
Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

At last we can talk about paging

Paging is copying pages to and from disk

Suppose there is a memory access

If there is a TLB hit, the memory access continues at full speed

On a TLB soft miss the usual case is that the page is still
resident in physical memory (not been swapped out), so it’s just
a matter of updating the TLB to refer to it by copying the page
table entry into the TLB

And then the access can continue as for a hit



Memory
Virtual Memory: Paging

But if the page has been swapped out (“paged out”), then its
contents need to be read back from disk: thus a large cost in
this case



Memory
Virtual Memory: Paging

If there is a TLB miss when the TLB table is full, the OS must
choose which mapping to remove from the TLB to make space
for the new one

Usually a least recently used (LRU) strategy is used as pages
that haven’t been touched recently often are not needed in the
near future: this is called temporal locality

Thus the TLB hardware must also keep track of when pages
are used, e.g., using a timestamp

Again, temporal locality is a feature of many programs, but it is
easy to write programs that confound the LRU strategy



Memory
Virtual Memory: Paging

If there is a TLB miss when the TLB table is full, the OS must
choose which mapping to remove from the TLB to make space
for the new one

Usually a least recently used (LRU) strategy is used as pages
that haven’t been touched recently often are not needed in the
near future: this is called temporal locality

Thus the TLB hardware must also keep track of when pages
are used, e.g., using a timestamp

Again, temporal locality is a feature of many programs, but it is
easy to write programs that confound the LRU strategy



Memory
Virtual Memory: Paging

If there is a TLB miss when the TLB table is full, the OS must
choose which mapping to remove from the TLB to make space
for the new one

Usually a least recently used (LRU) strategy is used as pages
that haven’t been touched recently often are not needed in the
near future: this is called temporal locality

Thus the TLB hardware must also keep track of when pages
are used, e.g., using a timestamp

Again, temporal locality is a feature of many programs, but it is
easy to write programs that confound the LRU strategy



Memory
Virtual Memory: Paging

If there is a TLB miss when the TLB table is full, the OS must
choose which mapping to remove from the TLB to make space
for the new one

Usually a least recently used (LRU) strategy is used as pages
that haven’t been touched recently often are not needed in the
near future: this is called temporal locality

Thus the TLB hardware must also keep track of when pages
are used, e.g., using a timestamp

Again, temporal locality is a feature of many programs, but it is
easy to write programs that confound the LRU strategy



Memory
Virtual Memory: Paging

The OS may use the opportunity of a TLB miss to choose some
pages to swap out

Note there are two separate issues here:

• which entry in the TLB to remove when the TLB table is full
• which page in physical memory to swap out when physical

memory is full

They are related in that an infrequently used TLB entry implies
an infrequently used page; but conversely an infrequently used
page is probably not in the TLB table at all



Memory
Virtual Memory: Paging

The OS may use the opportunity of a TLB miss to choose some
pages to swap out

Note there are two separate issues here:

• which entry in the TLB to remove when the TLB table is full
• which page in physical memory to swap out when physical

memory is full

They are related in that an infrequently used TLB entry implies
an infrequently used page; but conversely an infrequently used
page is probably not in the TLB table at all



Memory
Virtual Memory: Paging

The OS may use the opportunity of a TLB miss to choose some
pages to swap out

Note there are two separate issues here:

• which entry in the TLB to remove when the TLB table is full

• which page in physical memory to swap out when physical
memory is full

They are related in that an infrequently used TLB entry implies
an infrequently used page; but conversely an infrequently used
page is probably not in the TLB table at all



Memory
Virtual Memory: Paging

The OS may use the opportunity of a TLB miss to choose some
pages to swap out

Note there are two separate issues here:

• which entry in the TLB to remove when the TLB table is full
• which page in physical memory to swap out when physical

memory is full

They are related in that an infrequently used TLB entry implies
an infrequently used page; but conversely an infrequently used
page is probably not in the TLB table at all



Memory
Virtual Memory: Paging

The OS may use the opportunity of a TLB miss to choose some
pages to swap out

Note there are two separate issues here:

• which entry in the TLB to remove when the TLB table is full
• which page in physical memory to swap out when physical

memory is full

They are related in that an infrequently used TLB entry implies
an infrequently used page; but conversely an infrequently used
page is probably not in the TLB table at all



Memory
Virtual Memory: Paging

Paging Strategies

Many strategies exist for choosing pages to evict (swap out)

• Random. Pick a random page. Simple and better than you
think

• FIFO. First in first out. Poor, as pages that have been
around for a long time tend to be the ones that are needed

• LRU. Least Recently Used. Good, but needs to keep track
on a when a page was last used (different from the TLB
page timestamp)

• LFU. Least frequently used. Increment a counter on the
page on each access; remove pages with low counts. Not
so good as pages just brought in because you need them
tend to have low counts

• And so on.



Memory
Virtual Memory: Paging

Paging Strategies

Many strategies exist for choosing pages to evict (swap out)

• Random. Pick a random page. Simple and better than you
think

• FIFO. First in first out. Poor, as pages that have been
around for a long time tend to be the ones that are needed

• LRU. Least Recently Used. Good, but needs to keep track
on a when a page was last used (different from the TLB
page timestamp)

• LFU. Least frequently used. Increment a counter on the
page on each access; remove pages with low counts. Not
so good as pages just brought in because you need them
tend to have low counts

• And so on.



Memory
Virtual Memory: Paging

Paging Strategies

Many strategies exist for choosing pages to evict (swap out)

• Random. Pick a random page. Simple and better than you
think

• FIFO. First in first out. Poor, as pages that have been
around for a long time tend to be the ones that are needed

• LRU. Least Recently Used. Good, but needs to keep track
on a when a page was last used (different from the TLB
page timestamp)

• LFU. Least frequently used. Increment a counter on the
page on each access; remove pages with low counts. Not
so good as pages just brought in because you need them
tend to have low counts

• And so on.



Memory
Virtual Memory: Paging

Paging Strategies

Many strategies exist for choosing pages to evict (swap out)

• Random. Pick a random page. Simple and better than you
think

• FIFO. First in first out. Poor, as pages that have been
around for a long time tend to be the ones that are needed

• LRU. Least Recently Used. Good, but needs to keep track
on a when a page was last used (different from the TLB
page timestamp)

• LFU. Least frequently used. Increment a counter on the
page on each access; remove pages with low counts. Not
so good as pages just brought in because you need them
tend to have low counts

• And so on.



Memory
Virtual Memory: Paging

Paging Strategies

Many strategies exist for choosing pages to evict (swap out)

• Random. Pick a random page. Simple and better than you
think

• FIFO. First in first out. Poor, as pages that have been
around for a long time tend to be the ones that are needed

• LRU. Least Recently Used. Good, but needs to keep track
on a when a page was last used (different from the TLB
page timestamp)

• LFU. Least frequently used. Increment a counter on the
page on each access; remove pages with low counts. Not
so good as pages just brought in because you need them
tend to have low counts

• And so on.



Memory
Virtual Memory: Paging

Paging Strategies

Many strategies exist for choosing pages to evict (swap out)

• Random. Pick a random page. Simple and better than you
think

• FIFO. First in first out. Poor, as pages that have been
around for a long time tend to be the ones that are needed

• LRU. Least Recently Used. Good, but needs to keep track
on a when a page was last used (different from the TLB
page timestamp)

• LFU. Least frequently used. Increment a counter on the
page on each access; remove pages with low counts. Not
so good as pages just brought in because you need them
tend to have low counts

• And so on.



Memory
Virtual Memory

The first time a (virtual) page is touched by a process it will
cause a (major) page fault

The OS needs to allocate a new physical page for this process

Allocation of new pages is facilitated by the fixed page size: just
find any unallocated page in physical memory and set it as the
physical page mapping from the requested virtual page

This simplification over earlier allocation methods is the big
benefit of using pages

The first page on the freelist of pages is always suitable. No
need to search, no size fit issues, no fragmentation issues



Memory
Virtual Memory

The first time a (virtual) page is touched by a process it will
cause a (major) page fault

The OS needs to allocate a new physical page for this process

Allocation of new pages is facilitated by the fixed page size: just
find any unallocated page in physical memory and set it as the
physical page mapping from the requested virtual page

This simplification over earlier allocation methods is the big
benefit of using pages

The first page on the freelist of pages is always suitable. No
need to search, no size fit issues, no fragmentation issues



Memory
Virtual Memory

The first time a (virtual) page is touched by a process it will
cause a (major) page fault

The OS needs to allocate a new physical page for this process

Allocation of new pages is facilitated by the fixed page size: just
find any unallocated page in physical memory and set it as the
physical page mapping from the requested virtual page

This simplification over earlier allocation methods is the big
benefit of using pages

The first page on the freelist of pages is always suitable. No
need to search, no size fit issues, no fragmentation issues



Memory
Virtual Memory

The first time a (virtual) page is touched by a process it will
cause a (major) page fault

The OS needs to allocate a new physical page for this process

Allocation of new pages is facilitated by the fixed page size: just
find any unallocated page in physical memory and set it as the
physical page mapping from the requested virtual page

This simplification over earlier allocation methods is the big
benefit of using pages

The first page on the freelist of pages is always suitable. No
need to search, no size fit issues, no fragmentation issues



Memory
Virtual Memory

The first time a (virtual) page is touched by a process it will
cause a (major) page fault

The OS needs to allocate a new physical page for this process

Allocation of new pages is facilitated by the fixed page size: just
find any unallocated page in physical memory and set it as the
physical page mapping from the requested virtual page

This simplification over earlier allocation methods is the big
benefit of using pages

The first page on the freelist of pages is always suitable. No
need to search, no size fit issues, no fragmentation issues



Memory
Virtual Memory

A single large datastructure (e.g., a vector, which you normally
think of as a contiguous region of memory) in your process
might actually be spread, in chunks, all over the place in
physical memory

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

80 81 82 83 400 401 402 403 2000 2001 2002 2003

v[0] v[1] v[2] v[3] v[4] v[5] v[6] v[7] v[8] v[9] v[10] v[11]

programmer’s view

process’s view
virtual

kernel’s view
physical

TLB

loader
compiler/



Memory
Virtual Memory

Similarly for code: a chunk of code spanning multiple pages
may well be distributed all over physical memory

Code or data might be contiguous in the virtual address space,
but definitely not contiguous in the physical address space



Memory
Virtual Memory

Similarly for code: a chunk of code spanning multiple pages
may well be distributed all over physical memory

Code or data might be contiguous in the virtual address space,
but definitely not contiguous in the physical address space


