft
link is (a reference to an inode containing) a signpost saying
“look over there”

The soft link might point to a place where there is no file; a hard
link is the file

And, as there are no inode references involved in a soft link, it
can be the name of any file on any filesystem in the machine

Note: a hard link refers to the file, while a soft link refers to a
name of the file. So a hard link is a name, while a soft link is a
name of a name

Filesystems

Inodes

directories

foo:23 1/ bar:42

link

inodes *{
bar modes :|

file blocks

23 42

Filesystems

Inodes

Use 1s -1i to see the link details and inode number of a file
under Unix

% 1n -s somefile linkl

% ls -1i linkil

3154340 lrwxrwxrwx 2 rjb users 6 2010-04-22 10:38 lin
k1 -> somefile

% 1n 1linkl 1ink2

% ls -1i linkx

3154340 lrwxrwxrwx 2 rjb users 6 2010-04-22 10:38 lin
k1 -> somefile

3154340 lrwxrwxrwx 2 rjb users 6 2010-04-22 10:38 lin
k2 -> somefile

Filesystems

Inodes

When a program opens a file, the OS must find where on disk
the file lives

Say we are looking for the file prog. c with a cwd of /home/rjb

The name is incomplete, so the OS prepends the cwd
giving /home/rjb/prog.c

The OS reads the block containing the root directory off
disk and scans through it for the name home

It finds it and gets the inode number for home

It reads the inode off disk and finds it refers to a directory
It reads the block containing the directory off disk

It scans the directory for the name rjb

Filesystems

Inodes

It finds it and gets the inode number for rjb

It reads the inode off disk and finds it refers to a directory
It reads the block containing the directory off disk

It scans the directory for the name prog.c

It finds it and gets the inode number for prog.c

It reads the inode off disk and finds it refers to a file

It reads the blocks containing the file off disk

This must be done for every file opened

Again, caching can be used to great effect: keeping copies of
the inodes and directories in memory, rather than re-reading
them every time

Filesystems

Inodes

If we want more than one filesystem on a disk, or more than
one kind of filesystem, we can split the disk into separate
partitions

A partition is just a chunk of disk owned by a single filesystem

So we can have multiple filesystems on a single disk, e.g., two
Unix filesystems and a Windows filesystem

Each filesystem has its own inode tables (or whatever it
requires) and are logically quite separate

Filesystems

Inodes

Note that inode 23 on one partition is different to inode 23 on
another partition, meaning we can’t have hard links across
filesystems

We can have soft links across filesystems, as soft links are by
names, not inode numbers: this is really why soft links were
invented

Filesystems

Mounting

Under Unix, a filesystem can be mounted on another filesystem

The name comes from when disks needed to be physically
mounted on the drives by system operators

A mount point is a special inode that says: “now go and look at
this filesystem”

Filesystems

Mounting
/ /
= = /\
etc usr bin
AR N = 22N
bin local
prog
20 N
bin
Z2RN
prog
Filesystem A Filesystem B

Filesystems A ang&/exig separatel on separate disks,
with filesystem Aetas the system ro6t Filenamein
/usr/local/bifyﬁrogbIn oc%l,to e prog on A'IFwe mount
filesystem B at the mount point /usr/1ocal this hides the part
of the hierarchy below localbhnd now name
/usr/local/bin/prog refet‘s/vfﬁotge prog on B

Filesystems
Mounting

When the file lookup reads the inode for the mount point at
/usr/local it switches filesystem and continues looking from
the root of B

This means that we can have many partitions presented as a
single unified name space

And partition B could be a separate disk; or on a USB key; or
on a read-only medium like a CD

Filesystems
Mounting

Note that B will have its own inode table, so there can’t be a
hard link of, say, a name in /usr/bin to @ name in
/usr/local/bin

In fact, B might even have a completely different kind of
filesystem, perhaps not based on inodes

Or can be on a separate machine if this was a mount of a
network disk

Filesystems
Mounting

This is completely different from Windows where each partition
is separate and has a prefix like C:

C: D:
= = = T~
WINDOWS Program Files My Pictures My Music
ZARN S 2N ZARN

Filesystem A Filesystem B

Filesystems
Mounting

Going the other way, mechanisms exist for gluing several disks
together to make them appear as a single partition: this can be
for making huge filesystems out of small disks, or for reliability

through redundancy (RAID)

Filesystems

Other filesystems you might like to look at

e birfs

e ext4

o FAT, VFAT
e FUSE

e GFS (Global
File System)

e Google File
System

e HFS+
e ISO 9660
e JFFS2

Lustre
NFS
NTFS
OCFS2
procfs
Reiser

ReFS (Resilient
File System)

UnionFS
ZFS

Also see “List of file systems” on Wikipedia

Filesystems

Exercise. Solid state disks (SSDs) are common these days.
What differences do they bring to the way filesystems should be
implemented?

Exercise. Read about the various kinds of RAID filesystems
and the benefits they bring

Filesystems

DOGBERT'S TECH
SUPPORT

YOU HAVE A BAD
CASE OF COMPUTER
ROT.

www.dilbert.com scottadams®aclcom

YOUR COMPUTER IS
DESIGMED TO BECOME
SLOWER AND MORE
UNRELTABLE OVER
TIME SO YOU HAVE
TO UPGRADE.

5-a8-0% ©2005 Scot Adams, Inc./Dist by UFS, Inc.

BUT IF YOUD LIKE
SOME FALSE HOPE,

I CAN TELL YOU HOW
TO DEFRAGMENT
YOUR DISK DRIVE.

RV

© Scott Adams, Inc./Dist. by UFS, Inc.

Dilbert
by Scott Adams

Filesystems

File Permissions

We now look at file protection

It is not good if every user of a computer can read or update
any file on the system

Quite apart from issues of privacy, there are many files that are
essential to the good running of the OS itself (configuration
files, system library files, etc.)

So we need to limit access somehow

Filesystems

File Permissions

There are generally three ways to access a file

e to read from it
e to write to it
e torunit as a program

Other ways include append only, where you can add to the end
of a file but otherwise can’t update it: useful for logging (you
can’t accidentally — or by choice — alter the earlier part of the

log)

Filesystems

File Permissions

Similarly, for a directory

e list the directory’s contents (read)
e create/delete/rename a file (write)
e search a directory

Filesystems

File Permissions

Files have owners, generally they inherit the userid of the
process that created it

There are also groups, collections of users
For example, “First year computing” and “Computing Staff”

Groups allow us to allow or deny access to large numbers of
people

Each user can be in several groups

Filesystems

File Permissions

Unfortunately groups are quite inflexible and are set by the
systems operators: normal users cannot create groups

We have to rely on the operators creating the right groups

Each file has a single group ownership to go alongside the user
ownership

Filesystems

File Permissions

Unix permissions mostly work OK but are very inflexible
regarding groups

You can’t specify that just users Alice and Bob should have
read/write access but others read only, unless the operators
have created a group containing just Alice and Bob

A more general mechanism is access control lists (ACLs) that
allows a low more flexible way of allowing and disallowing
access

Exercise. Read about ACLs

Filesystems

File Permissions
Every file (in Unix) has a collection of permission bits

e for the owner
o for the group
o for everybody else not included in the above

And for each of

e read access
e write access
e execute access

And a couple of others

Filesystems

File Permissions

-rw-r--r—— 1 rjb comp 12 2008-02-01 14:39 hi

-rw-r--r—— 1 rjb comp 12 2008-02-01 14:39 hi
——— ’ Q , N~ ~
permissions linksuser groupsize modify date filename

Filesystems

File Permissions

-rw-r--r—-— 1 rjb comp 12 2008-02-01 14:39 hi
Three groups of three flags, with one extra at the start

If the userid of the process matches the userid of the file, use
the first set

Else if the groupid of the process matches the groupid of the
file, use the second set

Else use the third set

Filesystems

File Permissions

-rw-r--r—— 1 rjb comp 12 2008-02-01 14:39 hi

e The r flag indicates permission to read
e The w flag indicates permission to write
e The x flag indicates permission to execute

A process running as user rjb can read and write this file
A process running as group comp can only read this file

Other processes can only read this file

Filesystems

File Permissions

-rwxr-x-——- 1 rjb comp 24 2008-02-01 15:11 prog

e User rjb can read, write and execute this

e Users in the group comp can read and execute, but not
write

e Others can do nothing at all

Filesystems
File Permissions
For a directory
drwxr-xr-x 2 rjb comp 4096 2008-02-01 15:11 .

The first flag is set if this is a directory

e r read: you can list the contents of this directory

e w write: you can create, delete and rename files in this
directory

e x: you can search this directory; also can set as cwd

Note that if the directory permission is w you can delete a file
even if you cannot read it; even if you don’t own it

Filesystems

File Permissions

Permissions are set by the Unix chmod command

Other flags include

o t sticky, “restricted deletion flag”: when set on a directory
only the owner of a file may delete it

e s setuid on a program: execute this program with the
userid of the file not the user

Filesystems

File Permissions

Other OSs have less support for access permissions

¢ DOS and Windows pre-XP just have a “read-only”
permission which can be set and cleared by any user

e DOS and Windows pre-XP don’t really have users
e MacOS pre-X are similar

Filesystems

To wrap up filesystems here are a few remarks

We don’t have time to go into how disks work (SSD or

spinning), for example, how data blocks are managed on the
medium

But be aware this is also a lot of complicated detail!

Filesystems
Next:

e As disks are relatively slow, there are caching tricks used
to help speed things up

e Disk caching is using “spare” memory to keep a cache
copy of some of the disk contents

e The speed benefits are huge as long as you balance the
use of memory for cache against the use of memory for
everything else

e With a good filesystem a program will use the disk just
once or twice and spend most of its time using the disk
cache (barely a “file” system at all!)

¢ And then there is memory mapped disks as previously
mentioned

Filesystems
Reliability

Filesystems must be bug free. We can get away with the
occasional bug elsewhere, but if the user loses their data
this is a big problem

Sometimes we have to put up with a little data loss (e.g.,
power loss during a write), but we must never have data
corruption

Thus filesystem programmers tend to be very
conservative: only well-tested systems should be used

If there is any corruption in the filesystem structure data
can be lost

We can’t rely on users making backups!

Filesystems
Reliability

Unfortunately, there can be external influences, such as
power loss just as inode pointers are being updated

This could leave the filesystem in an inconsistent state
Modern filesystems try very hard never to let this happen
So things like transactional, log structured and journalling
filesystems have been created

Similarly, disk technology is very good these days, but
disks still have problems

So there are hardware monitoring systems like SMART
that watch a disk for impending problems

Filesystems
Reliability

¢ And filesystems that check data for errors as it is read

¢ And collections of disks in a redundant array of
inexpensive disks (RAID) that spreads data across multiple
disks so that if one fails the data is retrievable

e And so on

A lot of research has been put into filesystems: and it’s still
ongoing

Parkinson’s Law: data expands to fill the space available

Conclusion of OS

Operating systems are still very much a current topic

We have only scratched the surface — there are many other
things a real OS would have to implement

There are still lots of hard problems to solve, such as
scheduling

And, as hardware changes, OSs must change, too

OSs for low-power devices (in particular mobile phones) are a
huge source of research

Conclusion of OS

At the other end of the scale, people are still developing OSs on
large machines

OS virtualisation is important in the era of cloud computing

Where several users (customers) are sharing the same
hardware, but each has their own, private OS running their
own, private applications

Originally, OSs were the software closest to the hardware: with
OS virtualisation, this is no longer necessarily true

Conclusion of OS

Applications

System libs

oS

Hardware

Traditional OS

Conclusion of OS

Sometimes an application only runs on a specific OS

But repeatedly rebooting a machine with a different OS every
time a user wants to run a different application is not a good
approach

So the solution is to have multiple, simultaneous OSs on a
single machine

Conclusion of OS

Applications Applications

System libs

OS (ring 0) OS (ring 0)

Hypervisor (ring —1)

Hardware

Virtualised OSs

Hypervisors appeared in IBM mainframes in the late 1960s

Conclusion of OS

There are several ways OS virtualisation is done

Conclusion of OS

Application Application
system system
libs libs
oS oS
hypervisor
hardware

Bare metal virtualisation has a thin layer, the hypervisor, to
manage the hardware, allowing each OS to see separate
“virtual hardware” which they manage

Conclusion of OS

The OSs can be completely different, e.g., Windows and Linux,
and each believe they have the whole machine

Modern X86 architectures provide a Ring -1 to support this
Examples: Xen, Hyper-V

Good for sharing the computer amongst users who have
requirements for different OSs

Conclusion of OS

Application Application
system system
.. libs libs
Application
Guest OS Guest OS
system
es virtualisation
Host OS
hardware

Hosted virtualisation has a normal host OS that runs
virtualisation code. One or more guest OSs run on top of that

Examples: VMWare, VirtualBox, Parallels

Good for when you need sophisticated management of the
guest OSs by the host OS, for example in Cloud provision

Conclusion of OS

.. Application Application

Application

system system
system libs libs
libs

P

: 1

hardware

Not quite OS virtualisation, but with the same target
applications is containers. The applications share the same
OS, but the OS s rigidly partitioned so each container cannot
see or influence what is happening in other containers (e.g.,
CPU limits)

Conclusion of OS

With containers, the applications must run on the same OS
kernel, but can have different systems libraries and other
software (e.g., RedHat in one and Ubuntu in another)

We might think of this as a kind of multiple user modes
Examples: Solaris containers, Docker

Good for application delivery, where an application needs a lot
of specific system library support: so we deliver the systems
libraries with the application!

Conclusion of OS

Application
system
libs
Application 0S
t
s;ﬁbesm hw emulator
(0N}
hardware

And then there are variants that do hardware virtualisation by
emulating different kinds of hardware, e.g., we might have our
OS running on an ARM emulation running on X86 hardware

Or on an X86 emulation on ARM hardware

Conclusion of OS

These emulations are a lot slower than the native hardware, but
provide a flexibility to the customer

Examples: Qemu (emulates several kinds of hardware), Bochs
(emulates X86)

Exercise. Compare with Apple’s new Rosetta software that
allows Intel code to run on Arm hardware (only user code,
though)

Conclusion of OS

Exercise. Read up on Cloud Services, Software as a Service
(SaaS), Infrastructure as a Service (laaS), Platform as a
Service (PaaS), Software Appliances

Conclusion of OS

All of these techniques are applied in cloud computing, where
users buy time on a large, remote machine

Welcome to the 1960s!

Conclusion of OS

Exercise. On Mars, the autonomous helicopter drone Ingenuity
(brought by the lander Perseverance) runs Linux on a 500Hz
(not MHz!) processor. Read about this

Exercise. Play with an OS you are not familiar with (Mac, Win
or Lin or other) and learn the ways it does things. Write,
compile and run a program

Exercise. Read about the advances in persistent memory:
comparable in speed to main memory, but retains data when
power cycled like disk (non-volatile). What changes would we
need from an OS to deal with such a technology?

