History

The next issue is memory protection: this must stop a program
from writing and/or reading the memory used by another
program or by the OS



History

The next issue is memory protection: this must stop a program
from writing and/or reading the memory used by another
program or by the OS

The OS must be allowed to read and write any part of memory



History

The next issue is memory protection: this must stop a program
from writing and/or reading the memory used by another
program or by the OS

The OS must be allowed to read and write any part of memory

Again, there must be hardware support to do this to make it fast



History

The next issue is memory protection: this must stop a program
from writing and/or reading the memory used by another
program or by the OS

The OS must be allowed to read and write any part of memory
Again, there must be hardware support to do this to make it fast

There is a table of flags in a special piece of hardware: the
memory management unit (MMU). These flags say whether the
currently running (user mode) program can read or write a
given area of memory



History

interrupt

address

address

CPU

memory bus

Krowowr




History

interrupt

address address

CPU MMU

memory bus

Krowowr

One bit to say if an area is readable; another to say if it is
writable



History

interrupt

address address

CPU MMU

memory bus

Krowowr

One bit to say if an area is readable; another to say if it is
writable

It is often useful to separate ability to read from ability to write



History

Setting these flags in the MMU is a privileged operation, of
course



History

Setting these flags in the MMU is a privileged operation, of
course

And if an unprivileged program tries to read or write to an area
of memory for which it does not have the required permission
(say some other program’s or the OS’s memory) the MMU
raises an interrupt and the OS takes control again



History

Setting these flags in the MMU is a privileged operation, of
course

And if an unprivileged program tries to read or write to an area
of memory for which it does not have the required permission
(say some other program’s or the OS’s memory) the MMU
raises an interrupt and the OS takes control again

It would not be feasible to have control like this on a
byte-by-byte level, so memory is divided into blocks called
pages



History

Setting these flags in the MMU is a privileged operation, of
course

And if an unprivileged program tries to read or write to an area
of memory for which it does not have the required permission
(say some other program’s or the OS’s memory) the MMU
raises an interrupt and the OS takes control again

It would not be feasible to have control like this on a
byte-by-byte level, so memory is divided into blocks called

pages

A page is just a contiguous area of memory: 4096 bytes is
popular on modern machines, though current hardware can
support 4MB pages



History

A page is marked as read/writable as a whole: this makes this
technique practical



History

A page is marked as read/writable as a whole: this makes this
technique practical

Exercise. How many flags (bits) are needed to cover 2GB?
How many bytes of flags does that correspond to?



History

A page is marked as read/writable as a whole: this makes this
technique practical

Exercise. How many flags (bits) are needed to cover 2GB?
How many bytes of flags does that correspond to?

Note that these flags are part of a program’s state that must be
saved and restored when that program is re-scheduled



History

A page is marked as read/writable as a whole: this makes this
technique practical

Exercise. How many flags (bits) are needed to cover 2GB?
How many bytes of flags does that correspond to?

Note that these flags are part of a program’s state that must be
saved and restored when that program is re-scheduled

There is usually also an executable flag: can you execute code
from this memory address?



History

Every read or write to memory is checked by the MMU before it
is allowed: this means the hardware that does this check has to
be very fast



History

Every read or write to memory is checked by the MMU before it
is allowed: this means the hardware that does this check has to
be very fast

We shall not be going into this in depth here, because in
modern machines this is enhanced by the notion of virtual
memory



History

Every read or write to memory is checked by the MMU before it
is allowed: this means the hardware that does this check has to
be very fast

We shall not be going into this in depth here, because in
modern machines this is enhanced by the notion of virtual
memory

This we shall cover later, but it builds on the ideas above and
provides a much more flexible method of protection



History

Thus we can see some of the requirements of an operating
system



History

Thus we can see some of the requirements of an operating
system

» Resource management



History

Thus we can see some of the requirements of an operating
system

e Resource management
e in particular program scheduling (CPU time)



History

Thus we can see some of the requirements of an operating
system

» Resource management

e in particular program scheduling (CPU time)
¢ also disk, network, ...



History

Thus we can see some of the requirements of an operating
system

» Resource management

e in particular program scheduling (CPU time)
¢ also disk, network, ...

e Protection



History

Thus we can see some of the requirements of an operating
system

» Resource management

e in particular program scheduling (CPU time)
¢ also disk, network, ...

e Protection
e in particular memory



History

Thus we can see some of the requirements of an operating
system

e Resource management
e in particular program scheduling (CPU time)
¢ also disk, network, ...

e Protection

e in particular memory
e also files, network data, ...



History

Thus we can see some of the requirements of an operating
system

» Resource management

e in particular program scheduling (CPU time)
¢ also disk, network, ...

e Protection

e in particular memory
e also files, network data, ...

e Efficiency



History

Thus we can see some of the requirements of an operating
system

» Resource management

e in particular program scheduling (CPU time)
¢ also disk, network, ...

e Protection

e in particular memory
o also files, network data, ...

e Efficiency
¢ in particular with regards to time



History

Thus we can see some of the requirements of an operating
system

e Resource management
e in particular program scheduling (CPU time)
¢ also disk, network, ...
e Protection
e in particular memory
o also files, network data, ...
e Efficiency

¢ in particular with regards to time
e also size, energy, ...



History

By making privileged operations only available to the OS, the
OS can enforce policy on access and ensure fair distribution of
shared resources



History

In current large OSs we have:



History

In current large OSs we have:

e Windows. Preemptive multitasking from Windows NT
(1996) onwards. Previously (Windows 95 etc.) was little
more than a monitor with a pretty interface on top



History

In current large OSs we have:

e Windows. Preemptive multitasking from Windows NT
(1996) onwards. Previously (Windows 95 etc.) was little
more than a monitor with a pretty interface on top

e Linux. A Unix re-implementation. Preemptive multitasking
from inception (1991). (Recall that Unix had preemption
from early 1970s)



History

In current large OSs we have:

e Windows. Preemptive multitasking from Windows NT
(1996) onwards. Previously (Windows 95 etc.) was little
more than a monitor with a pretty interface on top

e Linux. A Unix re-implementation. Preemptive multitasking
from inception (1991). (Recall that Unix had preemption
from early 1970s)

e MacOS. MacOS X is a Unix derivative (BSD), from 1999
onwards. Earlier systems (MacOS 9 and earlier) were
completely different, with no preemption, only cooperative



History

e Solaris. A Unix derivative (System V). Preemptive
multitasking from inception (1992), an extensive rewrite of
the earlier SunOS (1983), another Unix variant (BSD)



History

e Solaris. A Unix derivative (System V). Preemptive
multitasking from inception (1992), an extensive rewrite of
the earlier SunOS (1983), another Unix variant (BSD)

e OS/2. Initially from Microsoft and IBM (1997), then just IBM
as Microsoft went off to do its own thing. Intended to be the
followup to DOS. Multitasking when the hardware could
support it: OS/2 2.0 (1992) could run multiple copies of
DOS/Windows simultaneously. Previously used a lot in
bank ATMs (until IBM ended support in 2006). OS/2 3.0
became Windows NT



History

And thousands of others: but the major players in the PC
market are either derived from Windows NT, or from Unix



History

And thousands of others: but the major players in the PC
market are either derived from Windows NT, or from Unix

In contrast, in the embedded market are things are much more
mixed, with both purpose-built OSs and slimmed-down
derivatives of the general-purpose OSs all having major
representation



History

With Windows, rebooting is the first thing an admin
tries to fix a problem; with Unix, it’s the last

Anon.



