
Processes

We now look at the programs we want to run

The word process is used to describe

• the executable code and
• its data and
• the associated information the OS needs to run it

Note this is different from processor and program

Other words: task, job

Processes

We now look at the programs we want to run

The word process is used to describe

• the executable code and
• its data and
• the associated information the OS needs to run it

Note this is different from processor and program

Other words: task, job

Processes

We now look at the programs we want to run

The word process is used to describe

• the executable code and
• its data and
• the associated information the OS needs to run it

Note this is different from processor and program

Other words: task, job

Processes

We now look at the programs we want to run

The word process is used to describe

• the executable code and
• its data and
• the associated information the OS needs to run it

Note this is different from processor and program

Other words: task, job

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes

A single program might possibly use more than one process

For example, one process to compute a picture and another to
display it: this is called structure by process

Though this is perhaps the exception, these days. Quite often a
program uses just one process

And structuring can be done by using multiple threads of
execution, often running in parallel

But it is coming back in Web browsers using one process per
tab to provide security isolation between tabs

Note to think about later: Web browsers use OS process
protection and isolation mechanisms to provide tab protection
and isolation

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• flags from the MMU
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is

• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• flags from the MMU
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is

• what permissions it has on those parts of memory (MMU
flags)

• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• flags from the MMU
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)

• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• flags from the MMU
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated

• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• flags from the MMU
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used

• similarly for other shared resources, e.g., the amount of I/O
or networking done

• the cpu’s PC and registers
• flags from the MMU
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done

• the cpu’s PC and registers
• flags from the MMU
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers

• flags from the MMU
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• flags from the MMU

• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• flags from the MMU
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes
An OS needs to keep a lots of information about a process,
including

• where in memory its code is
• where in memory its data is
• what permissions it has on those parts of memory (MMU

flags)
• how much time it is allocated
• how much time it has used
• similarly for other shared resources, e.g., the amount of I/O

or networking done
• the cpu’s PC and registers
• flags from the MMU
• and lots more as we shall see later

It uses this information to schedule and protect the process

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but some other process (or the

OS) is currently using the CPU
4. Blocked. Waiting for some event or resource to become

available. E.g., waiting for a block of data to arrive from the
disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created

2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but some other process (or the

OS) is currently using the CPU
4. Blocked. Waiting for some event or resource to become

available. E.g., waiting for a block of data to arrive from the
disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU

3. Ready. It is ready to run, but some other process (or the
OS) is currently using the CPU

4. Blocked. Waiting for some event or resource to become
available. E.g., waiting for a block of data to arrive from the
disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but some other process (or the

OS) is currently using the CPU

4. Blocked. Waiting for some event or resource to become
available. E.g., waiting for a block of data to arrive from the
disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but some other process (or the

OS) is currently using the CPU
4. Blocked. Waiting for some event or resource to become

available. E.g., waiting for a block of data to arrive from the
disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but some other process (or the

OS) is currently using the CPU
4. Blocked. Waiting for some event or resource to become

available. E.g., waiting for a block of data to arrive from the
disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

A process can be in one of several states. In a simplified
model, the five main states are

1. New. A process that has just been created
2. Running. It is currently executing on the CPU
3. Ready. It is ready to run, but some other process (or the

OS) is currently using the CPU
4. Blocked. Waiting for some event or resource to become

available. E.g., waiting for a block of data to arrive from the
disk

5. Exit. A process that has finished

Real OSs will have more states than this, but these are the
important ones

Processes

We shall assume, for simplicity, that we have just one processor

The OS will have lists of processes in each state, so the
scheduling decision is making the choice of which process to
move between which states

Again, in real OSs, these will not be simple lists. They might be
arranged in priority order, or might be some more sophisticated
datastructure: e.g., a pair of lists, one for real-time processes
and the other for non-real-time; or a tree

Processes

We shall assume, for simplicity, that we have just one processor

The OS will have lists of processes in each state, so the
scheduling decision is making the choice of which process to
move between which states

Again, in real OSs, these will not be simple lists. They might be
arranged in priority order, or might be some more sophisticated
datastructure: e.g., a pair of lists, one for real-time processes
and the other for non-real-time; or a tree

Processes

We shall assume, for simplicity, that we have just one processor

The OS will have lists of processes in each state, so the
scheduling decision is making the choice of which process to
move between which states

Again, in real OSs, these will not be simple lists. They might be
arranged in priority order, or might be some more sophisticated
datastructure: e.g., a pair of lists, one for real-time processes
and the other for non-real-time; or a tree

Processes

Example: in Unixes, processes are arranged in trees

systemd-+-ModemManager---2*[{ModemManager}]

|-NetworkManager---2*[{NetworkManager}]

|-Thunar---3*[{Thunar}]

|-accounts-daemon---2*[{accounts-daemon}]

|-agetty

|-atd

|-auditd---{auditd}

|-avahi-daemon

|-chrome-+-2*[cat]

| |-chrome-+-chrome-+-chrome---12*[{chrome}]

| | | |-chrome---19*[{chrome}]

| | | |-3*[chrome---11*[{chrome}]]

| | | |-chrome---15*[{chrome}]

| | | |-chrome---17*[{chrome}]

| | | |-chrome---16*[{chrome}]

| | | |-chrome---10*[{chrome}]

| | | ‘-chrome---23*[{chrome}]

| | ‘-nacl_helper

| |-chrome-+-chrome

| | ‘-7*[{chrome}]

Processes

This allows control of a whole bunch of processes as a group

A group within the tree has a session leader

For example, killing the session leader would typically kill all the
processes in the group

In the example above, exiting the chrome session leader would
kill it and all its subprocesses

Processes

This allows control of a whole bunch of processes as a group

A group within the tree has a session leader

For example, killing the session leader would typically kill all the
processes in the group

In the example above, exiting the chrome session leader would
kill it and all its subprocesses

Processes

This allows control of a whole bunch of processes as a group

A group within the tree has a session leader

For example, killing the session leader would typically kill all the
processes in the group

In the example above, exiting the chrome session leader would
kill it and all its subprocesses

Processes

This allows control of a whole bunch of processes as a group

A group within the tree has a session leader

For example, killing the session leader would typically kill all the
processes in the group

In the example above, exiting the chrome session leader would
kill it and all its subprocesses

