
Memory
Virtual Memory

So a page table is a list of pages a process has accessed and
the relevant virtual-physical mapping. We have already seen
every page also has some permissions attached:

• read : the process can read from this page
• write: the process can write to this page
• execute: the process can execute code on this page



Memory
Virtual Memory

If a process tries to access a page it does not have the
appropriate permission for an interrupts happens and the OS
sends a segmentation violation signal to the process

Even though, through the virtualisation, “all” memory is owned
by the current process, it is still useful to have these
permissions

This is so the process knows it is trying to read from/write
to/execute some unexpected place in memory, rather than
some place it should be. This catches many stupid
programming errors

Further, permissions are useful when we have shared memory,
too



Memory
Virtual Memory

If a process tries to access a page it does not have the
appropriate permission for an interrupts happens and the OS
sends a segmentation violation signal to the process

Even though, through the virtualisation, “all” memory is owned
by the current process, it is still useful to have these
permissions

This is so the process knows it is trying to read from/write
to/execute some unexpected place in memory, rather than
some place it should be. This catches many stupid
programming errors

Further, permissions are useful when we have shared memory,
too



Memory
Virtual Memory

If a process tries to access a page it does not have the
appropriate permission for an interrupts happens and the OS
sends a segmentation violation signal to the process

Even though, through the virtualisation, “all” memory is owned
by the current process, it is still useful to have these
permissions

This is so the process knows it is trying to read from/write
to/execute some unexpected place in memory, rather than
some place it should be. This catches many stupid
programming errors

Further, permissions are useful when we have shared memory,
too



Memory
Virtual Memory

If a process tries to access a page it does not have the
appropriate permission for an interrupts happens and the OS
sends a segmentation violation signal to the process

Even though, through the virtualisation, “all” memory is owned
by the current process, it is still useful to have these
permissions

This is so the process knows it is trying to read from/write
to/execute some unexpected place in memory, rather than
some place it should be. This catches many stupid
programming errors

Further, permissions are useful when we have shared memory,
too



Memory
Virtual Memory

Another big benefit of VM is the natural protection of one
process from another: as all user mode memory accesses go
though the TLB, the TLB will simply prevent it even being
possible for one process to overwrite the memory of another

Or enable it if we want shared memory. Thus the TLB solves
two big problems: memory protection and memory sharing

A process only sees the virtual address: it can access
anywhere it wants and the TLB takes care of things

The kernel bypasses the TLB lookup and sees physical
addresses, but can map back and forth for each process



Memory
Virtual Memory

Another big benefit of VM is the natural protection of one
process from another: as all user mode memory accesses go
though the TLB, the TLB will simply prevent it even being
possible for one process to overwrite the memory of another

Or enable it if we want shared memory. Thus the TLB solves
two big problems: memory protection and memory sharing

A process only sees the virtual address: it can access
anywhere it wants and the TLB takes care of things

The kernel bypasses the TLB lookup and sees physical
addresses, but can map back and forth for each process



Memory
Virtual Memory

Another big benefit of VM is the natural protection of one
process from another: as all user mode memory accesses go
though the TLB, the TLB will simply prevent it even being
possible for one process to overwrite the memory of another

Or enable it if we want shared memory. Thus the TLB solves
two big problems: memory protection and memory sharing

A process only sees the virtual address: it can access
anywhere it wants and the TLB takes care of things

The kernel bypasses the TLB lookup and sees physical
addresses, but can map back and forth for each process



Memory
Virtual Memory

Another big benefit of VM is the natural protection of one
process from another: as all user mode memory accesses go
though the TLB, the TLB will simply prevent it even being
possible for one process to overwrite the memory of another

Or enable it if we want shared memory. Thus the TLB solves
two big problems: memory protection and memory sharing

A process only sees the virtual address: it can access
anywhere it wants and the TLB takes care of things

The kernel bypasses the TLB lookup and sees physical
addresses, but can map back and forth for each process



Memory
Virtual Memory

Shared Memory

So now shared memory is very easy: just let the TLB do the
mapping of virtual pages from different processes to the same
physical pages

This allows shared libraries (.so in Unix; DLLs in Windows;
.dylib in MacOS X/macOS)

Many programs need to do mundane stuff like read or writing to
files, formatted printing, drawing on the screen and so on

So libraries of such code are provided that the programmer can
use and not have to reimplement it all themselves



Memory
Virtual Memory

Shared Memory

So now shared memory is very easy: just let the TLB do the
mapping of virtual pages from different processes to the same
physical pages

This allows shared libraries (.so in Unix; DLLs in Windows;
.dylib in MacOS X/macOS)

Many programs need to do mundane stuff like read or writing to
files, formatted printing, drawing on the screen and so on

So libraries of such code are provided that the programmer can
use and not have to reimplement it all themselves



Memory
Virtual Memory

Shared Memory

So now shared memory is very easy: just let the TLB do the
mapping of virtual pages from different processes to the same
physical pages

This allows shared libraries (.so in Unix; DLLs in Windows;
.dylib in MacOS X/macOS)

Many programs need to do mundane stuff like read or writing to
files, formatted printing, drawing on the screen and so on

So libraries of such code are provided that the programmer can
use and not have to reimplement it all themselves



Memory
Virtual Memory

Shared Memory

So now shared memory is very easy: just let the TLB do the
mapping of virtual pages from different processes to the same
physical pages

This allows shared libraries (.so in Unix; DLLs in Windows;
.dylib in MacOS X/macOS)

Many programs need to do mundane stuff like read or writing to
files, formatted printing, drawing on the screen and so on

So libraries of such code are provided that the programmer can
use and not have to reimplement it all themselves



Memory
Virtual Memory

If 10 processes are in memory, each of them using the library
read function, does that mean there are 10 copies of the code
for read scattered about in memory?

Before the advent of shared libraries, yes

But now the use of virtual memory can let us share code
between processes



Memory
Virtual Memory

If 10 processes are in memory, each of them using the library
read function, does that mean there are 10 copies of the code
for read scattered about in memory?

Before the advent of shared libraries, yes

But now the use of virtual memory can let us share code
between processes



Memory
Virtual Memory

If 10 processes are in memory, each of them using the library
read function, does that mean there are 10 copies of the code
for read scattered about in memory?

Before the advent of shared libraries, yes

But now the use of virtual memory can let us share code
between processes



Memory
Virtual Memory

kernel prog
and data

virtualrealvirtual

process 1 process 2OS

library
shared

Shared Libraries



Memory
Virtual Memory

Now the OS can load the code for read just once and direct all
other processes to use that single copy

This reduces memory usage, reduces pages faults and has
other beneficial properties (see caching)

This works well as all processes can share identical and
unchanging code pages. But data in libraries couldn’t be
shared like this though?

Perhaps we would need a private copy of the data pages for
each process, since if one process updates the data that would
mess things up for another process also using that data

But there is another trick. . .



Memory
Virtual Memory

Now the OS can load the code for read just once and direct all
other processes to use that single copy

This reduces memory usage, reduces pages faults and has
other beneficial properties (see caching)

This works well as all processes can share identical and
unchanging code pages. But data in libraries couldn’t be
shared like this though?

Perhaps we would need a private copy of the data pages for
each process, since if one process updates the data that would
mess things up for another process also using that data

But there is another trick. . .



Memory
Virtual Memory

Now the OS can load the code for read just once and direct all
other processes to use that single copy

This reduces memory usage, reduces pages faults and has
other beneficial properties (see caching)

This works well as all processes can share identical and
unchanging code pages. But data in libraries couldn’t be
shared like this though?

Perhaps we would need a private copy of the data pages for
each process, since if one process updates the data that would
mess things up for another process also using that data

But there is another trick. . .



Memory
Virtual Memory

Now the OS can load the code for read just once and direct all
other processes to use that single copy

This reduces memory usage, reduces pages faults and has
other beneficial properties (see caching)

This works well as all processes can share identical and
unchanging code pages. But data in libraries couldn’t be
shared like this though?

Perhaps we would need a private copy of the data pages for
each process, since if one process updates the data that would
mess things up for another process also using that data

But there is another trick. . .



Memory
Virtual Memory

Now the OS can load the code for read just once and direct all
other processes to use that single copy

This reduces memory usage, reduces pages faults and has
other beneficial properties (see caching)

This works well as all processes can share identical and
unchanging code pages. But data in libraries couldn’t be
shared like this though?

Perhaps we would need a private copy of the data pages for
each process, since if one process updates the data that would
mess things up for another process also using that data

But there is another trick. . .


