
Memory
Virtual Memory

Copy on Write

Different processes can easily share data as long as they don’t
try to update it

Some data is read-only (e.g., a document containing an exam
paper), so this could be stored in a page marked read-only, and
this can be safely shared

Other data you do want to update (e.g., a document containing
an exam answer template)

Such pages can be marked with another flag: copy on write —
again, as long as the hardware supports this



Memory
Virtual Memory

Copy on Write

Different processes can easily share data as long as they don’t
try to update it

Some data is read-only (e.g., a document containing an exam
paper), so this could be stored in a page marked read-only, and
this can be safely shared

Other data you do want to update (e.g., a document containing
an exam answer template)

Such pages can be marked with another flag: copy on write —
again, as long as the hardware supports this



Memory
Virtual Memory

Copy on Write

Different processes can easily share data as long as they don’t
try to update it

Some data is read-only (e.g., a document containing an exam
paper), so this could be stored in a page marked read-only, and
this can be safely shared

Other data you do want to update (e.g., a document containing
an exam answer template)

Such pages can be marked with another flag: copy on write —
again, as long as the hardware supports this



Memory
Virtual Memory

Copy on Write

Different processes can easily share data as long as they don’t
try to update it

Some data is read-only (e.g., a document containing an exam
paper), so this could be stored in a page marked read-only, and
this can be safely shared

Other data you do want to update (e.g., a document containing
an exam answer template)

Such pages can be marked with another flag: copy on write —
again, as long as the hardware supports this



Memory
Virtual Memory

With copy on write, a page is shared up until a process tries to
modify it

At this point a page fault occurs and the OS takes over

It makes a physical copy of the page and changes the page
table and TLB for that process to point at the new copy

The write can then proceed on the private, unshared copy

Other processes still see the original, unmodified data



Memory
Virtual Memory

With copy on write, a page is shared up until a process tries to
modify it

At this point a page fault occurs and the OS takes over

It makes a physical copy of the page and changes the page
table and TLB for that process to point at the new copy

The write can then proceed on the private, unshared copy

Other processes still see the original, unmodified data



Memory
Virtual Memory

With copy on write, a page is shared up until a process tries to
modify it

At this point a page fault occurs and the OS takes over

It makes a physical copy of the page and changes the page
table and TLB for that process to point at the new copy

The write can then proceed on the private, unshared copy

Other processes still see the original, unmodified data



Memory
Virtual Memory

With copy on write, a page is shared up until a process tries to
modify it

At this point a page fault occurs and the OS takes over

It makes a physical copy of the page and changes the page
table and TLB for that process to point at the new copy

The write can then proceed on the private, unshared copy

Other processes still see the original, unmodified data



Memory
Virtual Memory

With copy on write, a page is shared up until a process tries to
modify it

At this point a page fault occurs and the OS takes over

It makes a physical copy of the page and changes the page
table and TLB for that process to point at the new copy

The write can then proceed on the private, unshared copy

Other processes still see the original, unmodified data



Memory
Virtual Memory

physical
memory

stuff

process A process B

Some data is shared; process B tries to update the data



Memory
Virtual Memory

physical
memory

stuff

stuff

process A process B

The OS takes over; copies the data to a new page; updates B’s
page mappings



Memory
Virtual Memory

physical
memory

stuff

modified
stuff

process A process B

The update continues and B modifies its own copy of the data



Memory
Virtual Memory

This works really well for when a majority of data is shared with
only a few changes here and there

And it only uses an extra amount of memory proportional to the
size of the changes

So another reduction in memory use, page faults and so on



Memory
Virtual Memory

This works really well for when a majority of data is shared with
only a few changes here and there

And it only uses an extra amount of memory proportional to the
size of the changes

So another reduction in memory use, page faults and so on



Memory
Virtual Memory

This works really well for when a majority of data is shared with
only a few changes here and there

And it only uses an extra amount of memory proportional to the
size of the changes

So another reduction in memory use, page faults and so on



Memory
Virtual Memory

This is excellent, but comes at the cost of extra complexity as
the OS now has to track if a shared page has already been
loaded and where it is physically

And complexity in swapping as now it has to track which
processes are using a page and it can’t swap a page until
no-one is using it

But this is offset by the fact we will need to swap less as we are
using memory more efficiently



Memory
Virtual Memory

This is excellent, but comes at the cost of extra complexity as
the OS now has to track if a shared page has already been
loaded and where it is physically

And complexity in swapping as now it has to track which
processes are using a page and it can’t swap a page until
no-one is using it

But this is offset by the fact we will need to swap less as we are
using memory more efficiently



Memory
Virtual Memory

This is excellent, but comes at the cost of extra complexity as
the OS now has to track if a shared page has already been
loaded and where it is physically

And complexity in swapping as now it has to track which
processes are using a page and it can’t swap a page until
no-one is using it

But this is offset by the fact we will need to swap less as we are
using memory more efficiently



Memory
Virtual Memory

Other Tricks

OSs often keep a page full of zeros

If a process asks for a big block of zeroed memory, the OS will
supply the appropriate number of virtual pages, all pointing at
the single zeroed physical page: much faster than allocating
and clearing out a load of physical memory

If the process writes to that block, the OS does a copy-on-write
shuffle behind the scenes, allocating and clearing a new
writable page

Thus only allocating and clearing pages that are actually used



Memory
Virtual Memory

Other Tricks

OSs often keep a page full of zeros

If a process asks for a big block of zeroed memory, the OS will
supply the appropriate number of virtual pages, all pointing at
the single zeroed physical page: much faster than allocating
and clearing out a load of physical memory

If the process writes to that block, the OS does a copy-on-write
shuffle behind the scenes, allocating and clearing a new
writable page

Thus only allocating and clearing pages that are actually used



Memory
Virtual Memory

Other Tricks

OSs often keep a page full of zeros

If a process asks for a big block of zeroed memory, the OS will
supply the appropriate number of virtual pages, all pointing at
the single zeroed physical page: much faster than allocating
and clearing out a load of physical memory

If the process writes to that block, the OS does a copy-on-write
shuffle behind the scenes, allocating and clearing a new
writable page

Thus only allocating and clearing pages that are actually used



Memory
Virtual Memory

Other Tricks

OSs often keep a page full of zeros

If a process asks for a big block of zeroed memory, the OS will
supply the appropriate number of virtual pages, all pointing at
the single zeroed physical page: much faster than allocating
and clearing out a load of physical memory

If the process writes to that block, the OS does a copy-on-write
shuffle behind the scenes, allocating and clearing a new
writable page

Thus only allocating and clearing pages that are actually used



Memory
Virtual Memory

Other Tricks

virtual

library
shared

and data
kernel code

process memory

physical

0

0

0

0

Zero Page



Memory
Virtual Memory

Other Tricks

virtual

library
shared

and data
kernel code

process memory

physical

0

0

0

data

data

Zero Page after a write



Memory
Virtual Memory

Other Tricks

Virtual memory has other useful features like memory mapping
of devices

Parts of the virtual address space can be mapped on to things
other than memory, e.g., files, the screen, sound card

The OS can mmap (all or parts of) a file into memory: this
means that reads and writes to “memory” are converted by the
OS to reads and writes to that file (or screen, etc.)



Memory
Virtual Memory

Other Tricks

Virtual memory has other useful features like memory mapping
of devices

Parts of the virtual address space can be mapped on to things
other than memory, e.g., files, the screen, sound card

The OS can mmap (all or parts of) a file into memory: this
means that reads and writes to “memory” are converted by the
OS to reads and writes to that file (or screen, etc.)



Memory
Virtual Memory

Other Tricks

Virtual memory has other useful features like memory mapping
of devices

Parts of the virtual address space can be mapped on to things
other than memory, e.g., files, the screen, sound card

The OS can mmap (all or parts of) a file into memory: this
means that reads and writes to “memory” are converted by the
OS to reads and writes to that file (or screen, etc.)



Memory
Virtual Memory

kernel prog
and data

realvirtual

process 1 OS

library
shared

disk

sound
card

Memory map



Memory
Virtual Memory

The hugely simplifies the problem for the programmer: rather
than having to work out the fiddly details for a given piece of
hardware, they can simply write to what looks like an area of
memory and the OS sorts out all the details



Memory
Virtual Memory

Conclusion: TLBs solve many problems!


