
Scheduling

Scheduling the CPU is clearly a difficult problem

It requires the collection and manipulation of many statistics
about processes

Scheduling one resource (the CPU) is hard enough

We now look at a new problem that arises when we want to
schedule multiple resources



Scheduling

Scheduling the CPU is clearly a difficult problem

It requires the collection and manipulation of many statistics
about processes

Scheduling one resource (the CPU) is hard enough

We now look at a new problem that arises when we want to
schedule multiple resources



Scheduling

Scheduling the CPU is clearly a difficult problem

It requires the collection and manipulation of many statistics
about processes

Scheduling one resource (the CPU) is hard enough

We now look at a new problem that arises when we want to
schedule multiple resources



Scheduling

Scheduling the CPU is clearly a difficult problem

It requires the collection and manipulation of many statistics
about processes

Scheduling one resource (the CPU) is hard enough

We now look at a new problem that arises when we want to
schedule multiple resources



Deadlock

Processes compete for resources like disks and network and
the OS mediates this

To read from a disk, a process must call the OS kernel and wait
for the kernel to reply



Deadlock

Processes compete for resources like disks and network and
the OS mediates this

To read from a disk, a process must call the OS kernel and wait
for the kernel to reply



Terminology

When we say “a process waits for the kernel” we mean, of
course, something entirely different

What actually happens is the kernel marks the process as
blocked, and does not consider it for scheduling until the
requested resource has arrived

There is no “waiting” happening: the process does not run
when blocked



Terminology

When we say “a process waits for the kernel” we mean, of
course, something entirely different

What actually happens is the kernel marks the process as
blocked, and does not consider it for scheduling until the
requested resource has arrived

There is no “waiting” happening: the process does not run
when blocked



Terminology

When we say “a process waits for the kernel” we mean, of
course, something entirely different

What actually happens is the kernel marks the process as
blocked, and does not consider it for scheduling until the
requested resource has arrived

There is no “waiting” happening: the process does not run
when blocked



Deadlock

Processes compete for resources like disks and network and
the OS mediates this

To read from a disk, a process must call the OS kernel and wait
for the kernel to reply

Sometimes the delay is infinite!



Deadlock

Processes compete for resources like disks and network and
the OS mediates this

To read from a disk, a process must call the OS kernel and wait
for the kernel to reply

Sometimes the delay is infinite!



Deadlock

Gridlock/Deadlock



Deadlock

Gridlock/Deadlock



Deadlock

This can happen in an OS

Process P1 wants to copy some data from disk D1 to disk D2,
while process P2 wants to copy some data from disk D2 to disk
D1

• Initially P1 is running and makes a request for access to D2

• The OS takes over and gives P1 exclusive access to D2
(not a smart OS)

• The OS decides to run P2

• P2 runs and makes a request for access to D1

• The OS takes over and gives P2 exclusive access to D1



Deadlock

This can happen in an OS

Process P1 wants to copy some data from disk D1 to disk D2,
while process P2 wants to copy some data from disk D2 to disk
D1

• Initially P1 is running and makes a request for access to D2

• The OS takes over and gives P1 exclusive access to D2
(not a smart OS)

• The OS decides to run P2

• P2 runs and makes a request for access to D1

• The OS takes over and gives P2 exclusive access to D1



Deadlock

This can happen in an OS

Process P1 wants to copy some data from disk D1 to disk D2,
while process P2 wants to copy some data from disk D2 to disk
D1

• Initially P1 is running and makes a request for access to D2

• The OS takes over and gives P1 exclusive access to D2
(not a smart OS)

• The OS decides to run P2

• P2 runs and makes a request for access to D1

• The OS takes over and gives P2 exclusive access to D1



Deadlock

This can happen in an OS

Process P1 wants to copy some data from disk D1 to disk D2,
while process P2 wants to copy some data from disk D2 to disk
D1

• Initially P1 is running and makes a request for access to D2

• The OS takes over and gives P1 exclusive access to D2
(not a smart OS)

• The OS decides to run P2

• P2 runs and makes a request for access to D1

• The OS takes over and gives P2 exclusive access to D1



Deadlock

This can happen in an OS

Process P1 wants to copy some data from disk D1 to disk D2,
while process P2 wants to copy some data from disk D2 to disk
D1

• Initially P1 is running and makes a request for access to D2

• The OS takes over and gives P1 exclusive access to D2
(not a smart OS)

• The OS decides to run P2

• P2 runs and makes a request for access to D1

• The OS takes over and gives P2 exclusive access to D1



Deadlock

This can happen in an OS

Process P1 wants to copy some data from disk D1 to disk D2,
while process P2 wants to copy some data from disk D2 to disk
D1

• Initially P1 is running and makes a request for access to D2

• The OS takes over and gives P1 exclusive access to D2
(not a smart OS)

• The OS decides to run P2

• P2 runs and makes a request for access to D1

• The OS takes over and gives P2 exclusive access to D1



Deadlock

This can happen in an OS

Process P1 wants to copy some data from disk D1 to disk D2,
while process P2 wants to copy some data from disk D2 to disk
D1

• Initially P1 is running and makes a request for access to D2

• The OS takes over and gives P1 exclusive access to D2
(not a smart OS)

• The OS decides to run P2

• P2 runs and makes a request for access to D1

• The OS takes over and gives P2 exclusive access to D1



Deadlock

• The OS decides to run P1

• P1 runs and makes a request for access to D1

• The OS takes over and notices P2 has locked D1, so P1
must wait until P2 has finished with it; P1 moves to state
blocked

• The OS decides to run P2: it can’t run P1 as it is blocked
• P2 runs and makes a request for access to D2

• The OS takes over and notices P1 has locked D2, so P2
must wait until P1 has finished with it; P2 moves to state
blocked

• Now both P1 and P2 are blocked and the OS can’t run
either process!



Deadlock

• The OS decides to run P1

• P1 runs and makes a request for access to D1

• The OS takes over and notices P2 has locked D1, so P1
must wait until P2 has finished with it; P1 moves to state
blocked

• The OS decides to run P2: it can’t run P1 as it is blocked
• P2 runs and makes a request for access to D2

• The OS takes over and notices P1 has locked D2, so P2
must wait until P1 has finished with it; P2 moves to state
blocked

• Now both P1 and P2 are blocked and the OS can’t run
either process!



Deadlock

• The OS decides to run P1

• P1 runs and makes a request for access to D1

• The OS takes over and notices P2 has locked D1, so P1
must wait until P2 has finished with it; P1 moves to state
blocked

• The OS decides to run P2: it can’t run P1 as it is blocked
• P2 runs and makes a request for access to D2

• The OS takes over and notices P1 has locked D2, so P2
must wait until P1 has finished with it; P2 moves to state
blocked

• Now both P1 and P2 are blocked and the OS can’t run
either process!



Deadlock

• The OS decides to run P1

• P1 runs and makes a request for access to D1

• The OS takes over and notices P2 has locked D1, so P1
must wait until P2 has finished with it; P1 moves to state
blocked

• The OS decides to run P2: it can’t run P1 as it is blocked

• P2 runs and makes a request for access to D2

• The OS takes over and notices P1 has locked D2, so P2
must wait until P1 has finished with it; P2 moves to state
blocked

• Now both P1 and P2 are blocked and the OS can’t run
either process!



Deadlock

• The OS decides to run P1

• P1 runs and makes a request for access to D1

• The OS takes over and notices P2 has locked D1, so P1
must wait until P2 has finished with it; P1 moves to state
blocked

• The OS decides to run P2: it can’t run P1 as it is blocked
• P2 runs and makes a request for access to D2

• The OS takes over and notices P1 has locked D2, so P2
must wait until P1 has finished with it; P2 moves to state
blocked

• Now both P1 and P2 are blocked and the OS can’t run
either process!



Deadlock

• The OS decides to run P1

• P1 runs and makes a request for access to D1

• The OS takes over and notices P2 has locked D1, so P1
must wait until P2 has finished with it; P1 moves to state
blocked

• The OS decides to run P2: it can’t run P1 as it is blocked
• P2 runs and makes a request for access to D2

• The OS takes over and notices P1 has locked D2, so P2
must wait until P1 has finished with it; P2 moves to state
blocked

• Now both P1 and P2 are blocked and the OS can’t run
either process!



Deadlock

• The OS decides to run P1

• P1 runs and makes a request for access to D1

• The OS takes over and notices P2 has locked D1, so P1
must wait until P2 has finished with it; P1 moves to state
blocked

• The OS decides to run P2: it can’t run P1 as it is blocked
• P2 runs and makes a request for access to D2

• The OS takes over and notices P1 has locked D2, so P2
must wait until P1 has finished with it; P2 moves to state
blocked

• Now both P1 and P2 are blocked and the OS can’t run
either process!



Deadlock

P1 can’t run until D1 is free, but D1 won’t be free until P2 runs

P2 can’t run until D2 is free, but D2 won’t be free until P1 runs

This is called deadlock

Deadlock can happen on any kind of shared resources that
require exclusive access

And with more than two processes: think of three or more
processes in a circle



Deadlock

P1 can’t run until D1 is free, but D1 won’t be free until P2 runs

P2 can’t run until D2 is free, but D2 won’t be free until P1 runs

This is called deadlock

Deadlock can happen on any kind of shared resources that
require exclusive access

And with more than two processes: think of three or more
processes in a circle



Deadlock

P1 can’t run until D1 is free, but D1 won’t be free until P2 runs

P2 can’t run until D2 is free, but D2 won’t be free until P1 runs

This is called deadlock

Deadlock can happen on any kind of shared resources that
require exclusive access

And with more than two processes: think of three or more
processes in a circle



Deadlock

P1 can’t run until D1 is free, but D1 won’t be free until P2 runs

P2 can’t run until D2 is free, but D2 won’t be free until P1 runs

This is called deadlock

Deadlock can happen on any kind of shared resources that
require exclusive access

And with more than two processes: think of three or more
processes in a circle



Deadlock

A formal definition:

A set of processes D is deadlocked if

1. each process Pi in D is blocked on some event ei

2. event ei can only be caused by some process in D



Deadlock

A formal definition:

A set of processes D is deadlocked if

1. each process Pi in D is blocked on some event ei

2. event ei can only be caused by some process in D



Deadlock

Note that you can only get deadlock if

• there is more than one resource
• there is more than one process



Deadlock

Note that you can only get deadlock if

• there is more than one resource

• there is more than one process



Deadlock

Note that you can only get deadlock if

• there is more than one resource
• there is more than one process



Deadlock

Note that you can only get deadlock if

• there is more than one resource
• there is more than one process1

1It could technically happen with just one process, but that would be quite
dumb programming to request for a resource you already have



Deadlock

Note that you can only get deadlock if

• there is more than one resource
• there is more than one process12

1It could technically happen with just one process, but that would be quite
dumb programming to request for a resource you already have

2I’ve seen it happen


