
History

Warning!

Switching back and forth between OS and programs is, in many
operating systems, a relatively time-consuming operation, due
to overheads that should become clear later

For now, just think of the overheads of saving and restoring the
CPU state of the running program, just as for an interrupt

These overheads are another reason why you don’t want timer
interrupts too often



History

Warning!

Switching back and forth between OS and programs is, in many
operating systems, a relatively time-consuming operation, due
to overheads that should become clear later

For now, just think of the overheads of saving and restoring the
CPU state of the running program, just as for an interrupt

These overheads are another reason why you don’t want timer
interrupts too often



History

Warning!

Switching back and forth between OS and programs is, in many
operating systems, a relatively time-consuming operation, due
to overheads that should become clear later

For now, just think of the overheads of saving and restoring the
CPU state of the running program, just as for an interrupt

These overheads are another reason why you don’t want timer
interrupts too often



History

The result of all this messing with modes is certain operations
like loading programs, or accessing hardware like a printer, are
only available to the OS

If an unprivileged program tries to access the printer directly,
that again trips an interrupt and the OS takes over anyway

Forcing access to hardware via the OS also provides protection
and management for other system resources, like access to
files or the network

In kernel mode, everything is possible

In user mode, only “safe” things are possible



History

The result of all this messing with modes is certain operations
like loading programs, or accessing hardware like a printer, are
only available to the OS

If an unprivileged program tries to access the printer directly,
that again trips an interrupt and the OS takes over anyway

Forcing access to hardware via the OS also provides protection
and management for other system resources, like access to
files or the network

In kernel mode, everything is possible

In user mode, only “safe” things are possible



History

The result of all this messing with modes is certain operations
like loading programs, or accessing hardware like a printer, are
only available to the OS

If an unprivileged program tries to access the printer directly,
that again trips an interrupt and the OS takes over anyway

Forcing access to hardware via the OS also provides protection
and management for other system resources, like access to
files or the network

In kernel mode, everything is possible

In user mode, only “safe” things are possible



History

The result of all this messing with modes is certain operations
like loading programs, or accessing hardware like a printer, are
only available to the OS

If an unprivileged program tries to access the printer directly,
that again trips an interrupt and the OS takes over anyway

Forcing access to hardware via the OS also provides protection
and management for other system resources, like access to
files or the network

In kernel mode, everything is possible

In user mode, only “safe” things are possible



History

The result of all this messing with modes is certain operations
like loading programs, or accessing hardware like a printer, are
only available to the OS

If an unprivileged program tries to access the printer directly,
that again trips an interrupt and the OS takes over anyway

Forcing access to hardware via the OS also provides protection
and management for other system resources, like access to
files or the network

In kernel mode, everything is possible

In user mode, only “safe” things are possible



History

Preemption and protection appeared in OSs for large
mainframe computers and Unix for minicomputers in the late
1960s

When microcomputers (IBM PC) arrived in the early 1980s
much of OS knowledge was thrown away and DOS (Disk
Operating System) was non-preemptive, single process and no
protection

This was because the earliest PC hardware did not support
such things (no rings)



History

Preemption and protection appeared in OSs for large
mainframe computers and Unix for minicomputers in the late
1960s

When microcomputers (IBM PC) arrived in the early 1980s
much of OS knowledge was thrown away and DOS (Disk
Operating System) was non-preemptive, single process and no
protection

This was because the earliest PC hardware did not support
such things (no rings)



History

Preemption and protection appeared in OSs for large
mainframe computers and Unix for minicomputers in the late
1960s

When microcomputers (IBM PC) arrived in the early 1980s
much of OS knowledge was thrown away and DOS (Disk
Operating System) was non-preemptive, single process and no
protection

This was because the earliest PC hardware did not support
such things (no rings)



History

Support was rapidly added in later PC hardware, but DOS and,
later, Windows 3.1 took no advantage of it: the lack of
protection meaning a single bad program could mess up the
OS and crash the entire computer

Windows NT was the first true OS from Microsoft (mid 1990s)
for PCs, possibly as much as a decade after other OSs (such
as Unix derivatives) were providing preemption and protection
on the same hardware

Incidentally, Microsoft’s need for backwards compatability with
these early systems is a major reason why they have so many
problems with security



History

Support was rapidly added in later PC hardware, but DOS and,
later, Windows 3.1 took no advantage of it: the lack of
protection meaning a single bad program could mess up the
OS and crash the entire computer

Windows NT was the first true OS from Microsoft (mid 1990s)
for PCs, possibly as much as a decade after other OSs (such
as Unix derivatives) were providing preemption and protection
on the same hardware

Incidentally, Microsoft’s need for backwards compatability with
these early systems is a major reason why they have so many
problems with security



History

Support was rapidly added in later PC hardware, but DOS and,
later, Windows 3.1 took no advantage of it: the lack of
protection meaning a single bad program could mess up the
OS and crash the entire computer

Windows NT was the first true OS from Microsoft (mid 1990s)
for PCs, possibly as much as a decade after other OSs (such
as Unix derivatives) were providing preemption and protection
on the same hardware

Incidentally, Microsoft’s need for backwards compatability with
these early systems is a major reason why they have so many
problems with security


