
Filesystems

We now turn to files and filesystems

Current technology has main memory being limited in size (a
few gigabytes) and volatile: the values disappear when you
remove the power

To be able to manipulate more data and to make it persistent
we turn to larger, but slower, devices like disks

And to organise everything we need filesystems



Filesystems

We now turn to files and filesystems

Current technology has main memory being limited in size (a
few gigabytes) and volatile: the values disappear when you
remove the power

To be able to manipulate more data and to make it persistent
we turn to larger, but slower, devices like disks

And to organise everything we need filesystems



Filesystems

We now turn to files and filesystems

Current technology has main memory being limited in size (a
few gigabytes) and volatile: the values disappear when you
remove the power

To be able to manipulate more data and to make it persistent
we turn to larger, but slower, devices like disks

And to organise everything we need filesystems



Filesystems

We now turn to files and filesystems

Current technology has main memory being limited in size (a
few gigabytes) and volatile: the values disappear when you
remove the power

To be able to manipulate more data and to make it persistent
we turn to larger, but slower, devices like disks

And to organise everything we need filesystems



Filesystems

Note: not all applications want to use filesystems, in particular
enterprise databases like to have direct access to disks
themselves in order to optimise access for their very specific
needs

Some people have experimented with making ordinary
applications use DB-like access, mostly to a resounding failure

In general, a filesystem is what people want: a simple, efficient
way of accessing their data



Filesystems

Note: not all applications want to use filesystems, in particular
enterprise databases like to have direct access to disks
themselves in order to optimise access for their very specific
needs

Some people have experimented with making ordinary
applications use DB-like access, mostly to a resounding failure

In general, a filesystem is what people want: a simple, efficient
way of accessing their data



Filesystems

Note: not all applications want to use filesystems, in particular
enterprise databases like to have direct access to disks
themselves in order to optimise access for their very specific
needs

Some people have experimented with making ordinary
applications use DB-like access, mostly to a resounding failure

In general, a filesystem is what people want: a simple, efficient
way of accessing their data



Filesystems

Another note: a filesystem is just an organisation of data, and
doesn’t need to be associated with disks

Filesystems can be found whenever we have large amounts of
data that needs organising

USB keys, iPods, phones, . . .

It’s even occasionally useful to have a filesystem in memory,
again as an organisational mechanism



Filesystems

Another note: a filesystem is just an organisation of data, and
doesn’t need to be associated with disks

Filesystems can be found whenever we have large amounts of
data that needs organising

USB keys, iPods, phones, . . .

It’s even occasionally useful to have a filesystem in memory,
again as an organisational mechanism



Filesystems

Another note: a filesystem is just an organisation of data, and
doesn’t need to be associated with disks

Filesystems can be found whenever we have large amounts of
data that needs organising

USB keys, iPods, phones, . . .

It’s even occasionally useful to have a filesystem in memory,
again as an organisational mechanism



Filesystems

Another note: a filesystem is just an organisation of data, and
doesn’t need to be associated with disks

Filesystems can be found whenever we have large amounts of
data that needs organising

USB keys, iPods, phones, . . .

It’s even occasionally useful to have a filesystem in memory,
again as an organisational mechanism



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write

Exercise. Compare with using virtual memory to do the same



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write

Exercise. Compare with using virtual memory to do the same



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write

Exercise. Compare with using virtual memory to do the same



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write

Exercise. Compare with using virtual memory to do the same



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write

Exercise. Compare with using virtual memory to do the same



Filesystems

Yet another note: and it’s not necessary that the object or
objects behind the filesystem store data

We can have it so that reading from one particular file actually
returns keystrokes from the keyboard

Or writing to another file is actually sending sound to a
soundcard

In fact, a Unix philosophy is “all devices are files”

This makes accessing devices incredibly easy for the
programmer: just read and write

Exercise. Compare with using virtual memory to do the same



Filesystems

But, for now, we shall think of files in the traditional sense

A file is simply a named chunk of data stored somehow on a
disk

Humans like easy names like prog.c, so there needs to be a
mechanism to convert names to the place on disk where the
data is stored

And when we have thousands or millions of files, meaning
thousands or millions of names, we need some way of
organising the names (even before we have thought of
organising the data itself!)



Filesystems

But, for now, we shall think of files in the traditional sense

A file is simply a named chunk of data stored somehow on a
disk

Humans like easy names like prog.c, so there needs to be a
mechanism to convert names to the place on disk where the
data is stored

And when we have thousands or millions of files, meaning
thousands or millions of names, we need some way of
organising the names (even before we have thought of
organising the data itself!)



Filesystems

But, for now, we shall think of files in the traditional sense

A file is simply a named chunk of data stored somehow on a
disk

Humans like easy names like prog.c, so there needs to be a
mechanism to convert names to the place on disk where the
data is stored

And when we have thousands or millions of files, meaning
thousands or millions of names, we need some way of
organising the names (even before we have thought of
organising the data itself!)



Filesystems

But, for now, we shall think of files in the traditional sense

A file is simply a named chunk of data stored somehow on a
disk

Humans like easy names like prog.c, so there needs to be a
mechanism to convert names to the place on disk where the
data is stored

And when we have thousands or millions of files, meaning
thousands or millions of names, we need some way of
organising the names (even before we have thought of
organising the data itself!)



Filesystems
Names

Notice the distinction between the name and the data

This is very important and the distinction runs throughout
computer science

The same name can refer to different data (otherwise the whole
thing would be useless, we could never fix bugs in prog.c)

Different names can refer to the same data. We tend to forget
that, in real life, we can use different names to refer to the same
thing: “Lewis Carroll” and “Charles Dodgson”

All but the simplest filesystems allow the same data to have
multiple filenames



Filesystems
Names

Notice the distinction between the name and the data

This is very important and the distinction runs throughout
computer science

The same name can refer to different data (otherwise the whole
thing would be useless, we could never fix bugs in prog.c)

Different names can refer to the same data. We tend to forget
that, in real life, we can use different names to refer to the same
thing: “Lewis Carroll” and “Charles Dodgson”

All but the simplest filesystems allow the same data to have
multiple filenames



Filesystems
Names

Notice the distinction between the name and the data

This is very important and the distinction runs throughout
computer science

The same name can refer to different data (otherwise the whole
thing would be useless, we could never fix bugs in prog.c)

Different names can refer to the same data. We tend to forget
that, in real life, we can use different names to refer to the same
thing: “Lewis Carroll” and “Charles Dodgson”

All but the simplest filesystems allow the same data to have
multiple filenames



Filesystems
Names

Notice the distinction between the name and the data

This is very important and the distinction runs throughout
computer science

The same name can refer to different data (otherwise the whole
thing would be useless, we could never fix bugs in prog.c)

Different names can refer to the same data. We tend to forget
that, in real life, we can use different names to refer to the same
thing: “Lewis Carroll” and “Charles Dodgson”

All but the simplest filesystems allow the same data to have
multiple filenames



Filesystems
Names

Notice the distinction between the name and the data

This is very important and the distinction runs throughout
computer science

The same name can refer to different data (otherwise the whole
thing would be useless, we could never fix bugs in prog.c)

Different names can refer to the same data. We tend to forget
that, in real life, we can use different names to refer to the same
thing: “Lewis Carroll” and “Charles Dodgson”

All but the simplest filesystems allow the same data to have
multiple filenames



Filesystems
Names

For the philosophers:

It is possible to have a thing without a name (so how can we
refer to it?)

It is possible to have a name without a thing it refers to

It is possible for names to have names

Exercise: read the introduction to the poem “Haddocks’ Eyes”,
in “Through the Looking-Glass” by Lewis Carroll and explain the
relevance

And explain the use of quotes ’“’ in the above



Filesystems
Names

For the philosophers:

It is possible to have a thing without a name (so how can we
refer to it?)

It is possible to have a name without a thing it refers to

It is possible for names to have names

Exercise: read the introduction to the poem “Haddocks’ Eyes”,
in “Through the Looking-Glass” by Lewis Carroll and explain the
relevance

And explain the use of quotes ’“’ in the above



Filesystems
Names

For the philosophers:

It is possible to have a thing without a name (so how can we
refer to it?)

It is possible to have a name without a thing it refers to

It is possible for names to have names

Exercise: read the introduction to the poem “Haddocks’ Eyes”,
in “Through the Looking-Glass” by Lewis Carroll and explain the
relevance

And explain the use of quotes ’“’ in the above


