
Deadlock
Detection and Breaking

So that leaves breaking the deadlock: as always there are lots
of ways we can do this, none terribly satisfactory

• Kill one or more or all of the deadlocked processes: a bit
drastic, but sometimes the only solution. But which
process? For example, out of memory “OOM killers” are
tricky to get right

• Preempt the blocking resources: better, if possible. If there
are multiple resources causing the deadlock we have to
choose which, as preempting just a few might free things
up enough

• Add resources: rarely possible



Deadlock
Detection and Breaking

So that leaves breaking the deadlock: as always there are lots
of ways we can do this, none terribly satisfactory

• Kill one or more or all of the deadlocked processes: a bit
drastic, but sometimes the only solution. But which
process? For example, out of memory “OOM killers” are
tricky to get right

• Preempt the blocking resources: better, if possible. If there
are multiple resources causing the deadlock we have to
choose which, as preempting just a few might free things
up enough

• Add resources: rarely possible



Deadlock
Detection and Breaking

So that leaves breaking the deadlock: as always there are lots
of ways we can do this, none terribly satisfactory

• Kill one or more or all of the deadlocked processes: a bit
drastic, but sometimes the only solution. But which
process? For example, out of memory “OOM killers” are
tricky to get right

• Preempt the blocking resources: better, if possible. If there
are multiple resources causing the deadlock we have to
choose which, as preempting just a few might free things
up enough

• Add resources: rarely possible



Deadlock
Detection and Breaking

So that leaves breaking the deadlock: as always there are lots
of ways we can do this, none terribly satisfactory

• Kill one or more or all of the deadlocked processes: a bit
drastic, but sometimes the only solution. But which
process? For example, out of memory “OOM killers” are
tricky to get right

• Preempt the blocking resources: better, if possible. If there
are multiple resources causing the deadlock we have to
choose which, as preempting just a few might free things
up enough

• Add resources: rarely possible



Deadlock
Detection and Breaking

Exercise. Think about how you might apply deadlock prevention
or breaking to a) Dining Philosophers and b) the car deadlock
scenarios



Deadlock

In real life, a popular approach is simply to ignore the possibility
of deadlock happening

Sometimes called the Ostrich Algorithm

There is not entirely stupid, as it argues that the costs
associated with prevention or detection are large, and if
deadlocks are rare, then the cost of an occasional reboot of the
machine is small in comparison

In a carefully written OS, you can eliminate many of the
possible causes of deadlock, or, at least, reduce the chances of
them happening



Deadlock

In real life, a popular approach is simply to ignore the possibility
of deadlock happening

Sometimes called the Ostrich Algorithm

There is not entirely stupid, as it argues that the costs
associated with prevention or detection are large, and if
deadlocks are rare, then the cost of an occasional reboot of the
machine is small in comparison

In a carefully written OS, you can eliminate many of the
possible causes of deadlock, or, at least, reduce the chances of
them happening



Deadlock

In real life, a popular approach is simply to ignore the possibility
of deadlock happening

Sometimes called the Ostrich Algorithm

There is not entirely stupid, as it argues that the costs
associated with prevention or detection are large, and if
deadlocks are rare, then the cost of an occasional reboot of the
machine is small in comparison

In a carefully written OS, you can eliminate many of the
possible causes of deadlock, or, at least, reduce the chances of
them happening



Deadlock

In real life, a popular approach is simply to ignore the possibility
of deadlock happening

Sometimes called the Ostrich Algorithm

There is not entirely stupid, as it argues that the costs
associated with prevention or detection are large, and if
deadlocks are rare, then the cost of an occasional reboot of the
machine is small in comparison

In a carefully written OS, you can eliminate many of the
possible causes of deadlock, or, at least, reduce the chances of
them happening



Deadlock

Some resources are preemptable, e.g., memory (as we shall
discuss in depth later), but a more general solution (also
applied to memory) is virtualisation, where the OS pretends
each process has sole access to a resource

We have already seen this for printers in the form of spooling

A process thinks it is writing to a printer, but it is actually writing
to a tape, and the tape is later written to the printer



Deadlock

Some resources are preemptable, e.g., memory (as we shall
discuss in depth later), but a more general solution (also
applied to memory) is virtualisation, where the OS pretends
each process has sole access to a resource

We have already seen this for printers in the form of spooling

A process thinks it is writing to a printer, but it is actually writing
to a tape, and the tape is later written to the printer



Deadlock

Some resources are preemptable, e.g., memory (as we shall
discuss in depth later), but a more general solution (also
applied to memory) is virtualisation, where the OS pretends
each process has sole access to a resource

We have already seen this for printers in the form of spooling

A process thinks it is writing to a printer, but it is actually writing
to a tape, and the tape is later written to the printer



Deadlock

Similarly, for example, a process thinks it writes to a network
card but the data is actually buffered by the OS somewhere in
memory, to be sent later when the card is free

And so on for other kinds of devices: a process interfaces with
its own virtualised device, there is no possibility of deadlock as
every process can progress without waiting, and the OS sorts
out transferring the data to or from the real device

But, of course, this new perspective just shifts the actual
problem: when and in what order should the OS do the I/O?

This is called I/O scheduling



Deadlock

Similarly, for example, a process thinks it writes to a network
card but the data is actually buffered by the OS somewhere in
memory, to be sent later when the card is free

And so on for other kinds of devices: a process interfaces with
its own virtualised device, there is no possibility of deadlock as
every process can progress without waiting, and the OS sorts
out transferring the data to or from the real device

But, of course, this new perspective just shifts the actual
problem: when and in what order should the OS do the I/O?

This is called I/O scheduling



Deadlock

Similarly, for example, a process thinks it writes to a network
card but the data is actually buffered by the OS somewhere in
memory, to be sent later when the card is free

And so on for other kinds of devices: a process interfaces with
its own virtualised device, there is no possibility of deadlock as
every process can progress without waiting, and the OS sorts
out transferring the data to or from the real device

But, of course, this new perspective just shifts the actual
problem: when and in what order should the OS do the I/O?

This is called I/O scheduling



Deadlock

Similarly, for example, a process thinks it writes to a network
card but the data is actually buffered by the OS somewhere in
memory, to be sent later when the card is free

And so on for other kinds of devices: a process interfaces with
its own virtualised device, there is no possibility of deadlock as
every process can progress without waiting, and the OS sorts
out transferring the data to or from the real device

But, of course, this new perspective just shifts the actual
problem: when and in what order should the OS do the I/O?

This is called I/O scheduling



Deadlock

A printer could have simple first-in-first out queue, but other
devices (disks, etc.) require something more sophisticated

For example, a typical disk driver will re-order writes to a disk
match the physical movements of the write head

This is a topic we won’t have time to go into!



Deadlock

A printer could have simple first-in-first out queue, but other
devices (disks, etc.) require something more sophisticated

For example, a typical disk driver will re-order writes to a disk
match the physical movements of the write head

This is a topic we won’t have time to go into!



Deadlock

A printer could have simple first-in-first out queue, but other
devices (disks, etc.) require something more sophisticated

For example, a typical disk driver will re-order writes to a disk
match the physical movements of the write head

This is a topic we won’t have time to go into!



Deadlock
Priority Inversion

One last word on deadlock, this one caused by process
priorities and non-preemptible resources

Recall processes have priorities for scheduling purposes

• Suppose a low priority process L holds some resource
• A high priority process H is scheduled
• H requests the resource
• It can’t get it as it is still held by L, so H is blocked
• Eventually, when L is done, H will be able to run



Deadlock
Priority Inversion

One last word on deadlock, this one caused by process
priorities and non-preemptible resources

Recall processes have priorities for scheduling purposes

• Suppose a low priority process L holds some resource
• A high priority process H is scheduled
• H requests the resource
• It can’t get it as it is still held by L, so H is blocked
• Eventually, when L is done, H will be able to run



Deadlock
Priority Inversion

One last word on deadlock, this one caused by process
priorities and non-preemptible resources

Recall processes have priorities for scheduling purposes

• Suppose a low priority process L holds some resource

• A high priority process H is scheduled
• H requests the resource
• It can’t get it as it is still held by L, so H is blocked
• Eventually, when L is done, H will be able to run



Deadlock
Priority Inversion

One last word on deadlock, this one caused by process
priorities and non-preemptible resources

Recall processes have priorities for scheduling purposes

• Suppose a low priority process L holds some resource
• A high priority process H is scheduled

• H requests the resource
• It can’t get it as it is still held by L, so H is blocked
• Eventually, when L is done, H will be able to run



Deadlock
Priority Inversion

One last word on deadlock, this one caused by process
priorities and non-preemptible resources

Recall processes have priorities for scheduling purposes

• Suppose a low priority process L holds some resource
• A high priority process H is scheduled
• H requests the resource

• It can’t get it as it is still held by L, so H is blocked
• Eventually, when L is done, H will be able to run



Deadlock
Priority Inversion

One last word on deadlock, this one caused by process
priorities and non-preemptible resources

Recall processes have priorities for scheduling purposes

• Suppose a low priority process L holds some resource
• A high priority process H is scheduled
• H requests the resource
• It can’t get it as it is still held by L, so H is blocked

• Eventually, when L is done, H will be able to run



Deadlock
Priority Inversion

One last word on deadlock, this one caused by process
priorities and non-preemptible resources

Recall processes have priorities for scheduling purposes

• Suppose a low priority process L holds some resource
• A high priority process H is scheduled
• H requests the resource
• It can’t get it as it is still held by L, so H is blocked
• Eventually, when L is done, H will be able to run



Deadlock
Priority Inversion

The low priority process is preventing the high priority process
from running

This is called priority inversion

What is worse, other processes M of intermediate priority (that
don’t need the resource) can preempt L, preventing it running,
and thus make the time H has to wait indefinitely long

If H is some real-time operation this can be serious



Deadlock
Priority Inversion

The low priority process is preventing the high priority process
from running

This is called priority inversion

What is worse, other processes M of intermediate priority (that
don’t need the resource) can preempt L, preventing it running,
and thus make the time H has to wait indefinitely long

If H is some real-time operation this can be serious



Deadlock
Priority Inversion

The low priority process is preventing the high priority process
from running

This is called priority inversion

What is worse, other processes M of intermediate priority (that
don’t need the resource) can preempt L, preventing it running,
and thus make the time H has to wait indefinitely long

If H is some real-time operation this can be serious



Deadlock
Priority Inversion

The low priority process is preventing the high priority process
from running

This is called priority inversion

What is worse, other processes M of intermediate priority (that
don’t need the resource) can preempt L, preventing it running,
and thus make the time H has to wait indefinitely long

If H is some real-time operation this can be serious



Deadlock
Priority Inversion

Fixes include

Priority inheritance The priority of H is temporarily loaned to L
for the time it needs the resource. This ensures L can run and
get out of the way



Deadlock
Priority Inversion

Fixes include

Priority inheritance The priority of H is temporarily loaned to L
for the time it needs the resource. This ensures L can run and
get out of the way



Deadlock
Priority Inversion

Priority ceilings Each resource is given a priority equal to the
highest priority of any task that might want to grab that resource

When L gets the resource its priority is temporarily boosted to
the priority ceiling of the resource: either immediately, or when
another process tries to grab the resource

No other process that would want to grab the resource can be
scheduled

Determining the ceiling is tricky, as it needs knowledge of the
possible needs of processes



Deadlock
Priority Inversion

Priority ceilings Each resource is given a priority equal to the
highest priority of any task that might want to grab that resource

When L gets the resource its priority is temporarily boosted to
the priority ceiling of the resource: either immediately, or when
another process tries to grab the resource

No other process that would want to grab the resource can be
scheduled

Determining the ceiling is tricky, as it needs knowledge of the
possible needs of processes



Deadlock
Priority Inversion

Priority ceilings Each resource is given a priority equal to the
highest priority of any task that might want to grab that resource

When L gets the resource its priority is temporarily boosted to
the priority ceiling of the resource: either immediately, or when
another process tries to grab the resource

No other process that would want to grab the resource can be
scheduled

Determining the ceiling is tricky, as it needs knowledge of the
possible needs of processes



Deadlock
Priority Inversion

Priority ceilings Each resource is given a priority equal to the
highest priority of any task that might want to grab that resource

When L gets the resource its priority is temporarily boosted to
the priority ceiling of the resource: either immediately, or when
another process tries to grab the resource

No other process that would want to grab the resource can be
scheduled

Determining the ceiling is tricky, as it needs knowledge of the
possible needs of processes



Deadlock
Priority Inversion

Disable scheduling preemption during use of
non-preemptible resources. Only feasible if you keep the
periods of use very short. Quite a popular solution for some
resources, e.g., networks and disks, that are serviced very
quickly

Exercise. Read up on these and other solutions



Deadlock
Priority Inversion

Disable scheduling preemption during use of
non-preemptible resources. Only feasible if you keep the
periods of use very short. Quite a popular solution for some
resources, e.g., networks and disks, that are serviced very
quickly

Exercise. Read up on these and other solutions


