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Multilevel Feedback Queueing

Can be used when we have no estimates on run times

• There are multiple FIFO run queues, RQ0, RQ1, . . . RQn.
with RQ0 the highest priority, RQn, the lowest

• Queues are processed in FIFO fashion, in priority order, so
RQ1 does not get a look-in until RQ0 has emptied

• Each process is allocated a quantum of time (a timeslice)
• A new process is admitted to the end (last) of RQ0

• When the running process has used its quantum of time, it
is interrupted and placed at the end of the next lower
queue (demoted)
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Multilevel Feedback Queueing

• If the running process relinquishes voluntarily before the
end of the quantum, it gets placed back at the end of the
same queue

• If it blocks for I/O, it will be promoted and placed at the end
of the next higher queue (when ready to run)

• Demoted processes in RQn get placed back at the end of
RQn
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• This gives newer, shorter processes priority over older,
longer ones

• I/O processes tend to rise, getting more priority
• Compute processes tend to sink, getting less

Old processes tend to starve with this, so a variant doubles the
quantum for each level: RQ0 gets 1, RQ1 gets 2, RQ2 gets 4,
and so on

So compute intensive processes get a big bite, whenever they
get a chance, at the potential cost of responsiveness to a new
process
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Another advantage of MFQ is that it does not need to do any
arithmetic: it just moves processes between queues

Remember, in early machines, arithmetic was a lot more
time-consuming than it is now

This scheme was used by Windows NT and Unix derivatives,
as we shall see next
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