
History

The programs and OS all live in the same computer memory:
we need some way of protecting programs and the OS from
each other

This has to be done by hardware support as it needs to be fast
and unobtrusive: potentially every memory access needs to be
checked

We shall start by looking at general hardware protection
mechanisms



History

The programs and OS all live in the same computer memory:
we need some way of protecting programs and the OS from
each other

This has to be done by hardware support as it needs to be fast
and unobtrusive: potentially every memory access needs to be
checked

We shall start by looking at general hardware protection
mechanisms



History

The programs and OS all live in the same computer memory:
we need some way of protecting programs and the OS from
each other

This has to be done by hardware support as it needs to be fast
and unobtrusive: potentially every memory access needs to be
checked

We shall start by looking at general hardware protection
mechanisms



History
Certain operations, like accessing tape or a printer, must be
reserved for use by the OS and not be accessible by a random
user program

So in the hardware (CPU) machine instructions are divided into
two (or more) classes

• Unprivileged operations. Like addition, jumps. Any
program can execute these

• Privileged operations. Like access peripherals, reboot the
machine. Only certain privileged programs can run these

And the processor can run in two (or more) modes

• Unprivileged. Normal computation, called user mode
• Privileged. For systems operation, called kernel mode



History
Certain operations, like accessing tape or a printer, must be
reserved for use by the OS and not be accessible by a random
user program

So in the hardware (CPU) machine instructions are divided into
two (or more) classes

• Unprivileged operations. Like addition, jumps. Any
program can execute these

• Privileged operations. Like access peripherals, reboot the
machine. Only certain privileged programs can run these

And the processor can run in two (or more) modes

• Unprivileged. Normal computation, called user mode
• Privileged. For systems operation, called kernel mode



History
Certain operations, like accessing tape or a printer, must be
reserved for use by the OS and not be accessible by a random
user program

So in the hardware (CPU) machine instructions are divided into
two (or more) classes

• Unprivileged operations. Like addition, jumps. Any
program can execute these

• Privileged operations. Like access peripherals, reboot the
machine. Only certain privileged programs can run these

And the processor can run in two (or more) modes

• Unprivileged. Normal computation, called user mode
• Privileged. For systems operation, called kernel mode



History
Certain operations, like accessing tape or a printer, must be
reserved for use by the OS and not be accessible by a random
user program

So in the hardware (CPU) machine instructions are divided into
two (or more) classes

• Unprivileged operations. Like addition, jumps. Any
program can execute these

• Privileged operations. Like access peripherals, reboot the
machine. Only certain privileged programs can run these

And the processor can run in two (or more) modes

• Unprivileged. Normal computation, called user mode
• Privileged. For systems operation, called kernel mode



History
Certain operations, like accessing tape or a printer, must be
reserved for use by the OS and not be accessible by a random
user program

So in the hardware (CPU) machine instructions are divided into
two (or more) classes

• Unprivileged operations. Like addition, jumps. Any
program can execute these

• Privileged operations. Like access peripherals, reboot the
machine. Only certain privileged programs can run these

And the processor can run in two (or more) modes

• Unprivileged. Normal computation, called user mode
• Privileged. For systems operation, called kernel mode



History
Certain operations, like accessing tape or a printer, must be
reserved for use by the OS and not be accessible by a random
user program

So in the hardware (CPU) machine instructions are divided into
two (or more) classes

• Unprivileged operations. Like addition, jumps. Any
program can execute these

• Privileged operations. Like access peripherals, reboot the
machine. Only certain privileged programs can run these

And the processor can run in two (or more) modes

• Unprivileged. Normal computation, called user mode

• Privileged. For systems operation, called kernel mode



History
Certain operations, like accessing tape or a printer, must be
reserved for use by the OS and not be accessible by a random
user program

So in the hardware (CPU) machine instructions are divided into
two (or more) classes

• Unprivileged operations. Like addition, jumps. Any
program can execute these

• Privileged operations. Like access peripherals, reboot the
machine. Only certain privileged programs can run these

And the processor can run in two (or more) modes

• Unprivileged. Normal computation, called user mode
• Privileged. For systems operation, called kernel mode



History

Modern processor architectures can have four or more levels of
privilege, but for the most part it is rare that more than two
levels are used in commodity computers

For example, the Intel x86 architecture has four rings. Ring 0
can execute any instruction, while Ring 3 is for user mode.
Rings 1 and 2 are rarely used these days

OS/2 used Ring 2

The latest Intel and AMD architectures added a Ring −1 (for
OS virtualisation)



History

Modern processor architectures can have four or more levels of
privilege, but for the most part it is rare that more than two
levels are used in commodity computers

For example, the Intel x86 architecture has four rings. Ring 0
can execute any instruction, while Ring 3 is for user mode.
Rings 1 and 2 are rarely used these days

OS/2 used Ring 2

The latest Intel and AMD architectures added a Ring −1 (for
OS virtualisation)



History

Modern processor architectures can have four or more levels of
privilege, but for the most part it is rare that more than two
levels are used in commodity computers

For example, the Intel x86 architecture has four rings. Ring 0
can execute any instruction, while Ring 3 is for user mode.
Rings 1 and 2 are rarely used these days

OS/2 used Ring 2

The latest Intel and AMD architectures added a Ring −1 (for
OS virtualisation)



History

Modern processor architectures can have four or more levels of
privilege, but for the most part it is rare that more than two
levels are used in commodity computers

For example, the Intel x86 architecture has four rings. Ring 0
can execute any instruction, while Ring 3 is for user mode.
Rings 1 and 2 are rarely used these days

OS/2 used Ring 2

The latest Intel and AMD architectures added a Ring −1 (for
OS virtualisation)



History

Note that privilege is a state of the processor, not the program,
but we tend to say “a privileged program” rather than “a
program running with the CPU in privileged mode”

If an unprivileged program (i.e., a program running in an
unprivileged mode) tries to execute a privileged operation the
hardware causes an interrupt (also called a system trap) and
sets the processor to privileged mode. The interrupt service
routine then jumps to the OS

The OS can then decide what to do

For example, the OS may decide to disallow the operation, and
kill the program (i.e., not run it any more)



History

Note that privilege is a state of the processor, not the program,
but we tend to say “a privileged program” rather than “a
program running with the CPU in privileged mode”

If an unprivileged program (i.e., a program running in an
unprivileged mode) tries to execute a privileged operation the
hardware causes an interrupt (also called a system trap) and
sets the processor to privileged mode. The interrupt service
routine then jumps to the OS

The OS can then decide what to do

For example, the OS may decide to disallow the operation, and
kill the program (i.e., not run it any more)



History

Note that privilege is a state of the processor, not the program,
but we tend to say “a privileged program” rather than “a
program running with the CPU in privileged mode”

If an unprivileged program (i.e., a program running in an
unprivileged mode) tries to execute a privileged operation the
hardware causes an interrupt (also called a system trap) and
sets the processor to privileged mode. The interrupt service
routine then jumps to the OS

The OS can then decide what to do

For example, the OS may decide to disallow the operation, and
kill the program (i.e., not run it any more)



History

Note that privilege is a state of the processor, not the program,
but we tend to say “a privileged program” rather than “a
program running with the CPU in privileged mode”

If an unprivileged program (i.e., a program running in an
unprivileged mode) tries to execute a privileged operation the
hardware causes an interrupt (also called a system trap) and
sets the processor to privileged mode. The interrupt service
routine then jumps to the OS

The OS can then decide what to do

For example, the OS may decide to disallow the operation, and
kill the program (i.e., not run it any more)



History
The system starts in kernel (privileged) mode

1. The OS decides which process to schedule
2. It uses a special jump-and-drop-privilege instruction to

start running the program
3. The program runs user mode (unprivileged)
4. The program finishes or decides it needs a system

resource
5. The program executes a special “call OS” (or syscall)

instruction that jumps to the OS
6. This enables privileged mode, so the OS regains control,

with privilege
7. The OS decides what to do next

Of course, even if the program does not do a syscall, a timer
interrupt will come along at some point, anyway



History
The system starts in kernel (privileged) mode

1. The OS decides which process to schedule

2. It uses a special jump-and-drop-privilege instruction to
start running the program

3. The program runs user mode (unprivileged)
4. The program finishes or decides it needs a system

resource
5. The program executes a special “call OS” (or syscall)

instruction that jumps to the OS
6. This enables privileged mode, so the OS regains control,

with privilege
7. The OS decides what to do next

Of course, even if the program does not do a syscall, a timer
interrupt will come along at some point, anyway



History
The system starts in kernel (privileged) mode

1. The OS decides which process to schedule
2. It uses a special jump-and-drop-privilege instruction to

start running the program

3. The program runs user mode (unprivileged)
4. The program finishes or decides it needs a system

resource
5. The program executes a special “call OS” (or syscall)

instruction that jumps to the OS
6. This enables privileged mode, so the OS regains control,

with privilege
7. The OS decides what to do next

Of course, even if the program does not do a syscall, a timer
interrupt will come along at some point, anyway



History
The system starts in kernel (privileged) mode

1. The OS decides which process to schedule
2. It uses a special jump-and-drop-privilege instruction to

start running the program
3. The program runs user mode (unprivileged)

4. The program finishes or decides it needs a system
resource

5. The program executes a special “call OS” (or syscall)
instruction that jumps to the OS

6. This enables privileged mode, so the OS regains control,
with privilege

7. The OS decides what to do next

Of course, even if the program does not do a syscall, a timer
interrupt will come along at some point, anyway



History
The system starts in kernel (privileged) mode

1. The OS decides which process to schedule
2. It uses a special jump-and-drop-privilege instruction to

start running the program
3. The program runs user mode (unprivileged)
4. The program finishes or decides it needs a system

resource

5. The program executes a special “call OS” (or syscall)
instruction that jumps to the OS

6. This enables privileged mode, so the OS regains control,
with privilege

7. The OS decides what to do next

Of course, even if the program does not do a syscall, a timer
interrupt will come along at some point, anyway



History
The system starts in kernel (privileged) mode

1. The OS decides which process to schedule
2. It uses a special jump-and-drop-privilege instruction to

start running the program
3. The program runs user mode (unprivileged)
4. The program finishes or decides it needs a system

resource
5. The program executes a special “call OS” (or syscall)

instruction that jumps to the OS

6. This enables privileged mode, so the OS regains control,
with privilege

7. The OS decides what to do next

Of course, even if the program does not do a syscall, a timer
interrupt will come along at some point, anyway



History
The system starts in kernel (privileged) mode

1. The OS decides which process to schedule
2. It uses a special jump-and-drop-privilege instruction to

start running the program
3. The program runs user mode (unprivileged)
4. The program finishes or decides it needs a system

resource
5. The program executes a special “call OS” (or syscall)

instruction that jumps to the OS
6. This enables privileged mode, so the OS regains control,

with privilege

7. The OS decides what to do next

Of course, even if the program does not do a syscall, a timer
interrupt will come along at some point, anyway



History
The system starts in kernel (privileged) mode

1. The OS decides which process to schedule
2. It uses a special jump-and-drop-privilege instruction to

start running the program
3. The program runs user mode (unprivileged)
4. The program finishes or decides it needs a system

resource
5. The program executes a special “call OS” (or syscall)

instruction that jumps to the OS
6. This enables privileged mode, so the OS regains control,

with privilege
7. The OS decides what to do next

Of course, even if the program does not do a syscall, a timer
interrupt will come along at some point, anyway



History
The system starts in kernel (privileged) mode

1. The OS decides which process to schedule
2. It uses a special jump-and-drop-privilege instruction to

start running the program
3. The program runs user mode (unprivileged)
4. The program finishes or decides it needs a system

resource
5. The program executes a special “call OS” (or syscall)

instruction that jumps to the OS
6. This enables privileged mode, so the OS regains control,

with privilege
7. The OS decides what to do next

Of course, even if the program does not do a syscall, a timer
interrupt will come along at some point, anyway



History

The syscall instruction always jumps to the same place in the
OS. So the program cannot use it to gain privilege for itself and
run its own code privileged

This to-ing and fro-ing between modes ensures that the OS is
running in privileged mode and the user program is running in
unprivileged mode

And the user program can never manage to get into privileged
mode as every transition to privileged mode is tied by the
hardware to a jump to the OS



History

The syscall instruction always jumps to the same place in the
OS. So the program cannot use it to gain privilege for itself and
run its own code privileged

This to-ing and fro-ing between modes ensures that the OS is
running in privileged mode and the user program is running in
unprivileged mode

And the user program can never manage to get into privileged
mode as every transition to privileged mode is tied by the
hardware to a jump to the OS



History

The syscall instruction always jumps to the same place in the
OS. So the program cannot use it to gain privilege for itself and
run its own code privileged

This to-ing and fro-ing between modes ensures that the OS is
running in privileged mode and the user program is running in
unprivileged mode

And the user program can never manage to get into privileged
mode as every transition to privileged mode is tied by the
hardware to a jump to the OS



History

Hardware

OS Kernel mode

System libraries

GUI User mode

Applications

There is a strict divide between kernel (OS) code and user
code, controlled by the hardware



History

Unless there are bugs in the kernel code. . .

Incidentally, the system libraries usually include a bunch of
“nice” interfaces to the syscalls: wrapping them to make using
them easier

E.g., the “open file” syscall might need certain values (file
name, etc.) to be placed in certain CPU registers; and the
“open file” opcode to be placed in a register before the syscall

The open system library function simply hides these details
from the programmer



History

Unless there are bugs in the kernel code. . .

Incidentally, the system libraries usually include a bunch of
“nice” interfaces to the syscalls: wrapping them to make using
them easier

E.g., the “open file” syscall might need certain values (file
name, etc.) to be placed in certain CPU registers; and the
“open file” opcode to be placed in a register before the syscall

The open system library function simply hides these details
from the programmer



History

Unless there are bugs in the kernel code. . .

Incidentally, the system libraries usually include a bunch of
“nice” interfaces to the syscalls: wrapping them to make using
them easier

E.g., the “open file” syscall might need certain values (file
name, etc.) to be placed in certain CPU registers; and the
“open file” opcode to be placed in a register before the syscall

The open system library function simply hides these details
from the programmer



History

Unless there are bugs in the kernel code. . .

Incidentally, the system libraries usually include a bunch of
“nice” interfaces to the syscalls: wrapping them to make using
them easier

E.g., the “open file” syscall might need certain values (file
name, etc.) to be placed in certain CPU registers; and the
“open file” opcode to be placed in a register before the syscall

The open system library function simply hides these details
from the programmer


