
Filesystems

To wrap up filesystems here are a few remarks

We don’t have time to go into how disks work (SSD or
spinning), for example, how data blocks are managed on the
medium

But be aware this is also a lot of complicated detail!



Filesystems

To wrap up filesystems here are a few remarks

We don’t have time to go into how disks work (SSD or
spinning), for example, how data blocks are managed on the
medium

But be aware this is also a lot of complicated detail!



Filesystems

To wrap up filesystems here are a few remarks

We don’t have time to go into how disks work (SSD or
spinning), for example, how data blocks are managed on the
medium

But be aware this is also a lot of complicated detail!



Filesystems

Next:

• As disks are relatively slow, there are caching tricks used
to help speed things up

• Disk caching is using “spare” memory to keep a cache
copy of some of the disk contents

• The speed benefits are huge as long as you balance the
use of memory for cache against the use of memory for
everything else

• With a good filesystem a program will use the disk just
once or twice and spend most of its time using the disk
cache (barely a “file” system at all!)

• And then there is memory mapped disks as previously
mentioned



Filesystems

Next:

• As disks are relatively slow, there are caching tricks used
to help speed things up

• Disk caching is using “spare” memory to keep a cache
copy of some of the disk contents

• The speed benefits are huge as long as you balance the
use of memory for cache against the use of memory for
everything else

• With a good filesystem a program will use the disk just
once or twice and spend most of its time using the disk
cache (barely a “file” system at all!)

• And then there is memory mapped disks as previously
mentioned



Filesystems

Next:

• As disks are relatively slow, there are caching tricks used
to help speed things up

• Disk caching is using “spare” memory to keep a cache
copy of some of the disk contents

• The speed benefits are huge as long as you balance the
use of memory for cache against the use of memory for
everything else

• With a good filesystem a program will use the disk just
once or twice and spend most of its time using the disk
cache (barely a “file” system at all!)

• And then there is memory mapped disks as previously
mentioned



Filesystems

Next:

• As disks are relatively slow, there are caching tricks used
to help speed things up

• Disk caching is using “spare” memory to keep a cache
copy of some of the disk contents

• The speed benefits are huge as long as you balance the
use of memory for cache against the use of memory for
everything else

• With a good filesystem a program will use the disk just
once or twice and spend most of its time using the disk
cache (barely a “file” system at all!)

• And then there is memory mapped disks as previously
mentioned



Filesystems

Next:

• As disks are relatively slow, there are caching tricks used
to help speed things up

• Disk caching is using “spare” memory to keep a cache
copy of some of the disk contents

• The speed benefits are huge as long as you balance the
use of memory for cache against the use of memory for
everything else

• With a good filesystem a program will use the disk just
once or twice and spend most of its time using the disk
cache (barely a “file” system at all!)

• And then there is memory mapped disks as previously
mentioned



Filesystems
Reliability

• Filesystems must be bug free. We can get away with the
occasional bug elsewhere, but if the user loses their data
this is a big problem

• Sometimes we have to put up with a little data loss (e.g.,
power loss during a write), but we must never have data
corruption

• Thus filesystem programmers tend to be very
conservative: only well-tested systems should be used

• If there is any corruption in the filesystem structure data
can be lost

• We can’t rely on users making backups!



Filesystems
Reliability

• Filesystems must be bug free. We can get away with the
occasional bug elsewhere, but if the user loses their data
this is a big problem

• Sometimes we have to put up with a little data loss (e.g.,
power loss during a write), but we must never have data
corruption

• Thus filesystem programmers tend to be very
conservative: only well-tested systems should be used

• If there is any corruption in the filesystem structure data
can be lost

• We can’t rely on users making backups!



Filesystems
Reliability

• Filesystems must be bug free. We can get away with the
occasional bug elsewhere, but if the user loses their data
this is a big problem

• Sometimes we have to put up with a little data loss (e.g.,
power loss during a write), but we must never have data
corruption

• Thus filesystem programmers tend to be very
conservative: only well-tested systems should be used

• If there is any corruption in the filesystem structure data
can be lost

• We can’t rely on users making backups!



Filesystems
Reliability

• Filesystems must be bug free. We can get away with the
occasional bug elsewhere, but if the user loses their data
this is a big problem

• Sometimes we have to put up with a little data loss (e.g.,
power loss during a write), but we must never have data
corruption

• Thus filesystem programmers tend to be very
conservative: only well-tested systems should be used

• If there is any corruption in the filesystem structure data
can be lost

• We can’t rely on users making backups!



Filesystems
Reliability

• Filesystems must be bug free. We can get away with the
occasional bug elsewhere, but if the user loses their data
this is a big problem

• Sometimes we have to put up with a little data loss (e.g.,
power loss during a write), but we must never have data
corruption

• Thus filesystem programmers tend to be very
conservative: only well-tested systems should be used

• If there is any corruption in the filesystem structure data
can be lost

• We can’t rely on users making backups!



Filesystems
Reliability

• Unfortunately, there can be external influences, such as
power loss just as inode pointers are being updated

• This could leave the filesystem in an inconsistent state
• Modern filesystems try very hard never to let this happen
• So things like transactional, log structured and journalling

filesystems have been created
• Similarly, disk technology is very good these days, but

disks still have problems
• So there are hardware monitoring systems like SMART

that watch a disk for impending problems



Filesystems
Reliability

• Unfortunately, there can be external influences, such as
power loss just as inode pointers are being updated

• This could leave the filesystem in an inconsistent state

• Modern filesystems try very hard never to let this happen
• So things like transactional, log structured and journalling

filesystems have been created
• Similarly, disk technology is very good these days, but

disks still have problems
• So there are hardware monitoring systems like SMART

that watch a disk for impending problems



Filesystems
Reliability

• Unfortunately, there can be external influences, such as
power loss just as inode pointers are being updated

• This could leave the filesystem in an inconsistent state
• Modern filesystems try very hard never to let this happen

• So things like transactional, log structured and journalling
filesystems have been created

• Similarly, disk technology is very good these days, but
disks still have problems

• So there are hardware monitoring systems like SMART
that watch a disk for impending problems



Filesystems
Reliability

• Unfortunately, there can be external influences, such as
power loss just as inode pointers are being updated

• This could leave the filesystem in an inconsistent state
• Modern filesystems try very hard never to let this happen
• So things like transactional, log structured and journalling

filesystems have been created

• Similarly, disk technology is very good these days, but
disks still have problems

• So there are hardware monitoring systems like SMART
that watch a disk for impending problems



Filesystems
Reliability

• Unfortunately, there can be external influences, such as
power loss just as inode pointers are being updated

• This could leave the filesystem in an inconsistent state
• Modern filesystems try very hard never to let this happen
• So things like transactional, log structured and journalling

filesystems have been created
• Similarly, disk technology is very good these days, but

disks still have problems

• So there are hardware monitoring systems like SMART
that watch a disk for impending problems



Filesystems
Reliability

• Unfortunately, there can be external influences, such as
power loss just as inode pointers are being updated

• This could leave the filesystem in an inconsistent state
• Modern filesystems try very hard never to let this happen
• So things like transactional, log structured and journalling

filesystems have been created
• Similarly, disk technology is very good these days, but

disks still have problems
• So there are hardware monitoring systems like SMART

that watch a disk for impending problems



Filesystems
Reliability

• And filesystems that check data for errors as it is read

• And collections of disks in a redundant array of
inexpensive disks (RAID) that spreads data across multiple
disks so that if one fails the data is retrievable

• And so on

A lot of research has been put into filesystems: and it’s still
ongoing

Parkinson’s Law: data expands to fill the space available



Filesystems
Reliability

• And filesystems that check data for errors as it is read
• And collections of disks in a redundant array of

inexpensive disks (RAID) that spreads data across multiple
disks so that if one fails the data is retrievable

• And so on

A lot of research has been put into filesystems: and it’s still
ongoing

Parkinson’s Law: data expands to fill the space available



Filesystems
Reliability

• And filesystems that check data for errors as it is read
• And collections of disks in a redundant array of

inexpensive disks (RAID) that spreads data across multiple
disks so that if one fails the data is retrievable

• And so on

A lot of research has been put into filesystems: and it’s still
ongoing

Parkinson’s Law: data expands to fill the space available



Filesystems
Reliability

• And filesystems that check data for errors as it is read
• And collections of disks in a redundant array of

inexpensive disks (RAID) that spreads data across multiple
disks so that if one fails the data is retrievable

• And so on

A lot of research has been put into filesystems: and it’s still
ongoing

Parkinson’s Law: data expands to fill the space available



Filesystems
Reliability

• And filesystems that check data for errors as it is read
• And collections of disks in a redundant array of

inexpensive disks (RAID) that spreads data across multiple
disks so that if one fails the data is retrievable

• And so on

A lot of research has been put into filesystems: and it’s still
ongoing

Parkinson’s Law: data expands to fill the space available


