Advanced Programming Principles
CM20214/CM20221

Russell Bradford

2016




Material Outline

This is a Year-Long Unit, meaning that it continues throughout
both Semester 1 and Semester 2

82



Material Outline

This is a Year-Long Unit, meaning that it continues throughout
both Semester 1 and Semester 2

The good news is that there is just one exam for the Unit at the
end of Semester 2

82



Material Outline

This is a Year-Long Unit, meaning that it continues throughout
both Semester 1 and Semester 2

The good news is that there is just one exam for the Unit at the
end of Semester 2

The bad news is that means you won’t be able to get away with
cramming the night before the exam

82



Material Outline

There are two Unit codes: CM20214 and CM20221

82



Material Outline

There are two Unit codes: CM20214 and CM20221

CM20214 is for “Computer Scientists”, while CM20221 is for
“Mathematicians”

82



Material Outline

There are two Unit codes: CM20214 and CM20221

CM20214 is for “Computer Scientists”, while CM20221 is for
“Mathematicians”

The content and exam is identical for both; there is a slight
variation in the coursework to accommodate the Integrative
Project that CS takes



CM20214/221

The first coursework will be set on this Semester’s part of the
Unit (10% unit total for CM20214; 20% unit total for CM20221)
in particular programming in the functional style using Lisp

82



CM20214/221

The first coursework will be set on this Semester’s part of the
Unit (10% unit total for CM20214; 20% unit total for CM20221)
in particular programming in the functional style using Lisp

Another coursework, worth 20% for everybody, will be set next
Semester

82



CM20214/221

The functional style is notorious as something that many
people find very hard to grasp until it “clicks”

10/82



CM20214/221

The functional style is notorious as something that many
people find very hard to grasp until it “clicks”

When it clicks it becomes a very powerful and widely applicable
way of thinking

11/82



CM20214/221

The functional style is notorious as something that many
people find very hard to grasp until it “clicks”

When it clicks it becomes a very powerful and widely applicable
way of thinking

Lisp is chosen as the language to introduce the functional style
of programming for many reasons, historical importance being
just one

12/82



CM20214/221

The functional style is notorious as something that many
people find very hard to grasp until it “clicks”

When it clicks it becomes a very powerful and widely applicable
way of thinking

Lisp is chosen as the language to introduce the functional style
of programming for many reasons, historical importance being
just one

Because the functional style is (initially) hard, many people, by
transference, think Lisp is very hard

13/82



CM20214/221

In fact, Lisp is very simple, it’s just that some people take a long
time to realise this

14/82



CM20214/221

In fact, Lisp is very simple, it’s just that some people take a long
time to realise this

But, just as with any other new programming language, the best
way to learn is to practice by writing code

15/82



CM20214/221

In fact, Lisp is very simple, it’s just that some people take a long
time to realise this

But, just as with any other new programming language, the best
way to learn is to practice by writing code

Early warning: you must work for yourself though a large
number of Lisp exercises as practice first or you will fail
miserably when you try the coursework

16/82



CM20214/221

In fact, Lisp is very simple, it’s just that some people take a long
time to realise this

But, just as with any other new programming language, the best
way to learn is to practice by writing code

Early warning: you must work for yourself though a large
number of Lisp exercises as practice first or you will fail
miserably when you try the coursework

Practice practice practice is the best way of getting there

17/82



Standard Introductory Slide

Remember:

18/82



Standard Introductory Slide

Remember:

You are expected to do some work outside of lectures

19/82



Standard Introductory Slide

Remember:
You are expected to do some work outside of lectures

Lectures are the start of the learning process, not the end!

20/82



Standard Introductory Slide

Remember:
You are expected to do some work outside of lectures
Lectures are the start of the learning process, not the end!

These slides do not contain all the material you need for the
unit: they are notes to me to what to say in lectures

21/82



Standard Introductory Slide

Remember:
You are expected to do some work outside of lectures
Lectures are the start of the learning process, not the end!

These slides do not contain all the material you need for the
unit: they are notes to me to what to say in lectures

Do not rely on my notes for your revision

22/82



Standard Introductory Slide

Remember:
You are expected to do some work outside of lectures
Lectures are the start of the learning process, not the end!

These slides do not contain all the material you need for the
unit: they are notes to me to what to say in lectures

Do not rely on my notes for your revision

People who do this live to regret it

23/82



Standard Introductory Slide

You need to take your own notes, read books, and participate

24/82



Standard Introductory Slide

You need to take your own notes, read books, and participate

You don’t expect to get fit simply by paying to joining a gym...

25/82



“If you have college courses in CS, buy the books and
spend day and night the few days before class going
through the books and taking notes and answering
questions and programming examples before the first
class even starts. If you really want to do this in your
life, that's what you should do, not just wait for the
education to be handed you. Those who finish at the
top will always be in high demand. You can learn
outside of school too but you have to put a lot of time
into it. It doesn’t come easily. Small steps, each
improving on the other, is what to expect, not instant
understanding and expertise.”

Steve Wozniak, co-founder of Apple

26/82



CM20214/221

Three hours of lectures a week:

e Monday 9.15 and 10.15
e Friday 11.15

27/82



CM20214/221

Coursework timeline (subject to change):

1. set Mon 9 Nov 2015
due Fri 11 Dec 2015

Feedback on coursework will be provided via Moodle. There

will be general feedback that applies to many people and some
individual feedback

28/82



Unit Outline

Week 6 will be a “consolidation week”

29/82



Unit Outline

Week 6 will be a “consolidation week”

No lectures across the Department

30/82



Unit Outline

Week 6 will be a “consolidation week”
No lectures across the Department

For the whole of Computer Science (CM Units)

31/82



Unit Outline

Week 6 will be a “consolidation week”
No lectures across the Department
For the whole of Computer Science (CM Units)

Presumably other Departments will carry on as usual

32/82



Material Outline

In this Semester | shall cover several major chunks of material:

33/82



Material Outline

In this Semester | shall cover several major chunks of material:

1. Introduction to C

34/82



Material Outline

In this Semester | shall cover several major chunks of material:

1. Introduction to C
2. Functional Style of programming using Lisp

35/82



Material Outline

In this Semester | shall cover several major chunks of material:

1. Introduction to C
2. Functional Style of programming using Lisp
3. Comparative languages

36/82



Material Outline

In this Semester | shall cover several major chunks of material:

1. Introduction to C

2. Functional Style of programming using Lisp
3. Comparative languages

4. Introduction to Al (time permitting)

37/82



Material Outline

In this Semester | shall cover several major chunks of material:

1. Introduction to C

2. Functional Style of programming using Lisp
3. Comparative languages

4. Introduction to Al (time permitting)

In the second Semester Alessio Guglielmi will be covering
Logic Programming, grammars and compilation

38/82



Material Outline

The main idea of this Unit is to show you many kinds of
language and many kinds of programming, to equip you with
the means to make the choice of the right tool for the job

39/82



Material Outline

The main idea of this Unit is to show you many kinds of
language and many kinds of programming, to equip you with
the means to make the choice of the right tool for the job

So you don’t try to solve every problem with a Java- or
Python-shaped mallet

40/82



Material Outline

Hidden within the various languages that exist today,
are a set of paradigms that can completely change the
way you are used to thinking. Sometimes these
paradigms are so focused and so specific to a
language that they are only applicable in that
particular language. Other times | find, and this is the
great part; that you can take those paradigms and
apply them to the languages you currently utilize.
When that happens, congratulations, you’ve expanded
your mind and your skill set and additionally you now
have a fresh way of tackling stale old problems.

Ralph Caraveo Il

41/82



Books

The material | shall cover is “mature”, meaning it's been around
for a long time

42/82



Books

The material | shall cover is “mature”, meaning it's been around
for a long time

So there are lots of books out there and to some extent it’s a
matter of finding a book that suits you

43/82



Books

The material | shall cover is “mature”, meaning it's been around
for a long time

So there are lots of books out there and to some extent it’s a
matter of finding a book that suits you

Web-based material tends to be fairly accurate: Wikipedia is
pretty good in this area

44/82



Books

The material | shall cover is “mature”, meaning it's been around
for a long time

So there are lots of books out there and to some extent it’s a
matter of finding a book that suits you

Web-based material tends to be fairly accurate: Wikipedia is
pretty good in this area

But, as always with Wikipedia, you should treat it as a start and
follow up the references

45/82



Books

For C there are too many books, many quite poor on technical
details

46/82



Books

For C there are too many books, many quite poor on technical
details

There are loads that are OK for an introduction: it’s not too
important which you use

47/82



Books

For C there are too many books, many quite poor on technical
details

There are loads that are OK for an introduction: it’s not too
important which you use

But make sure the book covers ANSI C, not K&R (Kernighan
and Richie) C, which is an earlier, obsolete standard for C

48/82



Books

You might like to look at books on Algorithms that use C, e.g.,

¢ “Understanding Algorithms and Datastructures” Brunskill
and Turner. Uses C and Ada

e “Algorithms in C” Sedgewick

e “Data Structures, Algorithms & Software Principles in C”
Standish.

49/82



CM20214/CM20221

There is a Web page that contains bits and pieces relevant to
this unit:
http://people.bath.ac.uk/masrjb/CourseNotes/cm20214.html

50/82


http://people.bath.ac.uk/masrjb/CourseNotes/cm20214.html

CM20214/CM20221

There is a Web page that contains bits and pieces relevant to
this unit:
http://people.bath.ac.uk/masrjb/CourseNotes/cm20214.html

These notes will be available from there after | have covered
them in lectures: there is no substitute to having the material go
through your brain at least once!

51/82


http://people.bath.ac.uk/masrjb/CourseNotes/cm20214.html

CM20214/CM20221

There is a Web page that contains bits and pieces relevant to
this unit:
http://people.bath.ac.uk/masrjb/CourseNotes/cm20214.html

These notes will be available from there after | have covered
them in lectures: there is no substitute to having the material go
through your brain at least once!

Note: these notes are for my benefit, to remind me what to say.
They do not contain everything | shall say in the the lectures

52/82


http://people.bath.ac.uk/masrjb/CourseNotes/cm20214.html

CM20214/CM20221

Start of the material!

So far you have seen a limited number of styles of
programming:

53/82



CM20214/CM20221

Start of the material!

So far you have seen a limited number of styles of
programming:

e Object Oriented style programming: Java and others

54/82



CM20214/CM20221

Start of the material!

So far you have seen a limited number of styles of
programming:

e Object Oriented style programming: Java and others
e No style: unstructured things like Basic and assembler

55/82



CM20214/CM20221

Start of the material!

So far you have seen a limited number of styles of
programming:

e Object Oriented style programming: Java and others
e No style: unstructured things like Basic and assembler

Later you will see the Logic/Declarative style

56/82



CM20214/CM20221

Start of the material!

So far you have seen a limited number of styles of
programming:

e Object Oriented style programming: Java and others
e No style: unstructured things like Basic and assembler

Later you will see the Logic/Declarative style

We now turn to the Procedural style

57/82



Styles

A “style” is an approach to programming that is meant to make
it easier for you to write correct programs

58/82



Styles

A “style” is an approach to programming that is meant to make
it easier for you to write correct programs

It is easy to write small programs in a slapdash manner: you
can get away with it as you can hold the whole program in your
head

59/82



Styles

A “style” is an approach to programming that is meant to make
it easier for you to write correct programs

It is easy to write small programs in a slapdash manner: you
can get away with it as you can hold the whole program in your
head

When projects get large you cannot do this

60/82



Styles

A “style” is an approach to programming that is meant to make
it easier for you to write correct programs

It is easy to write small programs in a slapdash manner: you
can get away with it as you can hold the whole program in your
head

When projects get large you cannot do this

Styles are invented to direct the way you write code so to make
large systems written by many programmers possible

61/82



Styles

They encapsulate detail into simpler blobs to help you keep a
grasp on what is happening in your program

62/82



Styles

They encapsulate detail into simpler blobs to help you keep a
grasp on what is happening in your program

You then think “at a higher level” using blobs

63/82



Styles

They encapsulate detail into simpler blobs to help you keep a
grasp on what is happening in your program

You then think “at a higher level” using blobs

Those blobs might be objects, modules, procedures or other
things

64/82



Styles

They encapsulate detail into simpler blobs to help you keep a
grasp on what is happening in your program

You then think “at a higher level” using blobs

Those blobs might be objects, modules, procedures or other
things

Roughly speaking, the nature of the blobs is what distinguishes
between the various styles

65/82



Styles

One thing to remember before we start: programming styles
are not exclusive

66/82



Styles

One thing to remember before we start: programming styles
are not exclusive

You can write in a procedural style in Java

67/82



Styles

One thing to remember before we start: programming styles
are not exclusive

You can write in a procedural style in Java
—though Java makes it hard to do so easily

68/82



Styles

One thing to remember before we start: programming styles
are not exclusive

You can write in a procedural style in Java
—though Java makes it hard to do so easily

You can write in an OO style in C

69/82



Styles

One thing to remember before we start: programming styles
are not exclusive

You can write in a procedural style in Java
—though Java makes it hard to do so easily

You can write in an OO style in C
—though C doesn'’t really provide the constructs for you to
do so

70/82



Styles

Some languages support certain styles

71/82



Styles

Some languages support certain styles

Java was designed from scratch to be OO

72/82



Styles

Some languages support certain styles
Java was designed from scratch to be OO

Other languages allow you to use a style, but you have to do
the twiddly bits yourself

73/82



Styles

Some languages support certain styles
Java was designed from scratch to be OO

Other languages allow you to use a style, but you have to do
the twiddly bits yourself

You can program OO in C, but you have to do the method
lookup yourself

74/82



Styles

Some languages support certain styles
Java was designed from scratch to be OO

Other languages allow you to use a style, but you have to do
the twiddly bits yourself

You can program OO in C, but you have to do the method
lookup yourself

Sometimes this is good as it allows you to optimise for the
problem in hand

75/82



Styles

Some languages support certain styles
Java was designed from scratch to be OO

Other languages allow you to use a style, but you have to do
the twiddly bits yourself

You can program OO in C, but you have to do the method
lookup yourself

Sometimes this is good as it allows you to optimise for the
problem in hand

Java provides a general mechanism (that you don’t see) for
method lookup that has to work for all kinds of problems

76/82



Styles

From the other direction, some problems lend themselves
better to a certain style

77182



Styles

From the other direction, some problems lend themselves
better to a certain style

So some problems naturally suggest a choice of language to
use to implement them

78/82



Styles

From the other direction, some problems lend themselves
better to a certain style

So some problems naturally suggest a choice of language to
use to implement them

Others problems are near impossible to program regardless of
style

79/82



Styles

From the other direction, some problems lend themselves
better to a certain style

So some problems naturally suggest a choice of language to
use to implement them

Others problems are near impossible to program regardless of
style

Part of being a Computer Scientist is knowing these styles and
knowing which languages support them

80/82



Styles

From the other direction, some problems lend themselves
better to a certain style

So some problems naturally suggest a choice of language to
use to implement them

Others problems are near impossible to program regardless of
style

Part of being a Computer Scientist is knowing these styles and
knowing which languages support them

And then picking a style for a problem, then a language

81/82



Styles

We don't just try to solve every problem in Java (or C, or .. .)

82/82



