
History

So the monitor was just a program

It would load an application into memory (from tape or
wherever)

And then jump to the start of the application and start executing
it

When the application finished, it would (be expected to) jump
back to the monitor, so it could deal with the next program



History

So the monitor was just a program

It would load an application into memory (from tape or
wherever)

And then jump to the start of the application and start executing
it

When the application finished, it would (be expected to) jump
back to the monitor, so it could deal with the next program



History

So the monitor was just a program

It would load an application into memory (from tape or
wherever)

And then jump to the start of the application and start executing
it

When the application finished, it would (be expected to) jump
back to the monitor, so it could deal with the next program



History

So the monitor was just a program

It would load an application into memory (from tape or
wherever)

And then jump to the start of the application and start executing
it

When the application finished, it would (be expected to) jump
back to the monitor, so it could deal with the next program



History

But if the application was badly written, it could overwrite the
monitor

Monitor User program

Machine memory

Either accidentally or deliberately



History

But if the application was badly written, it could overwrite the
monitor

Monitor User program

Machine memory

Either accidentally or deliberately



History

It was soon found to be more efficient to load more than one
program into memory (when there was space)

Monitor Program 1 Program 2

The advantage being that if Program 1 was doing something
like writing to a tape that takes a lot of time, but no CPU, the
computer could run Program 2 in the meanwhile

When Program 2 pauses and Program 1 needs to run again,
the computer could switch back to it

The decisions on what to run and actually doing the switching
between programs was the job of the monitor



History

It was soon found to be more efficient to load more than one
program into memory (when there was space)

Monitor Program 1 Program 2

The advantage being that if Program 1 was doing something
like writing to a tape that takes a lot of time, but no CPU, the
computer could run Program 2 in the meanwhile

When Program 2 pauses and Program 1 needs to run again,
the computer could switch back to it

The decisions on what to run and actually doing the switching
between programs was the job of the monitor



History

It was soon found to be more efficient to load more than one
program into memory (when there was space)

Monitor Program 1 Program 2

The advantage being that if Program 1 was doing something
like writing to a tape that takes a lot of time, but no CPU, the
computer could run Program 2 in the meanwhile

When Program 2 pauses and Program 1 needs to run again,
the computer could switch back to it

The decisions on what to run and actually doing the switching
between programs was the job of the monitor



History

It was soon found to be more efficient to load more than one
program into memory (when there was space)

Monitor Program 1 Program 2

The advantage being that if Program 1 was doing something
like writing to a tape that takes a lot of time, but no CPU, the
computer could run Program 2 in the meanwhile

When Program 2 pauses and Program 1 needs to run again,
the computer could switch back to it

The decisions on what to run and actually doing the switching
between programs was the job of the monitor



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

Now Program 1 could corrupt Program 2 as well as the monitor!

Or Program 1 could read confidential data out of Program 2

Some sort of protection of the monitor and other programs is
needed

What happens if Program 1 goes into an infinite loop?

Control never returns to the monitor and Program 2 never gets
to run

Some means of curtailing runaway programs is needed



History

So the “monitor runs the programs”: what does this really
mean?

Nothing sophisticated. The monitor code just jumps to the
program code so the machine is now running the program

Take care over this point: the monitor doesn’t sit and watch the
program running, the monitor is not running while the program
is running



History

So the “monitor runs the programs”: what does this really
mean?

Nothing sophisticated. The monitor code just jumps to the
program code so the machine is now running the program

Take care over this point: the monitor doesn’t sit and watch the
program running, the monitor is not running while the program
is running



History

So the “monitor runs the programs”: what does this really
mean?

Nothing sophisticated. The monitor code just jumps to the
program code so the machine is now running the program

Take care over this point: the monitor doesn’t sit and watch the
program running, the monitor is not running while the program
is running



History

Monitor

Monitor program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Monitor runs



History

Monitor

Monitor

program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Monitor jumps to program 1



History

Monitor

Monitor program 1

program 1 program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Program runs



History

Monitor

Monitor program 1

program 1 program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Tape needed



History

Monitor

Monitor

program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Program calls monitor



History

Monitor

Monitor program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Monitor sets up tape



History

Monitor

Monitor program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Monitor decides to run another program while waiting for the tape



History

Monitor

Monitor

program 1

program 1

program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Monitor jumps to program 2



History

Monitor

Monitor

program 1

program 1 program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Program 2 runs



History

Monitor

Monitor

program 1

program 1 program 2

program 2

� �
6 ?

� �
? 6

� �
6 ?

Etc.



History

Less graphically:

Monitor starts program → Prog 1 it runs. . . tape needed →
Monitor sets up tape. . . Monitor decides to run another
program → Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program

→ Prog 1 it runs. . . tape needed →
Monitor sets up tape. . . Monitor decides to run another
program → Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program →

Prog 1 it runs. . . tape needed →
Monitor sets up tape. . . Monitor decides to run another
program → Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program → Prog 1

it runs. . . tape needed →
Monitor sets up tape. . . Monitor decides to run another
program → Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program → Prog 1 it runs. . .

tape needed →
Monitor sets up tape. . . Monitor decides to run another
program → Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program → Prog 1 it runs. . . tape needed

→
Monitor sets up tape. . . Monitor decides to run another
program → Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program → Prog 1 it runs. . . tape needed →

Monitor sets up tape. . . Monitor decides to run another
program → Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program → Prog 1 it runs. . . tape needed →
Monitor sets up tape. . .

Monitor decides to run another
program → Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program → Prog 1 it runs. . . tape needed →
Monitor sets up tape. . . Monitor decides to run another
program

→ Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program → Prog 1 it runs. . . tape needed →
Monitor sets up tape. . . Monitor decides to run another
program →

Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program → Prog 1 it runs. . . tape needed →
Monitor sets up tape. . . Monitor decides to run another
program → Prog 2

etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program → Prog 1 it runs. . . tape needed →
Monitor sets up tape. . . Monitor decides to run another
program → Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program → Prog 1 it runs. . . tape needed →
Monitor sets up tape. . . Monitor decides to run another
program → Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

Less graphically:

Monitor starts program → Prog 1 it runs. . . tape needed →
Monitor sets up tape. . . Monitor decides to run another
program → Prog 2 etc.

There is a single stream of control jumping between monitor
and several programs

The monitor is not running when a user program is running,
and vice-versa



History

This changing between multiple user programs is called
multitasking. But only one thing is ever running

Multitasking improves the efficiency of use of a computer since
while one program waits for a slow peripheral another program
can run



History

This changing between multiple user programs is called
multitasking. But only one thing is ever running

Multitasking improves the efficiency of use of a computer since
while one program waits for a slow peripheral another program
can run


