Memory

We now turn to the next major topic: memory management



Memory

We now turn to the next major topic: memory management

In the earliest computers the purpose of memory management
was to share out a very limited resource, but it was soon found
that inter-process protection was vital



Memory

We now turn to the next major topic: memory management

In the earliest computers the purpose of memory management
was to share out a very limited resource, but it was soon found
that inter-process protection was vital

Both needs are still true, particularly the limited aspect: you
might have 2GB in your PC, but it's not enough!



Memory

We now turn to the next major topic: memory management

In the earliest computers the purpose of memory management
was to share out a very limited resource, but it was soon found
that inter-process protection was vital

Both needs are still true, particularly the limited aspect: you
might have 2GB in your PC, but it's not enough!

Gates’ Law: programs double in size every 18 months



Memory

We now turn to the next major topic: memory management

In the earliest computers the purpose of memory management
was to share out a very limited resource, but it was soon found
that inter-process protection was vital

Both needs are still true, particularly the limited aspect: you
might have 2GB in your PC, but it's not enough!

Gates’ Law: programs double in size every 18 months

(Really Wirth’s Law: Software is decelerating faster than
hardware is accelerating)



Memory
Physical Memory

We first consider how processes (code and data) should be laid
out in memory



Memory
Physical Memory

We first consider how processes (code and data) should be laid
out in memory

This is called physical memory layout to distinguish it from
virtual memory, which comes later



Memory
Physical Memory

Memory in a process might be allocated or freed at several
points



Memory
Physical Memory

Memory in a process might be allocated or freed at several
points

e Allocation only at process initialisation. Called static
allocation. Featured in the earliest OSs



Memory
Physical Memory

Memory in a process might be allocated or freed at several
points

e Allocation only at process initialisation. Called static
allocation. Featured in the earliest OSs

¢ Allocation while the process is running. Called dynamic
allocation. Early systems did not support this and you had
to know in advance how much memory your process would
need at initialisation



Memory
Physical Memory

Memory in a process might be allocated or freed at several
points

e Allocation only at process initialisation. Called static
allocation. Featured in the earliest OSs

¢ Allocation while the process is running. Called dynamic
allocation. Early systems did not support this and you had
to know in advance how much memory your process would
need at initialisation

e Freeing while the process is running



Memory
Physical Memory

Memory in a process might be allocated or freed at several
points

Allocation only at process initialisation. Called static
allocation. Featured in the earliest OSs

Allocation while the process is running. Called dynamic
allocation. Early systems did not support this and you had
to know in advance how much memory your process would
need at initialisation

Freeing while the process is running

Freeing at process end



Memory
Physical Memory

But also the kernel needs memory:



Memory
Physical Memory

But also the kernel needs memory:

¢ Allocation and freeing within the kernel. The kernel has to
be dynamic otherwise it would be very difficult to get
started, e.g., creating processor control blocks



Memory
Physical Memory

Early operating systems were not dynamic



Memory
Physical Memory

Early operating systems were not dynamic

So they could only run a fixed number of processes



Memory
Physical Memory

Early operating systems were not dynamic
So they could only run a fixed number of processes

And the processes were of a fixed size



Memory
Physical Memory

Early operating systems were not dynamic
So they could only run a fixed number of processes
And the processes were of a fixed size

Reflecting this, early computer languages did not support
dynamic allocation, e.g., FORTRAN, every array must be of a
fixed size, declared in the source code



Memory
Physical Memory

Early operating systems were not dynamic
So they could only run a fixed number of processes
And the processes were of a fixed size

Reflecting this, early computer languages did not support
dynamic allocation, e.g., FORTRAN, every array must be of a
fixed size, declared in the source code

Dynamic allocation for both kernel and the processes was soon
introduced in OSs, but computer languages took a while to
catch up with the new facility



Memory
Physical Memory

Physical memory in an early computers looked something like
this:

process data

code

process

kemel codel ' increasing
and data addresses

Memory Layout



Memory
Physical Memory

Remember the kernel itself needs code and data space



Memory
Physical Memory

Remember the kernel itself needs code and data space

A gap above the kernel area allows for dynamic allocation of
memory to itself



Memory
Physical Memory

But the earliest systems had no dynamic behaviour at all, both
OS and programs were completely static



Memory
Physical Memory

But the earliest systems had no dynamic behaviour at all, both
OS and programs were completely static

Again, some early languages (FORTRAN, again) did not have
a stack, and thus no recursion



Memory
Physical Memory

Partitioning

The earliest and simplest memory layout is a static system
called partitioning, where areas are allocated at boot time



Memory
Physical Memory

Partitioning

The earliest and simplest memory layout is a static system
called partitioning, where areas are allocated at boot time

equal size
partitions
pre—
allocated

kernel pro
and data




Partitioning

Memory

Physical Memory

The earliest and simplest memory layout is a static system
called partitioning, where areas are allocated at boot time

kernel pro
and data

equal size
partitions
pre—
allocated

kernel pro
and data

variable size
partitions
pre—
allocated



Memory
Physical Memory

Partitioning

The earliest and simplest memory layout is a static system
called partitioning, where areas are allocated at boot time

equ_a! size variable size
partitions partitions
pre— pre—
allocated allocated
kernel pro kernel pro
and data and data

A process is loaded into the smallest free partition it will fit into



Memory
Physical Memory

If you don’t have dynamic allocation even in the kernel (e.g., for
allocating new PCBs), then having fixed partitions is ideal



Memory
Physical Memory

If you don’t have dynamic allocation even in the kernel (e.g., for
allocating new PCBs), then having fixed partitions is ideal

Equal size is easy to implement, but usually causes wasted
space when a process does not fill its allocation



Memory
Physical Memory

If you don’t have dynamic allocation even in the kernel (e.g., for
allocating new PCBs), then having fixed partitions is ideal

Equal size is easy to implement, but usually causes wasted
space when a process does not fill its allocation

And it can’t cope with larger processes



Memory
Physical Memory

If you don’t have dynamic allocation even in the kernel (e.g., for
allocating new PCBs), then having fixed partitions is ideal

Equal size is easy to implement, but usually causes wasted
space when a process does not fill its allocation

And it can’t cope with larger processes

Variable size is not much harder to implement, but efficiency
depends heavily on the choice of partition sizes as ideally they
should match the expected process sizes



Memory
Physical Memory

Partitioning is a good arrangement if you only run a fixed set of
applications that you know in advance, e.g., a stock manager
plus a payroll system plus a employees record system



Memory
Physical Memory

Partitioning is a good arrangement if you only run a fixed set of
applications that you know in advance, e.g., a stock manager
plus a payroll system plus a employees record system

IBM’s OS/360 (mid 1960s) had three partitions: one for
spooling punched cards to disk; one for spooling disk to
printers; and one to run jobs



Memory
Physical Memory

Overlays

In early systems, if a process was too big to fit in the memory
allocated, the programmer could use overlays



Memory
Physical Memory

Overlays

In early systems, if a process was too big to fit in the memory
allocated, the programmer could use overlays

This is where only part of the process code is loaded into
memory at once: only partly resident



Memory
Physical Memory

Overlays

In early systems, if a process was too big to fit in the memory
allocated, the programmer could use overlays

This is where only part of the process code is loaded into
memory at once: only partly resident

If a non-resident part of the process is needed, the programmer
must know this and include code to load the needed part of the
process into memory, overwriting a part of the process they do
not need at the moment



Memory
Physical Memory

Overlays

In early systems, if a process was too big to fit in the memory
allocated, the programmer could use overlays

This is where only part of the process code is loaded into
memory at once: only partly resident

If a non-resident part of the process is needed, the programmer
must know this and include code to load the needed part of the
process into memory, overwriting a part of the process they do
not need at the moment

If that part of the process is needed again later, the
programmer has to reload the code



Memory
Physical Memory

This works, at the cost of some speed of execution, but only if
you are an excellent programmer who can keep track on what
parts of code are loaded at any particular time



Memory
Physical Memory

This works, at the cost of some speed of execution, but only if
you are an excellent programmer who can keep track on what
parts of code are loaded at any particular time

A similar trick works with data: but with newly generated data
you have to save it somewhere (e.g., disk) first, before
overwriting it, so that it can be loaded back in later, when
needed



Memory
Physical Memory

This works, at the cost of some speed of execution, but only if
you are an excellent programmer who can keep track on what
parts of code are loaded at any particular time

A similar trick works with data: but with newly generated data
you have to save it somewhere (e.g., disk) first, before
overwriting it, so that it can be loaded back in later, when
needed

This trick of swapping memory back and forth to the disk gets a
big boost later



Memory
Physical Memory

We need to fit a process into a single contiguous chunk of
memory as we can’t spread it amongst several areas since



Memory
Physical Memory

We need to fit a process into a single contiguous chunk of
memory as we can’t spread it amongst several areas since

e it will be very complicated for the OS to keep track of which
areas of memory are allocated to which process



Memory
Physical Memory

We need to fit a process into a single contiguous chunk of
memory as we can’t spread it amongst several areas since

e it will be very complicated for the OS to keep track of which
areas of memory are allocated to which process

e more importantly, you can’t split code up in this way, having
one instruction in one place and the next instruction
somewhere else entirely



Memory
Physical Memory

We need to fit a process into a single contiguous chunk of
memory as we can’t spread it amongst several areas since

e it will be very complicated for the OS to keep track of which
areas of memory are allocated to which process

e more importantly, you can’t split code up in this way, having
one instruction in one place and the next instruction
somewhere else entirely

e similarly for data: we will have to keep track of what data is
where



Memory
Physical Memory

We need to fit a process into a single contiguous chunk of
memory as we can’t spread it amongst several areas since

e it will be very complicated for the OS to keep track of which
areas of memory are allocated to which process

e more importantly, you can’t split code up in this way, having
one instruction in one place and the next instruction
somewhere else entirely

e similarly for data: we will have to keep track of what data is
where

But when we come to virtual memory we shall see that exactly
this is possible with modern hardware!

O



