
Deadlock

Deadlock is only possible if certain necessary conditions are
met: the Coffman Conditions

1. Mutual exclusion Only one process can use a resource at
a time

2. Hold-and-wait A process continues to hold a resource
while waiting for other resources

3. No preemption No resource can forcibly be removed from
a process holding it

All of these must hold for it to be possible to deadlock



Deadlock

Deadlock is only possible if certain necessary conditions are
met: the Coffman Conditions

1. Mutual exclusion Only one process can use a resource at
a time

2. Hold-and-wait A process continues to hold a resource
while waiting for other resources

3. No preemption No resource can forcibly be removed from
a process holding it

All of these must hold for it to be possible to deadlock



Deadlock

Deadlock is only possible if certain necessary conditions are
met: the Coffman Conditions

1. Mutual exclusion Only one process can use a resource at
a time

2. Hold-and-wait A process continues to hold a resource
while waiting for other resources

3. No preemption No resource can forcibly be removed from
a process holding it

All of these must hold for it to be possible to deadlock



Deadlock

Deadlock is only possible if certain necessary conditions are
met: the Coffman Conditions

1. Mutual exclusion Only one process can use a resource at
a time

2. Hold-and-wait A process continues to hold a resource
while waiting for other resources

3. No preemption No resource can forcibly be removed from
a process holding it

All of these must hold for it to be possible to deadlock



Deadlock

Deadlock is only possible if certain necessary conditions are
met: the Coffman Conditions

1. Mutual exclusion Only one process can use a resource at
a time

2. Hold-and-wait A process continues to hold a resource
while waiting for other resources

3. No preemption No resource can forcibly be removed from
a process holding it

All of these must hold for it to be possible to deadlock



Deadlock

It might seem easy to avoid these, but in practice it’s harder
than you think

Suppose we ensure Hold-and-wait never happens, e.g.,
requiring a process to drop other resources it holds whenever it
gets blocked on a new request

When it gets the new resource it will have to go back and pick
up the other resources again

Which may require it to drop the new resource while waiting. . .

It is easy to get into a situation where the process never
manages to get all the resources it needs: called indefinite
postponement



Deadlock

It might seem easy to avoid these, but in practice it’s harder
than you think

Suppose we ensure Hold-and-wait never happens, e.g.,
requiring a process to drop other resources it holds whenever it
gets blocked on a new request

When it gets the new resource it will have to go back and pick
up the other resources again

Which may require it to drop the new resource while waiting. . .

It is easy to get into a situation where the process never
manages to get all the resources it needs: called indefinite
postponement



Deadlock

It might seem easy to avoid these, but in practice it’s harder
than you think

Suppose we ensure Hold-and-wait never happens, e.g.,
requiring a process to drop other resources it holds whenever it
gets blocked on a new request

When it gets the new resource it will have to go back and pick
up the other resources again

Which may require it to drop the new resource while waiting. . .

It is easy to get into a situation where the process never
manages to get all the resources it needs: called indefinite
postponement



Deadlock

It might seem easy to avoid these, but in practice it’s harder
than you think

Suppose we ensure Hold-and-wait never happens, e.g.,
requiring a process to drop other resources it holds whenever it
gets blocked on a new request

When it gets the new resource it will have to go back and pick
up the other resources again

Which may require it to drop the new resource while waiting. . .

It is easy to get into a situation where the process never
manages to get all the resources it needs: called indefinite
postponement



Deadlock

It might seem easy to avoid these, but in practice it’s harder
than you think

Suppose we ensure Hold-and-wait never happens, e.g.,
requiring a process to drop other resources it holds whenever it
gets blocked on a new request

When it gets the new resource it will have to go back and pick
up the other resources again

Which may require it to drop the new resource while waiting. . .

It is easy to get into a situation where the process never
manages to get all the resources it needs: called indefinite
postponement



Deadlock

A deadlock may be possible but will only actually happen if

4. Circular Wait There is a circular chain of processes where
each holds a resource that is needed by the next in the
circle

This says that deadlock is happening as in the formal definition



Deadlock

A deadlock may be possible but will only actually happen if

4. Circular Wait There is a circular chain of processes where
each holds a resource that is needed by the next in the
circle

This says that deadlock is happening as in the formal definition



Deadlock
Dining Philosophers

A popular illustration of deadlock is The Dining Philosophers

Some Philosophers wish to share a plate of spaghetti, but they
have only been provided with chopsticks

Unfortunately, there is not quite enough chopsticks to go around



Deadlock
Dining Philosophers

A popular illustration of deadlock is The Dining Philosophers

Some Philosophers wish to share a plate of spaghetti, but they
have only been provided with chopsticks

Unfortunately, there is not quite enough chopsticks to go around



Deadlock
Dining Philosophers

A popular illustration of deadlock is The Dining Philosophers

Some Philosophers wish to share a plate of spaghetti, but they
have only been provided with chopsticks

Unfortunately, there is not quite enough chopsticks to go around



Deadlock
Dining Philosophers

Dining Philosophers



Deadlock
Dining Philosophers

Each Philosopher needs two chopsticks to eat, one from each
side of their plate

We have

1. Mutual exclusion. Only one Philosopher can use a
chopstick at a time

2. Hold-and-wait. Each Philosopher wants to eat and won’t
let go of a chopstick until they have eaten

3. No preemption. No-one is going to tell a Philosopher what
to do!



Deadlock
Dining Philosophers

Each Philosopher needs two chopsticks to eat, one from each
side of their plate

We have

1. Mutual exclusion. Only one Philosopher can use a
chopstick at a time

2. Hold-and-wait. Each Philosopher wants to eat and won’t
let go of a chopstick until they have eaten

3. No preemption. No-one is going to tell a Philosopher what
to do!



Deadlock
Dining Philosophers

Each Philosopher needs two chopsticks to eat, one from each
side of their plate

We have

1. Mutual exclusion. Only one Philosopher can use a
chopstick at a time

2. Hold-and-wait. Each Philosopher wants to eat and won’t
let go of a chopstick until they have eaten

3. No preemption. No-one is going to tell a Philosopher what
to do!



Deadlock
Dining Philosophers

Each Philosopher needs two chopsticks to eat, one from each
side of their plate

We have

1. Mutual exclusion. Only one Philosopher can use a
chopstick at a time

2. Hold-and-wait. Each Philosopher wants to eat and won’t
let go of a chopstick until they have eaten

3. No preemption. No-one is going to tell a Philosopher what
to do!



Deadlock
Dining Philosophers

Each Philosopher needs two chopsticks to eat, one from each
side of their plate

We have

1. Mutual exclusion. Only one Philosopher can use a
chopstick at a time

2. Hold-and-wait. Each Philosopher wants to eat and won’t
let go of a chopstick until they have eaten

3. No preemption. No-one is going to tell a Philosopher what
to do!



Deadlock
Dining Philosophers

And if they all grab the left chopstick simultaneously

4. Circular Wait. There is a circular chain of Philosophers
where each holds a chopstick that is needed by the next in
the circle

Of course, if the Philosophers were a bit more friendly, or polite,
there would not be a problem



Deadlock
Dining Philosophers

And if they all grab the left chopstick simultaneously

4. Circular Wait. There is a circular chain of Philosophers
where each holds a chopstick that is needed by the next in
the circle

Of course, if the Philosophers were a bit more friendly, or polite,
there would not be a problem



Deadlock
Dining Philosophers

And if they all grab the left chopstick simultaneously

4. Circular Wait. There is a circular chain of Philosophers
where each holds a chopstick that is needed by the next in
the circle

Of course, if the Philosophers were a bit more friendly, or polite,
there would not be a problem



Deadlock
Dining Philosophers

Exercise. Identify the conditions in the car gridlock scenarios


