
Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process
• Insert PCB into the relevant list

This is what happens in the New state; it can now move to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first



Processes

Process creation is quite involved

• Allocate and create PCB structure

• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process
• Insert PCB into the relevant list

This is what happens in the New state; it can now move to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first



Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID

• Determine and allocate the necessary resources (in
particular memory)

• Determine the initial priority of the process
• Insert PCB into the relevant list

This is what happens in the New state; it can now move to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first



Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)

• Determine the initial priority of the process
• Insert PCB into the relevant list

This is what happens in the New state; it can now move to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first



Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process

• Insert PCB into the relevant list

This is what happens in the New state; it can now move to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first



Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process
• Insert PCB into the relevant list

This is what happens in the New state; it can now move to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first



Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process
• Insert PCB into the relevant list

This is what happens in the New state; it can now move to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first



Processes

Process creation is quite involved

• Allocate and create PCB structure
• Find a free PID
• Determine and allocate the necessary resources (in

particular memory)
• Determine the initial priority of the process
• Insert PCB into the relevant list

This is what happens in the New state; it can now move to
Ready

Again, the process might not start running immediately, as
there could be some higher priority process that must run first



Processes
Most processes are created (forked/spawned) by other
processes: of course, only the OS can actually create
processes

A user process that wants a new process will ask the OS to
create one (using a syscall)

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled



Processes
Most processes are created (forked/spawned) by other
processes: of course, only the OS can actually create
processes

A user process that wants a new process will ask the OS to
create one (using a syscall)

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled



Processes
Most processes are created (forked/spawned) by other
processes: of course, only the OS can actually create
processes

A user process that wants a new process will ask the OS to
create one (using a syscall)

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled



Processes
Most processes are created (forked/spawned) by other
processes: of course, only the OS can actually create
processes

A user process that wants a new process will ask the OS to
create one (using a syscall)

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled



Processes
Most processes are created (forked/spawned) by other
processes: of course, only the OS can actually create
processes

A user process that wants a new process will ask the OS to
create one (using a syscall)

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled



Processes
Most processes are created (forked/spawned) by other
processes: of course, only the OS can actually create
processes

A user process that wants a new process will ask the OS to
create one (using a syscall)

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled



Processes
Most processes are created (forked/spawned) by other
processes: of course, only the OS can actually create
processes

A user process that wants a new process will ask the OS to
create one (using a syscall)

Processes use resources like memory and CPU, so the OS
must be involved

• A process decides it wants to start another process. E.g., a
GUI process as a response to a user clicking on an icon

• It calls the OS kernel (syscall), telling it what process it
want to start (e.g., “start the browser program”)

• The OS can now create a new process according to the
specifications given

• The new process can now be scheduled



Processes

The original calling process will generally be the parent of the
new process

Of course, the OS can choose not to create the new process if
some policy says not to, or there is not enough memory, or
some other reason

In that case, the original process usually gets a message back
from the OS (via the value returned from the syscall) explaining
the problem



Processes

The original calling process will generally be the parent of the
new process

Of course, the OS can choose not to create the new process if
some policy says not to, or there is not enough memory, or
some other reason

In that case, the original process usually gets a message back
from the OS (via the value returned from the syscall) explaining
the problem



Processes

The original calling process will generally be the parent of the
new process

Of course, the OS can choose not to create the new process if
some policy says not to, or there is not enough memory, or
some other reason

In that case, the original process usually gets a message back
from the OS (via the value returned from the syscall) explaining
the problem



Processes

The question arises: if processes are created by other
processes, how do we get started?

This is the bootstrapping problem

In Unix, there is an ancestor process, sometimes called init or
systemd, PID 1, that gets created at switch-on time and it
serves to create all other processes

Bootstrapping is complicated as it has to determine the
hardware and how it is connected and initialise it, set up all the
appropriate datastructures the OS needs, start lots of service
processes running, all before it can begin to look at what the
user wants

This is quite often simply called booting



Processes

The question arises: if processes are created by other
processes, how do we get started?

This is the bootstrapping problem

In Unix, there is an ancestor process, sometimes called init or
systemd, PID 1, that gets created at switch-on time and it
serves to create all other processes

Bootstrapping is complicated as it has to determine the
hardware and how it is connected and initialise it, set up all the
appropriate datastructures the OS needs, start lots of service
processes running, all before it can begin to look at what the
user wants

This is quite often simply called booting



Processes

The question arises: if processes are created by other
processes, how do we get started?

This is the bootstrapping problem

In Unix, there is an ancestor process, sometimes called init or
systemd, PID 1, that gets created at switch-on time and it
serves to create all other processes

Bootstrapping is complicated as it has to determine the
hardware and how it is connected and initialise it, set up all the
appropriate datastructures the OS needs, start lots of service
processes running, all before it can begin to look at what the
user wants

This is quite often simply called booting



Processes

The question arises: if processes are created by other
processes, how do we get started?

This is the bootstrapping problem

In Unix, there is an ancestor process, sometimes called init or
systemd, PID 1, that gets created at switch-on time and it
serves to create all other processes

Bootstrapping is complicated as it has to determine the
hardware and how it is connected and initialise it, set up all the
appropriate datastructures the OS needs, start lots of service
processes running, all before it can begin to look at what the
user wants

This is quite often simply called booting



Processes

The question arises: if processes are created by other
processes, how do we get started?

This is the bootstrapping problem

In Unix, there is an ancestor process, sometimes called init or
systemd, PID 1, that gets created at switch-on time and it
serves to create all other processes

Bootstrapping is complicated as it has to determine the
hardware and how it is connected and initialise it, set up all the
appropriate datastructures the OS needs, start lots of service
processes running, all before it can begin to look at what the
user wants

This is quite often simply called booting



Processes

How does process 1 get started?

To get going, the system needs a small chunk of non-volatile
memory, i.e., memory that doesn’t lose its content when power
is removed

The details of booting are very messy, but in essence:

• When the machine is switched on the processor jumps to a
specific location in the non-volatile memory (0xFFFF0000
on PCs)

• At this location is a small program (the boot loader, or
bootstrap loader ) that is just big enough to load and run a
larger program (from bigger non-volatile memory, or
perhaps disk)



Processes

How does process 1 get started?

To get going, the system needs a small chunk of non-volatile
memory, i.e., memory that doesn’t lose its content when power
is removed

The details of booting are very messy, but in essence:

• When the machine is switched on the processor jumps to a
specific location in the non-volatile memory (0xFFFF0000
on PCs)

• At this location is a small program (the boot loader, or
bootstrap loader ) that is just big enough to load and run a
larger program (from bigger non-volatile memory, or
perhaps disk)



Processes

How does process 1 get started?

To get going, the system needs a small chunk of non-volatile
memory, i.e., memory that doesn’t lose its content when power
is removed

The details of booting are very messy, but in essence:

• When the machine is switched on the processor jumps to a
specific location in the non-volatile memory (0xFFFF0000
on PCs)

• At this location is a small program (the boot loader, or
bootstrap loader ) that is just big enough to load and run a
larger program (from bigger non-volatile memory, or
perhaps disk)



Processes

How does process 1 get started?

To get going, the system needs a small chunk of non-volatile
memory, i.e., memory that doesn’t lose its content when power
is removed

The details of booting are very messy, but in essence:

• When the machine is switched on the processor jumps to a
specific location in the non-volatile memory (0xFFFF0000
on PCs)

• At this location is a small program (the boot loader, or
bootstrap loader ) that is just big enough to load and run a
larger program (from bigger non-volatile memory, or
perhaps disk)



Processes

How does process 1 get started?

To get going, the system needs a small chunk of non-volatile
memory, i.e., memory that doesn’t lose its content when power
is removed

The details of booting are very messy, but in essence:

• When the machine is switched on the processor jumps to a
specific location in the non-volatile memory (0xFFFF0000
on PCs)

• At this location is a small program (the boot loader, or
bootstrap loader ) that is just big enough to load and run a
larger program (from bigger non-volatile memory, or
perhaps disk)



Processes

• This might be repeated until we have a big enough
program running that is capable of reading from, say, the
start of the hard drive

• This is often itself another bootstrap program (NTLDR, and
GRUB are common) that might give the user a choice of
operating systems to load, but usually just goes ahead and
loads one from disk (or network, or whatever)

• This may require the bootloader to have some
understanding of how data is laid out on the disk, which
itself is non-trivial (see later)

• Eventually, enough of the operating system kernel is
loaded that it get itself going properly, e.g., start init



Processes

• This might be repeated until we have a big enough
program running that is capable of reading from, say, the
start of the hard drive

• This is often itself another bootstrap program (NTLDR, and
GRUB are common) that might give the user a choice of
operating systems to load, but usually just goes ahead and
loads one from disk (or network, or whatever)

• This may require the bootloader to have some
understanding of how data is laid out on the disk, which
itself is non-trivial (see later)

• Eventually, enough of the operating system kernel is
loaded that it get itself going properly, e.g., start init



Processes

• This might be repeated until we have a big enough
program running that is capable of reading from, say, the
start of the hard drive

• This is often itself another bootstrap program (NTLDR, and
GRUB are common) that might give the user a choice of
operating systems to load, but usually just goes ahead and
loads one from disk (or network, or whatever)

• This may require the bootloader to have some
understanding of how data is laid out on the disk, which
itself is non-trivial (see later)

• Eventually, enough of the operating system kernel is
loaded that it get itself going properly, e.g., start init



Processes

• This might be repeated until we have a big enough
program running that is capable of reading from, say, the
start of the hard drive

• This is often itself another bootstrap program (NTLDR, and
GRUB are common) that might give the user a choice of
operating systems to load, but usually just goes ahead and
loads one from disk (or network, or whatever)

• This may require the bootloader to have some
understanding of how data is laid out on the disk, which
itself is non-trivial (see later)

• Eventually, enough of the operating system kernel is
loaded that it get itself going properly, e.g., start init



Processes

Exercise. Some machines do not have disks (or other
persistent storage), for example thin clients. Read about how
these can boot


