
Scheduling
Algorithms

Multilevel Feedback Queueing

Can be used when we have no estimates on run times

• There are multiple FIFO run queues, RQ0, RQ1, . . . RQn.
with RQ0 the highest priority, RQn, the lowest

• Queues are processed in FIFO fashion, in priority order, so
RQ1 does not get a look-in until RQ0 has emptied

• Each process is allocated a quantum of time (a timeslice)
• A new process is admitted to the end (last) of RQ0

• When the running process has used its quantum of time, it
is interrupted and placed at the end of the next lower
queue (demoted)



Scheduling
Algorithms

Multilevel Feedback Queueing

Can be used when we have no estimates on run times

• There are multiple FIFO run queues, RQ0, RQ1, . . . RQn.
with RQ0 the highest priority, RQn, the lowest

• Queues are processed in FIFO fashion, in priority order, so
RQ1 does not get a look-in until RQ0 has emptied

• Each process is allocated a quantum of time (a timeslice)
• A new process is admitted to the end (last) of RQ0

• When the running process has used its quantum of time, it
is interrupted and placed at the end of the next lower
queue (demoted)



Scheduling
Algorithms

Multilevel Feedback Queueing

Can be used when we have no estimates on run times

• There are multiple FIFO run queues, RQ0, RQ1, . . . RQn.
with RQ0 the highest priority, RQn, the lowest

• Queues are processed in FIFO fashion, in priority order, so
RQ1 does not get a look-in until RQ0 has emptied

• Each process is allocated a quantum of time (a timeslice)
• A new process is admitted to the end (last) of RQ0

• When the running process has used its quantum of time, it
is interrupted and placed at the end of the next lower
queue (demoted)



Scheduling
Algorithms

Multilevel Feedback Queueing

Can be used when we have no estimates on run times

• There are multiple FIFO run queues, RQ0, RQ1, . . . RQn.
with RQ0 the highest priority, RQn, the lowest

• Queues are processed in FIFO fashion, in priority order, so
RQ1 does not get a look-in until RQ0 has emptied

• Each process is allocated a quantum of time (a timeslice)
• A new process is admitted to the end (last) of RQ0

• When the running process has used its quantum of time, it
is interrupted and placed at the end of the next lower
queue (demoted)



Scheduling
Algorithms

Multilevel Feedback Queueing

Can be used when we have no estimates on run times

• There are multiple FIFO run queues, RQ0, RQ1, . . . RQn.
with RQ0 the highest priority, RQn, the lowest

• Queues are processed in FIFO fashion, in priority order, so
RQ1 does not get a look-in until RQ0 has emptied

• Each process is allocated a quantum of time (a timeslice)

• A new process is admitted to the end (last) of RQ0

• When the running process has used its quantum of time, it
is interrupted and placed at the end of the next lower
queue (demoted)



Scheduling
Algorithms

Multilevel Feedback Queueing

Can be used when we have no estimates on run times

• There are multiple FIFO run queues, RQ0, RQ1, . . . RQn.
with RQ0 the highest priority, RQn, the lowest

• Queues are processed in FIFO fashion, in priority order, so
RQ1 does not get a look-in until RQ0 has emptied

• Each process is allocated a quantum of time (a timeslice)
• A new process is admitted to the end (last) of RQ0

• When the running process has used its quantum of time, it
is interrupted and placed at the end of the next lower
queue (demoted)



Scheduling
Algorithms

Multilevel Feedback Queueing

Can be used when we have no estimates on run times

• There are multiple FIFO run queues, RQ0, RQ1, . . . RQn.
with RQ0 the highest priority, RQn, the lowest

• Queues are processed in FIFO fashion, in priority order, so
RQ1 does not get a look-in until RQ0 has emptied

• Each process is allocated a quantum of time (a timeslice)
• A new process is admitted to the end (last) of RQ0

• When the running process has used its quantum of time, it
is interrupted and placed at the end of the next lower
queue (demoted)



Scheduling
Algorithms

Multilevel Feedback Queueing

• If the running process relinquishes voluntarily before the
end of the quantum, it gets placed back at the end of the
same queue

• If it blocks for I/O, it will be promoted and placed at the end
of the next higher queue (when ready to run)

• Demoted processes in RQn get placed back at the end of
RQn



Scheduling
Algorithms

Multilevel Feedback Queueing

• If the running process relinquishes voluntarily before the
end of the quantum, it gets placed back at the end of the
same queue

• If it blocks for I/O, it will be promoted and placed at the end
of the next higher queue (when ready to run)

• Demoted processes in RQn get placed back at the end of
RQn



Scheduling
Algorithms

Multilevel Feedback Queueing

• If the running process relinquishes voluntarily before the
end of the quantum, it gets placed back at the end of the
same queue

• If it blocks for I/O, it will be promoted and placed at the end
of the next higher queue (when ready to run)

• Demoted processes in RQn get placed back at the end of
RQn



Scheduling
Algorithms

Multilevel Feedback Queueing

RQ0

RQ1

RQn

always

relinquish

relinquish

end of quantum

end of quantum

admit

tail head

CPU

Multilevel Feedback Queueing



Scheduling
Algorithms

Multilevel Feedback Queueing

• This gives newer, shorter processes priority over older,
longer ones

• I/O processes tend to rise, getting more priority
• Compute processes tend to sink, getting less

Old processes tend to starve with this, so a variant doubles the
quantum for each level: RQ0 gets 1, RQ1 gets 2, RQ2 gets 4,
and so on

So compute intensive processes get a big bite, whenever they
get a chance, at the potential cost of responsiveness to a new
process



Scheduling
Algorithms

Multilevel Feedback Queueing

• This gives newer, shorter processes priority over older,
longer ones

• I/O processes tend to rise, getting more priority

• Compute processes tend to sink, getting less

Old processes tend to starve with this, so a variant doubles the
quantum for each level: RQ0 gets 1, RQ1 gets 2, RQ2 gets 4,
and so on

So compute intensive processes get a big bite, whenever they
get a chance, at the potential cost of responsiveness to a new
process



Scheduling
Algorithms

Multilevel Feedback Queueing

• This gives newer, shorter processes priority over older,
longer ones

• I/O processes tend to rise, getting more priority
• Compute processes tend to sink, getting less

Old processes tend to starve with this, so a variant doubles the
quantum for each level: RQ0 gets 1, RQ1 gets 2, RQ2 gets 4,
and so on

So compute intensive processes get a big bite, whenever they
get a chance, at the potential cost of responsiveness to a new
process



Scheduling
Algorithms

Multilevel Feedback Queueing

• This gives newer, shorter processes priority over older,
longer ones

• I/O processes tend to rise, getting more priority
• Compute processes tend to sink, getting less

Old processes tend to starve with this, so a variant doubles the
quantum for each level: RQ0 gets 1, RQ1 gets 2, RQ2 gets 4,
and so on

So compute intensive processes get a big bite, whenever they
get a chance, at the potential cost of responsiveness to a new
process



Scheduling
Algorithms

Multilevel Feedback Queueing

• This gives newer, shorter processes priority over older,
longer ones

• I/O processes tend to rise, getting more priority
• Compute processes tend to sink, getting less

Old processes tend to starve with this, so a variant doubles the
quantum for each level: RQ0 gets 1, RQ1 gets 2, RQ2 gets 4,
and so on

So compute intensive processes get a big bite, whenever they
get a chance, at the potential cost of responsiveness to a new
process



Scheduling
Algorithms

Another advantage of MFQ is that it does not need to do any
arithmetic: it just moves processes between queues

Remember, in early machines, arithmetic was a lot more
time-consuming than it is now

This scheme was used by Windows NT and Unix derivatives,
as we shall see next



Scheduling
Algorithms

Another advantage of MFQ is that it does not need to do any
arithmetic: it just moves processes between queues

Remember, in early machines, arithmetic was a lot more
time-consuming than it is now

This scheme was used by Windows NT and Unix derivatives,
as we shall see next



Scheduling
Algorithms

Another advantage of MFQ is that it does not need to do any
arithmetic: it just moves processes between queues

Remember, in early machines, arithmetic was a lot more
time-consuming than it is now

This scheme was used by Windows NT and Unix derivatives,
as we shall see next


