
Deadlock

There are two approaches to the problem of deadlock

1. Prevention. Stopping it happening ever by preventing one
of the conditions occurring

2. Detection and Breaking. Letting deadlock happen, but
spotting when it does and then breaking it by destroying
one of the conditions



Deadlock

There are two approaches to the problem of deadlock

1. Prevention. Stopping it happening ever by preventing one
of the conditions occurring

2. Detection and Breaking. Letting deadlock happen, but
spotting when it does and then breaking it by destroying
one of the conditions



Deadlock

There are two approaches to the problem of deadlock

1. Prevention. Stopping it happening ever by preventing one
of the conditions occurring

2. Detection and Breaking. Letting deadlock happen, but
spotting when it does and then breaking it by destroying
one of the conditions



Deadlock

Prevention can be further refined

1a. Prevention. Constrain resource allocation to prevent at
least one of the four conditions (e.g., ensure hold-and-wait
never happens)

1b. Avoidance. Be careful not to allocate a resource if it can be
determined that it might possibly lead to a deadlock in the
future: keeping the system in a “safe” state

Avoidance is harder to manage as it needs to predict future
requests for resources, but tends to be more efficient as it can
allocate resources that prevention would disallow



Deadlock

Prevention can be further refined

1a. Prevention. Constrain resource allocation to prevent at
least one of the four conditions (e.g., ensure hold-and-wait
never happens)

1b. Avoidance. Be careful not to allocate a resource if it can be
determined that it might possibly lead to a deadlock in the
future: keeping the system in a “safe” state

Avoidance is harder to manage as it needs to predict future
requests for resources, but tends to be more efficient as it can
allocate resources that prevention would disallow



Deadlock

Prevention can be further refined

1a. Prevention. Constrain resource allocation to prevent at
least one of the four conditions (e.g., ensure hold-and-wait
never happens)

1b. Avoidance. Be careful not to allocate a resource if it can be
determined that it might possibly lead to a deadlock in the
future: keeping the system in a “safe” state

Avoidance is harder to manage as it needs to predict future
requests for resources, but tends to be more efficient as it can
allocate resources that prevention would disallow



Deadlock

Prevention can be further refined

1a. Prevention. Constrain resource allocation to prevent at
least one of the four conditions (e.g., ensure hold-and-wait
never happens)

1b. Avoidance. Be careful not to allocate a resource if it can be
determined that it might possibly lead to a deadlock in the
future: keeping the system in a “safe” state

Avoidance is harder to manage as it needs to predict future
requests for resources, but tends to be more efficient as it can
allocate resources that prevention would disallow



Deadlock
Prevention

We can prevent deadlocks by disallowing any of the conditions



Deadlock
Prevention

Breaking Mutual Exclusion

This, quite often, cannot be broken

For example, trying to read a disk at the same time as another
process is writing to it is a physical impossibility

A lot of hardware only works if there is exclusive access, e.g.,
printers, sound cards, etc.

Therefore we should take care to not hold on to such a
resource for longer than is absolutely necessary



Deadlock
Prevention

Breaking Mutual Exclusion

This, quite often, cannot be broken

For example, trying to read a disk at the same time as another
process is writing to it is a physical impossibility

A lot of hardware only works if there is exclusive access, e.g.,
printers, sound cards, etc.

Therefore we should take care to not hold on to such a
resource for longer than is absolutely necessary



Deadlock
Prevention

Breaking Mutual Exclusion

This, quite often, cannot be broken

For example, trying to read a disk at the same time as another
process is writing to it is a physical impossibility

A lot of hardware only works if there is exclusive access, e.g.,
printers, sound cards, etc.

Therefore we should take care to not hold on to such a
resource for longer than is absolutely necessary



Deadlock
Prevention

Breaking Mutual Exclusion

This, quite often, cannot be broken

For example, trying to read a disk at the same time as another
process is writing to it is a physical impossibility

A lot of hardware only works if there is exclusive access, e.g.,
printers, sound cards, etc.

Therefore we should take care to not hold on to such a
resource for longer than is absolutely necessary



Deadlock
Prevention

Breaking Mutual Exclusion

This, quite often, cannot be broken

For example, trying to read a disk at the same time as another
process is writing to it is a physical impossibility

A lot of hardware only works if there is exclusive access, e.g.,
printers, sound cards, etc.

Therefore we should take care to not hold on to such a
resource for longer than is absolutely necessary



Deadlock
Prevention

Breaking Hold-and-wait

We can require a process not to hold any resources if it ever
gets blocked on another resource

This has the non-progress feature, as noted previously, and can
be very inefficient with much grabbing and releasing to no avail



Deadlock
Prevention

Breaking Hold-and-wait

We can require a process not to hold any resources if it ever
gets blocked on another resource

This has the non-progress feature, as noted previously, and can
be very inefficient with much grabbing and releasing to no avail



Deadlock
Prevention

Breaking Hold-and-wait

We can require a process not to hold any resources if it ever
gets blocked on another resource

This has the non-progress feature, as noted previously, and can
be very inefficient with much grabbing and releasing to no avail



Deadlock
Prevention

Breaking Hold-and-wait

We might require a process to request all necessary resources
simultaneously, blocking until all are available

• This might prevent the process from doing useful other
work while one of the resources is unavailable but not yet
needed by the process

• Resources given to a process might be only needed much
later, denying them to other processes in the meantime

• It may be that a process does not even know what
resources it might need in advance, so this can be
impossible to do anyway



Deadlock
Prevention

Breaking Hold-and-wait

We might require a process to request all necessary resources
simultaneously, blocking until all are available

• This might prevent the process from doing useful other
work while one of the resources is unavailable but not yet
needed by the process

• Resources given to a process might be only needed much
later, denying them to other processes in the meantime

• It may be that a process does not even know what
resources it might need in advance, so this can be
impossible to do anyway



Deadlock
Prevention

Breaking Hold-and-wait

We might require a process to request all necessary resources
simultaneously, blocking until all are available

• This might prevent the process from doing useful other
work while one of the resources is unavailable but not yet
needed by the process

• Resources given to a process might be only needed much
later, denying them to other processes in the meantime

• It may be that a process does not even know what
resources it might need in advance, so this can be
impossible to do anyway



Deadlock
Prevention

Breaking Hold-and-wait

We might require a process to request all necessary resources
simultaneously, blocking until all are available

• This might prevent the process from doing useful other
work while one of the resources is unavailable but not yet
needed by the process

• Resources given to a process might be only needed much
later, denying them to other processes in the meantime

• It may be that a process does not even know what
resources it might need in advance, so this can be
impossible to do anyway



Deadlock
Prevention

Breaking Hold-and-wait

A variant of this is not even to admit a process until all
resources are available: this is even worse

Perhaps a process only needs to write to disk at the end of a 2
hour compute session: do we really want to lock the disk for 2
hours?



Deadlock
Prevention

Breaking Hold-and-wait

A variant of this is not even to admit a process until all
resources are available: this is even worse

Perhaps a process only needs to write to disk at the end of a 2
hour compute session: do we really want to lock the disk for 2
hours?



Deadlock
Prevention

Breaking No Preemption

This may only be possible for certain kinds of resource, namely
those whose state can easily be saved and restored

The OS might choose to preempt the holding process and take
the resource away from it, giving it back later when the process
is scheduled again

This would be confusing for the holding process as the
resource might change while it was owned by another process



Deadlock
Prevention

Breaking No Preemption

This may only be possible for certain kinds of resource, namely
those whose state can easily be saved and restored

The OS might choose to preempt the holding process and take
the resource away from it, giving it back later when the process
is scheduled again

This would be confusing for the holding process as the
resource might change while it was owned by another process



Deadlock
Prevention

Breaking No Preemption

This may only be possible for certain kinds of resource, namely
those whose state can easily be saved and restored

The OS might choose to preempt the holding process and take
the resource away from it, giving it back later when the process
is scheduled again

This would be confusing for the holding process as the
resource might change while it was owned by another process



Deadlock
Prevention

Breaking No Preemption

This may only be possible for certain kinds of resource, namely
those whose state can easily be saved and restored

The OS might choose to preempt the holding process and take
the resource away from it, giving it back later when the process
is scheduled again

This would be confusing for the holding process as the
resource might change while it was owned by another process



Deadlock
Prevention

Thus, the resource should be given back to the process in an
equivalent state to it was in when it was preempted, so the
process can continue from where it left off

For some resources this is possible, e.g., memory

For others, not. For example, a printer



Deadlock
Prevention

Thus, the resource should be given back to the process in an
equivalent state to it was in when it was preempted, so the
process can continue from where it left off

For some resources this is possible, e.g., memory

For others, not. For example, a printer



Deadlock
Prevention

Thus, the resource should be given back to the process in an
equivalent state to it was in when it was preempted, so the
process can continue from where it left off

For some resources this is possible, e.g., memory

For others, not. For example, a printer



Deadlock
Prevention

Breaking Circular Waits

One possible solution is to put an ordering on resources

R1 < R2 < R3 < . . .

E.g., (much simplified)

disk 1 < disk 2 < printer < . . .



Deadlock
Prevention

Breaking Circular Waits

One possible solution is to put an ordering on resources

R1 < R2 < R3 < . . .

E.g., (much simplified)

disk 1 < disk 2 < printer < . . .



Deadlock
Prevention

Breaking Circular Waits

One possible solution is to put an ordering on resources

R1 < R2 < R3 < . . .

E.g., (much simplified)

disk 1 < disk 2 < printer < . . .



Deadlock
Prevention

Then:

A process that holds resource R may then only
request resources that are after R in the order

In our example, if you have grabbed the printer, you cannot
grab a disk

If a process makes such a request, the OS simply refuses to
grant it

The process might choose to drop the printer and re-request
the disk



Deadlock
Prevention

Then:

A process that holds resource R may then only
request resources that are after R in the order

In our example, if you have grabbed the printer, you cannot
grab a disk

If a process makes such a request, the OS simply refuses to
grant it

The process might choose to drop the printer and re-request
the disk



Deadlock
Prevention

Then:

A process that holds resource R may then only
request resources that are after R in the order

In our example, if you have grabbed the printer, you cannot
grab a disk

If a process makes such a request, the OS simply refuses to
grant it

The process might choose to drop the printer and re-request
the disk



Deadlock
Prevention

Then:

A process that holds resource R may then only
request resources that are after R in the order

In our example, if you have grabbed the printer, you cannot
grab a disk

If a process makes such a request, the OS simply refuses to
grant it

The process might choose to drop the printer and re-request
the disk



Deadlock
Prevention

Breaking Circular Waits

Now we cannot deadlock, as a deadlock would imply A has
grabbed Ri and requested Rj ; while B has grabbed Rj and
requested Ri

For this to happen we would have both

i < j and j < i

and this is impossible



Deadlock
Prevention

Breaking Circular Waits

Now we cannot deadlock, as a deadlock would imply A has
grabbed Ri and requested Rj ; while B has grabbed Rj and
requested Ri

For this to happen we would have both

i < j and j < i

and this is impossible



Deadlock
Prevention

Breaking Circular Waits

This suffers the same problems as Hold-and-wait, namely
inefficiency and unnecessarily holding resources

Further, it works only if the process can make requests in
increasing order; not always possible as it is not always
possible to know what you need in advance

And if you have R1 and R3, but then want R2 you have to drop
R3, get R2, then regain R3; very inefficient

This usually effectively reduces to the request-all-at-once
scenario



Deadlock
Prevention

Breaking Circular Waits

This suffers the same problems as Hold-and-wait, namely
inefficiency and unnecessarily holding resources

Further, it works only if the process can make requests in
increasing order; not always possible as it is not always
possible to know what you need in advance

And if you have R1 and R3, but then want R2 you have to drop
R3, get R2, then regain R3; very inefficient

This usually effectively reduces to the request-all-at-once
scenario



Deadlock
Prevention

Breaking Circular Waits

This suffers the same problems as Hold-and-wait, namely
inefficiency and unnecessarily holding resources

Further, it works only if the process can make requests in
increasing order; not always possible as it is not always
possible to know what you need in advance

And if you have R1 and R3, but then want R2 you have to drop
R3, get R2, then regain R3; very inefficient

This usually effectively reduces to the request-all-at-once
scenario



Deadlock
Prevention

Breaking Circular Waits

This suffers the same problems as Hold-and-wait, namely
inefficiency and unnecessarily holding resources

Further, it works only if the process can make requests in
increasing order; not always possible as it is not always
possible to know what you need in advance

And if you have R1 and R3, but then want R2 you have to drop
R3, get R2, then regain R3; very inefficient

This usually effectively reduces to the request-all-at-once
scenario


