
Filesystems
Inodes

When a program opens a file, the OS must find where on disk
the file lives

Say we are looking for the file prog.c with a cwd of /home/rjb

• The name is incomplete, so the OS prepends the cwd
giving /home/rjb/prog.c

• The OS reads the block containing the root directory off
disk and scans through it for the name home

• It finds it and gets the inode number for home
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name rjb



Filesystems
Inodes

When a program opens a file, the OS must find where on disk
the file lives

Say we are looking for the file prog.c with a cwd of /home/rjb

• The name is incomplete, so the OS prepends the cwd
giving /home/rjb/prog.c

• The OS reads the block containing the root directory off
disk and scans through it for the name home

• It finds it and gets the inode number for home
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name rjb



Filesystems
Inodes

When a program opens a file, the OS must find where on disk
the file lives

Say we are looking for the file prog.c with a cwd of /home/rjb

• The name is incomplete, so the OS prepends the cwd
giving /home/rjb/prog.c

• The OS reads the block containing the root directory off
disk and scans through it for the name home

• It finds it and gets the inode number for home
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name rjb



Filesystems
Inodes

When a program opens a file, the OS must find where on disk
the file lives

Say we are looking for the file prog.c with a cwd of /home/rjb

• The name is incomplete, so the OS prepends the cwd
giving /home/rjb/prog.c

• The OS reads the block containing the root directory off
disk and scans through it for the name home

• It finds it and gets the inode number for home
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name rjb



Filesystems
Inodes

When a program opens a file, the OS must find where on disk
the file lives

Say we are looking for the file prog.c with a cwd of /home/rjb

• The name is incomplete, so the OS prepends the cwd
giving /home/rjb/prog.c

• The OS reads the block containing the root directory off
disk and scans through it for the name home

• It finds it and gets the inode number for home

• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name rjb



Filesystems
Inodes

When a program opens a file, the OS must find where on disk
the file lives

Say we are looking for the file prog.c with a cwd of /home/rjb

• The name is incomplete, so the OS prepends the cwd
giving /home/rjb/prog.c

• The OS reads the block containing the root directory off
disk and scans through it for the name home

• It finds it and gets the inode number for home
• It reads the inode off disk and finds it refers to a directory

• It reads the block containing the directory off disk
• It scans the directory for the name rjb



Filesystems
Inodes

When a program opens a file, the OS must find where on disk
the file lives

Say we are looking for the file prog.c with a cwd of /home/rjb

• The name is incomplete, so the OS prepends the cwd
giving /home/rjb/prog.c

• The OS reads the block containing the root directory off
disk and scans through it for the name home

• It finds it and gets the inode number for home
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk

• It scans the directory for the name rjb



Filesystems
Inodes

When a program opens a file, the OS must find where on disk
the file lives

Say we are looking for the file prog.c with a cwd of /home/rjb

• The name is incomplete, so the OS prepends the cwd
giving /home/rjb/prog.c

• The OS reads the block containing the root directory off
disk and scans through it for the name home

• It finds it and gets the inode number for home
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name rjb



Filesystems
Inodes

• It finds it and gets the inode number for rjb

• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name prog.c

• It finds it and gets the inode number for prog.c
• It reads the inode off disk and finds it refers to a file
• It reads the blocks containing the file off disk

This must be done for every file opened

Again, caching can be used to great effect: keeping copies of
the inodes and directories in memory, rather than re-reading
them every time



Filesystems
Inodes

• It finds it and gets the inode number for rjb
• It reads the inode off disk and finds it refers to a directory

• It reads the block containing the directory off disk
• It scans the directory for the name prog.c

• It finds it and gets the inode number for prog.c
• It reads the inode off disk and finds it refers to a file
• It reads the blocks containing the file off disk

This must be done for every file opened

Again, caching can be used to great effect: keeping copies of
the inodes and directories in memory, rather than re-reading
them every time



Filesystems
Inodes

• It finds it and gets the inode number for rjb
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk

• It scans the directory for the name prog.c

• It finds it and gets the inode number for prog.c
• It reads the inode off disk and finds it refers to a file
• It reads the blocks containing the file off disk

This must be done for every file opened

Again, caching can be used to great effect: keeping copies of
the inodes and directories in memory, rather than re-reading
them every time



Filesystems
Inodes

• It finds it and gets the inode number for rjb
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name prog.c

• It finds it and gets the inode number for prog.c
• It reads the inode off disk and finds it refers to a file
• It reads the blocks containing the file off disk

This must be done for every file opened

Again, caching can be used to great effect: keeping copies of
the inodes and directories in memory, rather than re-reading
them every time



Filesystems
Inodes

• It finds it and gets the inode number for rjb
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name prog.c

• It finds it and gets the inode number for prog.c

• It reads the inode off disk and finds it refers to a file
• It reads the blocks containing the file off disk

This must be done for every file opened

Again, caching can be used to great effect: keeping copies of
the inodes and directories in memory, rather than re-reading
them every time



Filesystems
Inodes

• It finds it and gets the inode number for rjb
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name prog.c

• It finds it and gets the inode number for prog.c
• It reads the inode off disk and finds it refers to a file

• It reads the blocks containing the file off disk

This must be done for every file opened

Again, caching can be used to great effect: keeping copies of
the inodes and directories in memory, rather than re-reading
them every time



Filesystems
Inodes

• It finds it and gets the inode number for rjb
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name prog.c

• It finds it and gets the inode number for prog.c
• It reads the inode off disk and finds it refers to a file
• It reads the blocks containing the file off disk

This must be done for every file opened

Again, caching can be used to great effect: keeping copies of
the inodes and directories in memory, rather than re-reading
them every time



Filesystems
Inodes

• It finds it and gets the inode number for rjb
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name prog.c

• It finds it and gets the inode number for prog.c
• It reads the inode off disk and finds it refers to a file
• It reads the blocks containing the file off disk

This must be done for every file opened

Again, caching can be used to great effect: keeping copies of
the inodes and directories in memory, rather than re-reading
them every time



Filesystems
Inodes

• It finds it and gets the inode number for rjb
• It reads the inode off disk and finds it refers to a directory
• It reads the block containing the directory off disk
• It scans the directory for the name prog.c

• It finds it and gets the inode number for prog.c
• It reads the inode off disk and finds it refers to a file
• It reads the blocks containing the file off disk

This must be done for every file opened

Again, caching can be used to great effect: keeping copies of
the inodes and directories in memory, rather than re-reading
them every time



Filesystems
Inodes

If we want more than one filesystem on a disk, or more than
one kind of filesystem, we can split the disk into separate
partitions

A partition is just a chunk of disk owned by a single filesystem

So we can have multiple filesystems on a single disk, e.g., two
Unix filesystems and a Windows filesystem

Each filesystem has its own inode tables (or whatever it
requires) and are logically quite separate



Filesystems
Inodes

If we want more than one filesystem on a disk, or more than
one kind of filesystem, we can split the disk into separate
partitions

A partition is just a chunk of disk owned by a single filesystem

So we can have multiple filesystems on a single disk, e.g., two
Unix filesystems and a Windows filesystem

Each filesystem has its own inode tables (or whatever it
requires) and are logically quite separate



Filesystems
Inodes

If we want more than one filesystem on a disk, or more than
one kind of filesystem, we can split the disk into separate
partitions

A partition is just a chunk of disk owned by a single filesystem

So we can have multiple filesystems on a single disk, e.g., two
Unix filesystems and a Windows filesystem

Each filesystem has its own inode tables (or whatever it
requires) and are logically quite separate



Filesystems
Inodes

If we want more than one filesystem on a disk, or more than
one kind of filesystem, we can split the disk into separate
partitions

A partition is just a chunk of disk owned by a single filesystem

So we can have multiple filesystems on a single disk, e.g., two
Unix filesystems and a Windows filesystem

Each filesystem has its own inode tables (or whatever it
requires) and are logically quite separate



Filesystems
Inodes

Note that inode 23 on one partition is different to inode 23 on
another partition, meaning we can’t have hard links across
filesystems

We can have soft links across filesystems, as soft links are by
names, not inode numbers: this is really why soft links were
invented



Filesystems
Inodes

Note that inode 23 on one partition is different to inode 23 on
another partition, meaning we can’t have hard links across
filesystems

We can have soft links across filesystems, as soft links are by
names, not inode numbers: this is really why soft links were
invented



Filesystems
Mounting

Under Unix, a filesystem can be mounted on another filesystem

The name comes from when disks needed to be physically
mounted on the drives by system operators

A mount point is a special inode that says: “now go and look at
this filesystem”



Filesystems
Mounting

Under Unix, a filesystem can be mounted on another filesystem

The name comes from when disks needed to be physically
mounted on the drives by system operators

A mount point is a special inode that says: “now go and look at
this filesystem”



Filesystems
Mounting

Under Unix, a filesystem can be mounted on another filesystem

The name comes from when disks needed to be physically
mounted on the drives by system operators

A mount point is a special inode that says: “now go and look at
this filesystem”



Filesystems
Mounting

/

usretc

bin local

bin

/

bin

prog

prog

Filesystem A Filesystem B

Filesystems A and B exist separately, maybe on separate disks,
with filesystem A as the system root



Filesystems
Mounting

/

usretc

bin local

bin

/

bin

prog

prog

Filesystem A Filesystem B

Filename /usr/local/bin/prog refers to the prog on A



Filesystems
Mounting

/

usretc

bin local

bin

/

bin

prog

prog

Filesystem A Filesystem B

If we mount filesystem B at the mount point /usr/local this
hides the part of the hierarchy below local



Filesystems
Mounting

/

usretc

bin local

bin

/

bin

prog

prog

Filesystem A Filesystem B

And now name /usr/local/bin/prog refers to the prog on B



Filesystems
Mounting

When the file lookup reads the inode for the mount point at
/usr/local it switches filesystem and continues looking from
the root of B

This means that we can have many partitions presented as a
single unified name space

And partition B could be a separate disk; or on a USB key; or
on a read-only medium like a CD



Filesystems
Mounting

When the file lookup reads the inode for the mount point at
/usr/local it switches filesystem and continues looking from
the root of B

This means that we can have many partitions presented as a
single unified name space

And partition B could be a separate disk; or on a USB key; or
on a read-only medium like a CD



Filesystems
Mounting

When the file lookup reads the inode for the mount point at
/usr/local it switches filesystem and continues looking from
the root of B

This means that we can have many partitions presented as a
single unified name space

And partition B could be a separate disk; or on a USB key; or
on a read-only medium like a CD



Filesystems
Mounting

Note that B will have its own inode table, so there can’t be a
hard link of, say, a name in /usr/bin to a name in
/usr/local/bin

In fact, B might even have a completely different kind of
filesystem, perhaps not based on inodes

Or can be on a separate machine if this was a mount of a
network disk



Filesystems
Mounting

Note that B will have its own inode table, so there can’t be a
hard link of, say, a name in /usr/bin to a name in
/usr/local/bin

In fact, B might even have a completely different kind of
filesystem, perhaps not based on inodes

Or can be on a separate machine if this was a mount of a
network disk



Filesystems
Mounting

Note that B will have its own inode table, so there can’t be a
hard link of, say, a name in /usr/bin to a name in
/usr/local/bin

In fact, B might even have a completely different kind of
filesystem, perhaps not based on inodes

Or can be on a separate machine if this was a mount of a
network disk



Filesystems
Mounting

This is completely different from Windows where each partition
is separate and has a prefix like C:

C: D:

My MusicMy Pictures

Filesystem A Filesystem B

Program FilesWINDOWS



Filesystems
Mounting

Going the other way, mechanisms exist for gluing several disks
together to make them appear as a single partition: this can be
for making huge filesystems out of small disks, or for reliability
through redundancy (RAID)



Filesystems
Other filesystems you might like to look at

• btrfs
• ext4
• FAT, VFAT
• FUSE
• GFS (Global

File System)
• Google File

System
• HFS+
• ISO 9660
• JFFS2

• Lustre
• NFS
• NTFS
• OCFS2
• procfs
• Reiser
• ReFS (Resilient

File System)
• UnionFS
• ZFS

Also see “List of file systems” on Wikipedia



Filesystems
Other filesystems you might like to look at

• btrfs
• ext4
• FAT, VFAT
• FUSE
• GFS (Global

File System)
• Google File

System
• HFS+
• ISO 9660
• JFFS2

• Lustre
• NFS
• NTFS
• OCFS2
• procfs
• Reiser
• ReFS (Resilient

File System)
• UnionFS
• ZFS

Also see “List of file systems” on Wikipedia



Filesystems

Exercise. Solid state disks (SSDs) are common these days.
What differences do they bring to the way filesystems should be
implemented?

Exercise. Read about the various kinds of RAID filesystems
and the benefits they bring



Filesystems

Dilbert
by Scott Adams


