
Filesystems
Names

So names need to be organised; this is usually (but not always)
done as a simple hierarchy

Rather than simply presenting all filenames to the user (a flat
filesystem), we gather together related files and put them into a
directory. Also called a folder

A directory is just a collection of (names of) files, but it allows
us to simplify our thought processes

And (names of) directories can be collected in other directories
and so on until we get to the top of the hierarchy, the root



Filesystems
Names

So names need to be organised; this is usually (but not always)
done as a simple hierarchy

Rather than simply presenting all filenames to the user (a flat
filesystem), we gather together related files and put them into a
directory. Also called a folder

A directory is just a collection of (names of) files, but it allows
us to simplify our thought processes

And (names of) directories can be collected in other directories
and so on until we get to the top of the hierarchy, the root



Filesystems
Names

So names need to be organised; this is usually (but not always)
done as a simple hierarchy

Rather than simply presenting all filenames to the user (a flat
filesystem), we gather together related files and put them into a
directory. Also called a folder

A directory is just a collection of (names of) files, but it allows
us to simplify our thought processes

And (names of) directories can be collected in other directories
and so on until we get to the top of the hierarchy, the root



Filesystems
Names

So names need to be organised; this is usually (but not always)
done as a simple hierarchy

Rather than simply presenting all filenames to the user (a flat
filesystem), we gather together related files and put them into a
directory. Also called a folder

A directory is just a collection of (names of) files, but it allows
us to simplify our thought processes

And (names of) directories can be collected in other directories
and so on until we get to the top of the hierarchy, the root



Filesystems
Names

root

Files can appear at all levels



Filesystems
Names

root

But always within a directory



Filesystems
Names

root

In some systems, a file can be in more than one directory



Filesystems
Names

root

Generally, directories can only be within exactly one directory,
for implementation reasons



Filesystems
Names

root

Directories can be empty



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The namespace hierarchy makes referring to a file easy

A Unix example: /usr/bin/ls refers to a file named ls inside a
directory named bin inside a directory named usr which is in
the root directory

The /s separate the names

The root directory is referred to as /, though its actual name is
empty

Other OSs have similar ideas, but use different separators

Files can have multiple names: we might find that
/usr/local/bin/dir refers to the same file as /usr/bin/ls



Filesystems
Names

The directory hierarchy forms a directed acyclic graphs (DAG)

This means: no loops

No loops means we can simply traverse the whole hierarchy
and never get stuck in a loop and no unconnected loops if we
delete a directory

We might find the same file twice, though

This is a tradeoff of flexibility vs. ease of system implementation



Filesystems
Names

The directory hierarchy forms a directed acyclic graphs (DAG)

This means: no loops

No loops means we can simply traverse the whole hierarchy
and never get stuck in a loop and no unconnected loops if we
delete a directory

We might find the same file twice, though

This is a tradeoff of flexibility vs. ease of system implementation



Filesystems
Names

The directory hierarchy forms a directed acyclic graphs (DAG)

This means: no loops

No loops means we can simply traverse the whole hierarchy
and never get stuck in a loop and no unconnected loops if we
delete a directory

We might find the same file twice, though

This is a tradeoff of flexibility vs. ease of system implementation



Filesystems
Names

The directory hierarchy forms a directed acyclic graphs (DAG)

This means: no loops

No loops means we can simply traverse the whole hierarchy
and never get stuck in a loop and no unconnected loops if we
delete a directory

We might find the same file twice, though

This is a tradeoff of flexibility vs. ease of system implementation



Filesystems
Names

The directory hierarchy forms a directed acyclic graphs (DAG)

This means: no loops

No loops means we can simply traverse the whole hierarchy
and never get stuck in a loop and no unconnected loops if we
delete a directory

We might find the same file twice, though

This is a tradeoff of flexibility vs. ease of system implementation



Filesystems
Names

To make referring to files even easier, each process has a
current working directory (cwd)

This is just a prefix, stored in the PCB for each process, so that
whenever the process asks for a file by an incomplete filename
(not starting with a /), the kernel glues the cwd prefix on to the
given name and uses that full name instead

So, with a cwd of /u/cs/1/cs1abc a process that asks for file
prog.c gets file /u/cs/1/cs1abc/prog.c

With a cwd of /u/cs/1/cs1def a process that asks for file
prog.c gets file /u/cs/1/cs1def/prog.c



Filesystems
Names

To make referring to files even easier, each process has a
current working directory (cwd)

This is just a prefix, stored in the PCB for each process, so that
whenever the process asks for a file by an incomplete filename
(not starting with a /), the kernel glues the cwd prefix on to the
given name and uses that full name instead

So, with a cwd of /u/cs/1/cs1abc a process that asks for file
prog.c gets file /u/cs/1/cs1abc/prog.c

With a cwd of /u/cs/1/cs1def a process that asks for file
prog.c gets file /u/cs/1/cs1def/prog.c



Filesystems
Names

To make referring to files even easier, each process has a
current working directory (cwd)

This is just a prefix, stored in the PCB for each process, so that
whenever the process asks for a file by an incomplete filename
(not starting with a /), the kernel glues the cwd prefix on to the
given name and uses that full name instead

So, with a cwd of /u/cs/1/cs1abc a process that asks for file
prog.c gets file /u/cs/1/cs1abc/prog.c

With a cwd of /u/cs/1/cs1def a process that asks for file
prog.c gets file /u/cs/1/cs1def/prog.c



Filesystems
Names

To make referring to files even easier, each process has a
current working directory (cwd)

This is just a prefix, stored in the PCB for each process, so that
whenever the process asks for a file by an incomplete filename
(not starting with a /), the kernel glues the cwd prefix on to the
given name and uses that full name instead

So, with a cwd of /u/cs/1/cs1abc a process that asks for file
prog.c gets file /u/cs/1/cs1abc/prog.c

With a cwd of /u/cs/1/cs1def a process that asks for file
prog.c gets file /u/cs/1/cs1def/prog.c



Filesystems
Names

This is how different processes can refer to the same name
prog.c but get different files

The cwd is a convenience for the programmer and may be
changed as often as you like (cd, chdir)



Filesystems
Names

This is how different processes can refer to the same name
prog.c but get different files

The cwd is a convenience for the programmer and may be
changed as often as you like (cd, chdir)


