Process Protection

We now need to re-visit the idea of process protection



Process Protection

We now need to re-visit the idea of process protection

Recall by forcing access to resources via the kernel we can
ensure that one user cannot interfere with the processes of
another user



Process Protection

We now need to re-visit the idea of process protection

Recall by forcing access to resources via the kernel we can
ensure that one user cannot interfere with the processes of
another user

Thus a process must include the notion of user



Process Protection

We now need to re-visit the idea of process protection

Recall by forcing access to resources via the kernel we can
ensure that one user cannot interfere with the processes of
another user

Thus a process must include the notion of user

This is usually encoded as a simple integer, the userid



Process Protection

We now need to re-visit the idea of process protection

Recall by forcing access to resources via the kernel we can
ensure that one user cannot interfere with the processes of
another user

Thus a process must include the notion of user
This is usually encoded as a simple integer, the userid

Each user has their own unique userid and the OS uses this to
determine whether one process can access files, other
processes and so on



Process Protection

We now need to re-visit the idea of process protection

Recall by forcing access to resources via the kernel we can
ensure that one user cannot interfere with the processes of
another user

Thus a process must include the notion of user
This is usually encoded as a simple integer, the userid

Each user has their own unique userid and the OS uses this to
determine whether one process can access files, other
processes and so on

The userid also plays a role in Fair Share scheduling, of course



Process Protection

Userids are used everywhere


linux.bath.ac.uk

Process Protection

Userids are used everywhere

e Memory: a chunk of memory has a userid associated. This
tells the kernel which processes are allowed to access it


linux.bath.ac.uk

Process Protection

Userids are used everywhere

e Memory: a chunk of memory has a userid associated. This
tells the kernel which processes are allowed to access it

e Files: each file has a userid associated. This tells the
kernel which processes are allowed to access it


linux.bath.ac.uk

Process Protection

Userids are used everywhere

e Memory: a chunk of memory has a userid associated. This
tells the kernel which processes are allowed to access it

e Files: each file has a userid associated. This tells the
kernel which processes are allowed to access it

o Similarly for other resources


linux.bath.ac.uk

Process Protection

Userids are used everywhere

e Memory: a chunk of memory has a userid associated. This
tells the kernel which processes are allowed to access it

e Files: each file has a userid associated. This tells the
kernel which processes are allowed to access it

o Similarly for other resources

We shall see more of this when we get to memory and files


linux.bath.ac.uk

Process Protection

Userids are used everywhere

e Memory: a chunk of memory has a userid associated. This
tells the kernel which processes are allowed to access it

e Files: each file has a userid associated. This tells the
kernel which processes are allowed to access it

o Similarly for other resources

We shall see more of this when we get to memory and files

Exercise. Find out the userid allocated to you on the Uni’s
linux.bath.ac.uk machine


linux.bath.ac.uk

Process Protection

A new process (usually) inherits the userid of its parent process



Process Protection

A new process (usually) inherits the userid of its parent process

Of course, this lead to another bootstrapping problem: how can
a user get a process going in the first place?



Process Protection

A new process (usually) inherits the userid of its parent process

Of course, this lead to another bootstrapping problem: how can
a user get a process going in the first place?

If there are no processes running with my userid, how can |
ever get a process to be created?



Process Protection

A new process (usually) inherits the userid of its parent process

Of course, this lead to another bootstrapping problem: how can
a user get a process going in the first place?

If there are no processes running with my userid, how can |
ever get a process to be created?

So there is a distinguished user, variously called the superuser
or root or administrator



Process Protection

A new process (usually) inherits the userid of its parent process

Of course, this lead to another bootstrapping problem: how can
a user get a process going in the first place?

If there are no processes running with my userid, how can |
ever get a process to be created?

So there is a distinguished user, variously called the superuser
or root or administrator

This is a normal user, but the OS allows it full access to other
users’ files, processes, etc.



Process Protection

A new process (usually) inherits the userid of its parent process

Of course, this lead to another bootstrapping problem: how can
a user get a process going in the first place?

If there are no processes running with my userid, how can |
ever get a process to be created?

So there is a distinguished user, variously called the superuser
or root or administrator

This is a normal user, but the OS allows it full access to other
users’ files, processes, etc.

In particular, root can suspend or kill any user’s processes



Process Protection

Don’t confuse the root user with kernel mode



Process Protection

Don’t confuse the root user with kernel mode

Root’s processes run in user mode, just like other users’
processes



Process Protection

Don’t confuse the root user with kernel mode

Root’s processes run in user mode, just like other users’
processes

Hardware access is still mediated by the OS, but the inter-user
protections are not enforced by the OS



Process Protection

Don’t confuse the root user with kernel mode

Root’s processes run in user mode, just like other users’
processes

Hardware access is still mediated by the OS, but the inter-user
protections are not enforced by the OS

In the OS there is the equivalent of

if uid_of_process == uid_of_resource or
uid_of_process == uid_of_root

then
allow access

else
disallow access



Process Protection

Note that the privilege separation between superuser and
normal user is used for protection of OS resources in exactly
the same way as kernel mode and user mode is used for
protection of hardware resources



Process Protection

Note that the privilege separation between superuser and
normal user is used for protection of OS resources in exactly
the same way as kernel mode and user mode is used for
protection of hardware resources

It is the same idea being used in two different contexts



Process Protection

Critically, root can change the userid of its processes: by doing
so it gives away its privileges, but thereby allows a normal user
to have a process



Process Protection

Critically, root can change the userid of its processes: by doing
so it gives away its privileges, but thereby allows a normal user
to have a process

When a user logs in to a system a process, owned by root,
starts up, changes its userid to the user, and then starts other
processes as that user



Process Protection

Many resources are restricted by the OS so only the superuser
can use them: this provides an extra level of protection to
resources that are sensitive



Process Protection

Many resources are restricted by the OS so only the superuser
can use them: this provides an extra level of protection to
resources that are sensitive

For example, shutting down the computer. We can’t allow any
user process to turn off the computer, so this operation is
restricted by the kernel to the root user



Process Protection

Many resources are restricted by the OS so only the superuser
can use them: this provides an extra level of protection to
resources that are sensitive

For example, shutting down the computer. We can’t allow any
user process to turn off the computer, so this operation is
restricted by the kernel to the root user

Any shutdown program will need to have root ownership and
this will be carefully policed by the system



Process Protection

Root is generally trusted by the kernel



Process Protection

Root is generally trusted by the kernel

So root-owned processes can completely trash everyone’s
programs and data on the machine if they want to



Process Protection

Root is generally trusted by the kernel

So root-owned processes can completely trash everyone’s
programs and data on the machine if they want to

This is why you should keep the use of the administrator
account to a minimum



Process Protection

Root is generally trusted by the kernel

So root-owned processes can completely trash everyone’s
programs and data on the machine if they want to

This is why you should keep the use of the administrator
account to a minimum

Doing everyday stuff as administrator is just asking for trouble,
and is throwing away many of those protection mechanisms
that OSs have developed to provide



Process Protection

This user-level protection is what prevents my processes from
interfering with your processes: as we have different userids,
the kernel knows to keep them separate



Process Protection

This user-level protection is what prevents my processes from
interfering with your processes: as we have different userids,
the kernel knows to keep them separate

In particular, if | download an application or web page that
contains a malicious worm or virus, properly working protection
will limit the damage that malware can do to just my files and
my processes



Process Protection

This user-level protection is what prevents my processes from
interfering with your processes: as we have different userids,
the kernel knows to keep them separate

In particular, if | download an application or web page that
contains a malicious worm or virus, properly working protection
will limit the damage that malware can do to just my files and
my processes

Not ideal, but better than letting the malware have full reign
over the entire machine



Process Protection

A big part of the spread of malware in Windows OSs is the
weakness of this kind of barrier to their spread: too many
programs run as administrator and this can ultimately cause the
entire system to be affected



Process Protection

A big part of the spread of malware in Windows OSs is the
weakness of this kind of barrier to their spread: too many
programs run as administrator and this can ultimately cause the
entire system to be affected

Note that if your OS requires the use of a virus checker, this is
a strong sign that your OS is not confident in its implementation
of process protection



Process Protection

A big part of the spread of malware in Windows OSs is the
weakness of this kind of barrier to their spread: too many
programs run as administrator and this can ultimately cause the
entire system to be affected

Note that if your OS requires the use of a virus checker, this is
a strong sign that your OS is not confident in its implementation
of process protection

Virus scanners address the symptom, not the problem



