
History

So the monitor needs to make decisions on what to program to
run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait
• how much the owner of the program has paid
• And many more things



History

So the monitor needs to make decisions on what to program to
run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait
• how much the owner of the program has paid
• And many more things



History

So the monitor needs to make decisions on what to program to
run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running

• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait
• how much the owner of the program has paid
• And many more things



History

So the monitor needs to make decisions on what to program to
run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program

• whether a program is likely to need CPU very soon, or can
wait

• how much the owner of the program has paid
• And many more things



History

So the monitor needs to make decisions on what to program to
run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait

• how much the owner of the program has paid
• And many more things



History

So the monitor needs to make decisions on what to program to
run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait
• how much the owner of the program has paid

• And many more things



History

So the monitor needs to make decisions on what to program to
run next: it is scheduling the programs

The choices can be made according to many criteria

• how long a program has been running
• a priority of a program
• whether a program is likely to need CPU very soon, or can

wait
• how much the owner of the program has paid
• And many more things



History

Early scheduling algorithms were very simple, e.g., keep
running the same program until it’s done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later



History

Early scheduling algorithms were very simple, e.g., keep
running the same program until it’s done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later



History

Early scheduling algorithms were very simple, e.g., keep
running the same program until it’s done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later



History

Early scheduling algorithms were very simple, e.g., keep
running the same program until it’s done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later



History

Early scheduling algorithms were very simple, e.g., keep
running the same program until it’s done; later algorithms tried
to be more clever

Some programmers would write their programs to take
advantage of deficiencies in the scheduling algorithm: in the
worst case starve other programs of any CPU time at all!

It is tempting to make the scheduling algorithm complicated:
but remember more time spent in the monitor deciding what to
schedule next is less time for the programs

So there is a trade-off of making scheduling fast but fair

This is still an issue today: we’ll look a little into scheduling later



History

A badly written (or malicious) program can bring the whole
system down

If the program never hands control back to the OS (we’ll call the
monitor the operating system from now on), the OS never gets
to run and schedule another program

If the program goes into an infinite loop the whole computer is
jammed

This cooperative approach needs something extra



History

A badly written (or malicious) program can bring the whole
system down

If the program never hands control back to the OS (we’ll call the
monitor the operating system from now on), the OS never gets
to run and schedule another program

If the program goes into an infinite loop the whole computer is
jammed

This cooperative approach needs something extra



History

A badly written (or malicious) program can bring the whole
system down

If the program never hands control back to the OS (we’ll call the
monitor the operating system from now on), the OS never gets
to run and schedule another program

If the program goes into an infinite loop the whole computer is
jammed

This cooperative approach needs something extra



History

A badly written (or malicious) program can bring the whole
system down

If the program never hands control back to the OS (we’ll call the
monitor the operating system from now on), the OS never gets
to run and schedule another program

If the program goes into an infinite loop the whole computer is
jammed

This cooperative approach needs something extra



History
Interrupts can be used to solve the problem of runaway
programs

A hardware clock or timer can be set to send interrupts
regularly after an appropriate period of time has elapsed

When the interrupt is taken, the interrupt service routine jumps
to the OS and so it can decide what to do next, including:

• resume running the interrupted program
• kill (no longer run and remove resources from) the program

if it has used up its allotted resources
• switch to running some other program

Similarly, interrupts from peripherals like terminals or disks
pass control to the OS



History
Interrupts can be used to solve the problem of runaway
programs

A hardware clock or timer can be set to send interrupts
regularly after an appropriate period of time has elapsed

When the interrupt is taken, the interrupt service routine jumps
to the OS and so it can decide what to do next, including:

• resume running the interrupted program
• kill (no longer run and remove resources from) the program

if it has used up its allotted resources
• switch to running some other program

Similarly, interrupts from peripherals like terminals or disks
pass control to the OS



History
Interrupts can be used to solve the problem of runaway
programs

A hardware clock or timer can be set to send interrupts
regularly after an appropriate period of time has elapsed

When the interrupt is taken, the interrupt service routine jumps
to the OS and so it can decide what to do next, including:

• resume running the interrupted program
• kill (no longer run and remove resources from) the program

if it has used up its allotted resources
• switch to running some other program

Similarly, interrupts from peripherals like terminals or disks
pass control to the OS



History
Interrupts can be used to solve the problem of runaway
programs

A hardware clock or timer can be set to send interrupts
regularly after an appropriate period of time has elapsed

When the interrupt is taken, the interrupt service routine jumps
to the OS and so it can decide what to do next, including:

• resume running the interrupted program

• kill (no longer run and remove resources from) the program
if it has used up its allotted resources

• switch to running some other program

Similarly, interrupts from peripherals like terminals or disks
pass control to the OS



History
Interrupts can be used to solve the problem of runaway
programs

A hardware clock or timer can be set to send interrupts
regularly after an appropriate period of time has elapsed

When the interrupt is taken, the interrupt service routine jumps
to the OS and so it can decide what to do next, including:

• resume running the interrupted program
• kill (no longer run and remove resources from) the program

if it has used up its allotted resources

• switch to running some other program

Similarly, interrupts from peripherals like terminals or disks
pass control to the OS



History
Interrupts can be used to solve the problem of runaway
programs

A hardware clock or timer can be set to send interrupts
regularly after an appropriate period of time has elapsed

When the interrupt is taken, the interrupt service routine jumps
to the OS and so it can decide what to do next, including:

• resume running the interrupted program
• kill (no longer run and remove resources from) the program

if it has used up its allotted resources
• switch to running some other program

Similarly, interrupts from peripherals like terminals or disks
pass control to the OS



History
Interrupts can be used to solve the problem of runaway
programs

A hardware clock or timer can be set to send interrupts
regularly after an appropriate period of time has elapsed

When the interrupt is taken, the interrupt service routine jumps
to the OS and so it can decide what to do next, including:

• resume running the interrupted program
• kill (no longer run and remove resources from) the program

if it has used up its allotted resources
• switch to running some other program

Similarly, interrupts from peripherals like terminals or disks
pass control to the OS



History

This is called preemptive scheduling and enables timesharing

Timesharing is where several programs share the available
CPU time and so appear to be running simultaneously

Usually in a fairly transparent (to the programs) manner

Always mediated by the OS, of course



History

This is called preemptive scheduling and enables timesharing

Timesharing is where several programs share the available
CPU time and so appear to be running simultaneously

Usually in a fairly transparent (to the programs) manner

Always mediated by the OS, of course



History

This is called preemptive scheduling and enables timesharing

Timesharing is where several programs share the available
CPU time and so appear to be running simultaneously

Usually in a fairly transparent (to the programs) manner

Always mediated by the OS, of course



History

This is called preemptive scheduling and enables timesharing

Timesharing is where several programs share the available
CPU time and so appear to be running simultaneously

Usually in a fairly transparent (to the programs) manner

Always mediated by the OS, of course



History

The same interrupt mechanism allowed the use of terminals,
where users could now interact directly with the computer, not
just via job submission

A program can sit and wait (i.e., not be scheduled to run by the
OS) until the user hits a key on the terminal

When a key is hit, an interrupt happens, the OS takes over,
schedules and runs the appropriate program to deal with the
keystroke



History

The same interrupt mechanism allowed the use of terminals,
where users could now interact directly with the computer, not
just via job submission

A program can sit and wait (i.e., not be scheduled to run by the
OS) until the user hits a key on the terminal

When a key is hit, an interrupt happens, the OS takes over,
schedules and runs the appropriate program to deal with the
keystroke



History

The same interrupt mechanism allowed the use of terminals,
where users could now interact directly with the computer, not
just via job submission

A program can sit and wait (i.e., not be scheduled to run by the
OS) until the user hits a key on the terminal

When a key is hit, an interrupt happens, the OS takes over,
schedules and runs the appropriate program to deal with the
keystroke



History

Thus the waiting program uses no CPU resources until they are
needed

Of course, while we say “the program is waiting”, is important to
realised that it’s not “waiting”: the program is not even running

So interrupts like this are another way of bridging the gap
between slow humans and fast computers



History

Thus the waiting program uses no CPU resources until they are
needed

Of course, while we say “the program is waiting”, is important to
realised that it’s not “waiting”: the program is not even running

So interrupts like this are another way of bridging the gap
between slow humans and fast computers



History

Thus the waiting program uses no CPU resources until they are
needed

Of course, while we say “the program is waiting”, is important to
realised that it’s not “waiting”: the program is not even running

So interrupts like this are another way of bridging the gap
between slow humans and fast computers



History

Typically, timer interrupts are set to go off fairly often

• Frequent interrupts mean several programs can get a slice
of the CPU quite often

• With sufficiently frequent interrupts it appears to a human
observer that several programs are running simultaneously

• An interactive program, one where a human is involved,
will appear to be dedicated to that user: in reality humans
are so slow we can’t appreciate how little time the
computer gives us

• It is important to remember that a single processor can
only do one thing at a time: it is only the appearance of
multiple programs running simultaneously



History

Typically, timer interrupts are set to go off fairly often

• Frequent interrupts mean several programs can get a slice
of the CPU quite often

• With sufficiently frequent interrupts it appears to a human
observer that several programs are running simultaneously

• An interactive program, one where a human is involved,
will appear to be dedicated to that user: in reality humans
are so slow we can’t appreciate how little time the
computer gives us

• It is important to remember that a single processor can
only do one thing at a time: it is only the appearance of
multiple programs running simultaneously



History

Typically, timer interrupts are set to go off fairly often

• Frequent interrupts mean several programs can get a slice
of the CPU quite often

• With sufficiently frequent interrupts it appears to a human
observer that several programs are running simultaneously

• An interactive program, one where a human is involved,
will appear to be dedicated to that user: in reality humans
are so slow we can’t appreciate how little time the
computer gives us

• It is important to remember that a single processor can
only do one thing at a time: it is only the appearance of
multiple programs running simultaneously



History

Typically, timer interrupts are set to go off fairly often

• Frequent interrupts mean several programs can get a slice
of the CPU quite often

• With sufficiently frequent interrupts it appears to a human
observer that several programs are running simultaneously

• An interactive program, one where a human is involved,
will appear to be dedicated to that user: in reality humans
are so slow we can’t appreciate how little time the
computer gives us

• It is important to remember that a single processor can
only do one thing at a time: it is only the appearance of
multiple programs running simultaneously



History

Typically, timer interrupts are set to go off fairly often

• Frequent interrupts mean several programs can get a slice
of the CPU quite often

• With sufficiently frequent interrupts it appears to a human
observer that several programs are running simultaneously

• An interactive program, one where a human is involved,
will appear to be dedicated to that user: in reality humans
are so slow we can’t appreciate how little time the
computer gives us

• It is important to remember that a single processor can
only do one thing at a time: it is only the appearance of
multiple programs running simultaneously



History

On the other hand, too frequent interrupts mean the OS is
forever being called and using CPU time, so less time is
available for the programs

This is another tradeoff: frequent interrupts for good interactive
behaviour, rare interrupts for good compute behaviour

Clever scheduling algorithms in the OS try to give high priority
but small slices of time to interactive programs; and lower
priority but larger slices to compute-intensive programs

A “large slice of time” means the OS will allow a program to
continue running for a relatively long amount of time before
scheduling a different program



History

On the other hand, too frequent interrupts mean the OS is
forever being called and using CPU time, so less time is
available for the programs

This is another tradeoff: frequent interrupts for good interactive
behaviour, rare interrupts for good compute behaviour

Clever scheduling algorithms in the OS try to give high priority
but small slices of time to interactive programs; and lower
priority but larger slices to compute-intensive programs

A “large slice of time” means the OS will allow a program to
continue running for a relatively long amount of time before
scheduling a different program



History

On the other hand, too frequent interrupts mean the OS is
forever being called and using CPU time, so less time is
available for the programs

This is another tradeoff: frequent interrupts for good interactive
behaviour, rare interrupts for good compute behaviour

Clever scheduling algorithms in the OS try to give high priority
but small slices of time to interactive programs; and lower
priority but larger slices to compute-intensive programs

A “large slice of time” means the OS will allow a program to
continue running for a relatively long amount of time before
scheduling a different program



History

On the other hand, too frequent interrupts mean the OS is
forever being called and using CPU time, so less time is
available for the programs

This is another tradeoff: frequent interrupts for good interactive
behaviour, rare interrupts for good compute behaviour

Clever scheduling algorithms in the OS try to give high priority
but small slices of time to interactive programs; and lower
priority but larger slices to compute-intensive programs

A “large slice of time” means the OS will allow a program to
continue running for a relatively long amount of time before
scheduling a different program



History

A “small slice of time” means the OS will deschedule the
program after only a brief amount of running time

Thus, the OS can deal out CPU time to the programs in
appropriately sized chunks

This is all part of the scheduling decision computations that
happen potentially every time the OS runs

My PC is running at about 150 interrupts per second (timers
and other stuff)



History

A “small slice of time” means the OS will deschedule the
program after only a brief amount of running time

Thus, the OS can deal out CPU time to the programs in
appropriately sized chunks

This is all part of the scheduling decision computations that
happen potentially every time the OS runs

My PC is running at about 150 interrupts per second (timers
and other stuff)



History

A “small slice of time” means the OS will deschedule the
program after only a brief amount of running time

Thus, the OS can deal out CPU time to the programs in
appropriately sized chunks

This is all part of the scheduling decision computations that
happen potentially every time the OS runs

My PC is running at about 150 interrupts per second (timers
and other stuff)



History

A “small slice of time” means the OS will deschedule the
program after only a brief amount of running time

Thus, the OS can deal out CPU time to the programs in
appropriately sized chunks

This is all part of the scheduling decision computations that
happen potentially every time the OS runs

My PC is running at about 150 interrupts per second (timers
and other stuff)



History

Low power gadgets like to keep the number of interrupts down,
too, as it increases the amount of time the CPU can be idling in
low power sleep states

Tuning an OS is very difficult and depends critically on the
application

When an OS spends more time deciding what to do than doing
useful work, it is called thrashing

Many early OSs had a big problem with thrashing



History

Low power gadgets like to keep the number of interrupts down,
too, as it increases the amount of time the CPU can be idling in
low power sleep states

Tuning an OS is very difficult and depends critically on the
application

When an OS spends more time deciding what to do than doing
useful work, it is called thrashing

Many early OSs had a big problem with thrashing



History

Low power gadgets like to keep the number of interrupts down,
too, as it increases the amount of time the CPU can be idling in
low power sleep states

Tuning an OS is very difficult and depends critically on the
application

When an OS spends more time deciding what to do than doing
useful work, it is called thrashing

Many early OSs had a big problem with thrashing



History

Low power gadgets like to keep the number of interrupts down,
too, as it increases the amount of time the CPU can be idling in
low power sleep states

Tuning an OS is very difficult and depends critically on the
application

When an OS spends more time deciding what to do than doing
useful work, it is called thrashing

Many early OSs had a big problem with thrashing



Question

Exercise. To think on: should the OS be subject to timer
interrupts and preemption?


