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When we say “a process waits for the kernel” we mean, of
course, something entirely different

What actually happens is the kernel marks the process as
blocked, and does not consider it for scheduling until the
requested resource has arrived

There is no “waiting” happening: the process does not run
when blocked
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• The OS takes over and gives P1 exclusive access to D2
(not a smart OS)

• The OS decides to run P2
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must wait until P2 has finished with it; P1 moves to state
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• P2 runs and makes a request for access to D2

• The OS takes over and notices P1 has locked D2, so P2
must wait until P1 has finished with it; P2 moves to state
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• Now both P1 and P2 are blocked and the OS can’t run
either process!
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• there is more than one resource
• there is more than one process12

1It could technically happen with just one process, but that would be quite
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2I’ve seen it happen


