
C

So here is a simpler example. In file hello.c

#include <stdio.h>

/* This is a

block comment */

int main(void)

{

// do something interesting

printf("hello world\n");

return 0;

}

1 / 109



C

Points of note

• General syntax — comments, curly brackets, semicolons,
quotes, etc. — is pretty familiar

• Filename can be anything that ends .c, no relationship
connecting filenames to classes goes on: C does not have
classes

• The #include line we shall describe later: for now just
think of it as something to put at the start of every C file

• The function main is the entry point of the program. i.e.,
when the program is run, it starts executing from here

• It doesn’t have any fancy type: it just returns an integer

2 / 109



C

Points of note

• General syntax — comments, curly brackets, semicolons,
quotes, etc. — is pretty familiar

• Filename can be anything that ends .c, no relationship
connecting filenames to classes goes on: C does not have
classes

• The #include line we shall describe later: for now just
think of it as something to put at the start of every C file

• The function main is the entry point of the program. i.e.,
when the program is run, it starts executing from here

• It doesn’t have any fancy type: it just returns an integer

3 / 109



C

Points of note

• General syntax — comments, curly brackets, semicolons,
quotes, etc. — is pretty familiar

• Filename can be anything that ends .c, no relationship
connecting filenames to classes goes on: C does not have
classes

• The #include line we shall describe later: for now just
think of it as something to put at the start of every C file

• The function main is the entry point of the program. i.e.,
when the program is run, it starts executing from here

• It doesn’t have any fancy type: it just returns an integer

4 / 109



C

Points of note

• General syntax — comments, curly brackets, semicolons,
quotes, etc. — is pretty familiar

• Filename can be anything that ends .c, no relationship
connecting filenames to classes goes on: C does not have
classes

• The #include line we shall describe later: for now just
think of it as something to put at the start of every C file

• The function main is the entry point of the program. i.e.,
when the program is run, it starts executing from here

• It doesn’t have any fancy type: it just returns an integer

5 / 109



C

Points of note

• General syntax — comments, curly brackets, semicolons,
quotes, etc. — is pretty familiar

• Filename can be anything that ends .c, no relationship
connecting filenames to classes goes on: C does not have
classes

• The #include line we shall describe later: for now just
think of it as something to put at the start of every C file

• The function main is the entry point of the program. i.e.,
when the program is run, it starts executing from here

• It doesn’t have any fancy type: it just returns an integer

6 / 109



C

Points of note

• General syntax — comments, curly brackets, semicolons,
quotes, etc. — is pretty familiar

• Filename can be anything that ends .c, no relationship
connecting filenames to classes goes on: C does not have
classes

• The #include line we shall describe later: for now just
think of it as something to put at the start of every C file

• The function main is the entry point of the program. i.e.,
when the program is run, it starts executing from here

• It doesn’t have any fancy type: it just returns an integer

7 / 109



C

• In this example main has an empty (void) argument list: C
likes you to indicate explicitly there are no arguments

• The function printf (“print formatted”) prints stuff, here a
string with a newline at the end (the \n)

• The program exits when you return from main

• main returns a value back to the operating system when
the program finishes. The OS can use this in various ways,
if it wishes. The convention is 0 means “finished
successfully”, while non-zero values can signify various
kinds of error

8 / 109



C

• In this example main has an empty (void) argument list: C
likes you to indicate explicitly there are no arguments

• The function printf (“print formatted”) prints stuff, here a
string with a newline at the end (the \n)

• The program exits when you return from main

• main returns a value back to the operating system when
the program finishes. The OS can use this in various ways,
if it wishes. The convention is 0 means “finished
successfully”, while non-zero values can signify various
kinds of error

9 / 109



C

• In this example main has an empty (void) argument list: C
likes you to indicate explicitly there are no arguments

• The function printf (“print formatted”) prints stuff, here a
string with a newline at the end (the \n)

• The program exits when you return from main

• main returns a value back to the operating system when
the program finishes. The OS can use this in various ways,
if it wishes. The convention is 0 means “finished
successfully”, while non-zero values can signify various
kinds of error

10 / 109



C

• In this example main has an empty (void) argument list: C
likes you to indicate explicitly there are no arguments

• The function printf (“print formatted”) prints stuff, here a
string with a newline at the end (the \n)

• The program exits when you return from main

• main returns a value back to the operating system when
the program finishes. The OS can use this in various ways,
if it wishes. The convention is 0 means “finished
successfully”, while non-zero values can signify various
kinds of error

11 / 109



C

We can compile this file

% gcc -Wall -o hello hello.c

12 / 109



C

• The % is a command line prompt

• -Wall is a option to the compiler that tells it to report all
warnings. A warning is something in your code that might
not be technically wrong, but is sufficiently dodgy to be
worth looking at. Always use this option. You should aim to
write code with no warnings (and no errors!)

• -Wextra gives even more warnings
• -Werror makes warnings into errors: the compiler will

refuse to produce any output if there are any warnings
• -o hello says put the compiled program in the file named
hello. This filename can be anything you like, not
necessarily related to the source code file name

13 / 109



C

• The % is a command line prompt
• -Wall is a option to the compiler that tells it to report all

warnings. A warning is something in your code that might
not be technically wrong, but is sufficiently dodgy to be
worth looking at. Always use this option. You should aim to
write code with no warnings (and no errors!)

• -Wextra gives even more warnings
• -Werror makes warnings into errors: the compiler will

refuse to produce any output if there are any warnings
• -o hello says put the compiled program in the file named
hello. This filename can be anything you like, not
necessarily related to the source code file name

14 / 109



C

• The % is a command line prompt
• -Wall is a option to the compiler that tells it to report all

warnings. A warning is something in your code that might
not be technically wrong, but is sufficiently dodgy to be
worth looking at. Always use this option. You should aim to
write code with no warnings (and no errors!)

• -Wextra gives even more warnings

• -Werror makes warnings into errors: the compiler will
refuse to produce any output if there are any warnings

• -o hello says put the compiled program in the file named
hello. This filename can be anything you like, not
necessarily related to the source code file name

15 / 109



C

• The % is a command line prompt
• -Wall is a option to the compiler that tells it to report all

warnings. A warning is something in your code that might
not be technically wrong, but is sufficiently dodgy to be
worth looking at. Always use this option. You should aim to
write code with no warnings (and no errors!)

• -Wextra gives even more warnings
• -Werror makes warnings into errors: the compiler will

refuse to produce any output if there are any warnings

• -o hello says put the compiled program in the file named
hello. This filename can be anything you like, not
necessarily related to the source code file name

16 / 109



C

• The % is a command line prompt
• -Wall is a option to the compiler that tells it to report all

warnings. A warning is something in your code that might
not be technically wrong, but is sufficiently dodgy to be
worth looking at. Always use this option. You should aim to
write code with no warnings (and no errors!)

• -Wextra gives even more warnings
• -Werror makes warnings into errors: the compiler will

refuse to produce any output if there are any warnings
• -o hello says put the compiled program in the file named
hello. This filename can be anything you like, not
necessarily related to the source code file name

17 / 109



Aside

Note: this is an example of compiling a C program using a
command-line compiler (The GNU C compiler gcc in this case)

Other compilers will likely take different arguments, e.g.,
another compiler might not recognise -Wall and could have
something else equivalent (e.g., -v)

Many IDEs exist that are supposed to make the management
and compilation of large programs easier (e.g., Eclipse, Visual
Studio, Xcode)

Exercise. Investigate these to find something that suits your
personal taste

18 / 109



Aside

Note: this is an example of compiling a C program using a
command-line compiler (The GNU C compiler gcc in this case)

Other compilers will likely take different arguments, e.g.,
another compiler might not recognise -Wall and could have
something else equivalent (e.g., -v)

Many IDEs exist that are supposed to make the management
and compilation of large programs easier (e.g., Eclipse, Visual
Studio, Xcode)

Exercise. Investigate these to find something that suits your
personal taste

19 / 109



Aside

Note: this is an example of compiling a C program using a
command-line compiler (The GNU C compiler gcc in this case)

Other compilers will likely take different arguments, e.g.,
another compiler might not recognise -Wall and could have
something else equivalent (e.g., -v)

Many IDEs exist that are supposed to make the management
and compilation of large programs easier (e.g., Eclipse, Visual
Studio, Xcode)

Exercise. Investigate these to find something that suits your
personal taste

20 / 109



Aside

Note: this is an example of compiling a C program using a
command-line compiler (The GNU C compiler gcc in this case)

Other compilers will likely take different arguments, e.g.,
another compiler might not recognise -Wall and could have
something else equivalent (e.g., -v)

Many IDEs exist that are supposed to make the management
and compilation of large programs easier (e.g., Eclipse, Visual
Studio, Xcode)

Exercise. Investigate these to find something that suits your
personal taste

21 / 109



Aside

NB: there is a difference between an IDE and a compiler

Compiler: converts a text source program into executable code

IDE: a tool to help the programmer write better programs

An IDE will generally contain a compiler that it calls when you
want to produce executable code, but they are very different
things

Keep them separate in your mind

22 / 109



Aside

NB: there is a difference between an IDE and a compiler

Compiler: converts a text source program into executable code

IDE: a tool to help the programmer write better programs

An IDE will generally contain a compiler that it calls when you
want to produce executable code, but they are very different
things

Keep them separate in your mind

23 / 109



Aside

NB: there is a difference between an IDE and a compiler

Compiler: converts a text source program into executable code

IDE: a tool to help the programmer write better programs

An IDE will generally contain a compiler that it calls when you
want to produce executable code, but they are very different
things

Keep them separate in your mind

24 / 109



Aside

NB: there is a difference between an IDE and a compiler

Compiler: converts a text source program into executable code

IDE: a tool to help the programmer write better programs

An IDE will generally contain a compiler that it calls when you
want to produce executable code, but they are very different
things

Keep them separate in your mind

25 / 109



Aside

NB: there is a difference between an IDE and a compiler

Compiler: converts a text source program into executable code

IDE: a tool to help the programmer write better programs

An IDE will generally contain a compiler that it calls when you
want to produce executable code, but they are very different
things

Keep them separate in your mind

26 / 109



More Aside

Many C compilers exist, both paid-for and free. Different
compilers may produce more or less efficient compiled code
from the same source.

If all is well, a given standard-compliant (e.g., ANSI C11) C
program should compile with a standard-compliant C compiler
and should run and produce equivalent results independent of
the compiler

Exercise. Think about why I said “equivalent results”, not
“identical results”

27 / 109



More Aside

Many C compilers exist, both paid-for and free. Different
compilers may produce more or less efficient compiled code
from the same source.

If all is well, a given standard-compliant (e.g., ANSI C11) C
program should compile with a standard-compliant C compiler
and should run and produce equivalent results independent of
the compiler

Exercise. Think about why I said “equivalent results”, not
“identical results”

28 / 109



More Aside

Many C compilers exist, both paid-for and free. Different
compilers may produce more or less efficient compiled code
from the same source.

If all is well, a given standard-compliant (e.g., ANSI C11) C
program should compile with a standard-compliant C compiler
and should run and produce equivalent results independent of
the compiler

Exercise. Think about why I said “equivalent results”, not
“identical results”

29 / 109



More Aside

Not all (any?) C compilers are fully standard-compliant

Not many C programs are fully standard-compliant

30 / 109



More Aside

Not all (any?) C compilers are fully standard-compliant

Not many C programs are fully standard-compliant

31 / 109



More Aside

Some compiler writers deliberately put support for non-standard
things in their compilers: for reasons both good and bad

Good: to add extensions that are genuinely useful to the
programmer

Bad: to add extensions that the programmer will become reliant
on, not realising they are non-standard, so locking them in to
using this particular compiler

A program that excludes extensions and follows the standard
will be much more portable

32 / 109



More Aside

Some compiler writers deliberately put support for non-standard
things in their compilers: for reasons both good and bad

Good: to add extensions that are genuinely useful to the
programmer

Bad: to add extensions that the programmer will become reliant
on, not realising they are non-standard, so locking them in to
using this particular compiler

A program that excludes extensions and follows the standard
will be much more portable

33 / 109



More Aside

Some compiler writers deliberately put support for non-standard
things in their compilers: for reasons both good and bad

Good: to add extensions that are genuinely useful to the
programmer

Bad: to add extensions that the programmer will become reliant
on, not realising they are non-standard, so locking them in to
using this particular compiler

A program that excludes extensions and follows the standard
will be much more portable

34 / 109



More Aside

Some compiler writers deliberately put support for non-standard
things in their compilers: for reasons both good and bad

Good: to add extensions that are genuinely useful to the
programmer

Bad: to add extensions that the programmer will become reliant
on, not realising they are non-standard, so locking them in to
using this particular compiler

A program that excludes extensions and follows the standard
will be much more portable

35 / 109



More Aside

Gcc is a widely available and widely used free compiler on a
large number of architectures that produces reasonable (but
not the best) code

It’s not the case of paying more to get a better compiler. . .

Many other C compilers exist: Intel; Clang; Microsoft; Norcroft;
etc.

36 / 109



More Aside

Gcc is a widely available and widely used free compiler on a
large number of architectures that produces reasonable (but
not the best) code

It’s not the case of paying more to get a better compiler. . .

Many other C compilers exist: Intel; Clang; Microsoft; Norcroft;
etc.

37 / 109



More Aside

Gcc is a widely available and widely used free compiler on a
large number of architectures that produces reasonable (but
not the best) code

It’s not the case of paying more to get a better compiler. . .

Many other C compilers exist: Intel; Clang; Microsoft; Norcroft;
etc.

38 / 109



More Aside

Also, use a text editor (or an IDE) to write programs, not a
word processor

You are not that stupid are you?

And always use a fixed width font when printing out or
viewing code. Layout is important in all languages, particularly
in C

39 / 109



More Aside

Also, use a text editor (or an IDE) to write programs, not a
word processor

You are not that stupid are you?

And always use a fixed width font when printing out or
viewing code. Layout is important in all languages, particularly
in C

40 / 109



More Aside

Also, use a text editor (or an IDE) to write programs, not a
word processor

You are not that stupid are you?

And always use a fixed width font when printing out or
viewing code. Layout is important in all languages, particularly
in C

41 / 109



C

Running the program

% ./hello

hello world

I usually include the ./ to ensure I run the program named
hello that lives in the current directory, not some program of
the same name from somewhere else in the system

42 / 109



C

Running the program

% ./hello

hello world

I usually include the ./ to ensure I run the program named
hello that lives in the current directory, not some program of
the same name from somewhere else in the system

43 / 109



C

The program is a stand-alone binary (machine instructions)
which you can simply run

It is compiled for a specific OS and hardware architecture,
generally the machine you used the compiler on

So that binary probably won’t run on a different OS or different
hardware architecture: the program will need recompiling for
them

There is no analogue to the java runtime you need to run a
Java program

44 / 109



C

The program is a stand-alone binary (machine instructions)
which you can simply run

It is compiled for a specific OS and hardware architecture,
generally the machine you used the compiler on

So that binary probably won’t run on a different OS or different
hardware architecture: the program will need recompiling for
them

There is no analogue to the java runtime you need to run a
Java program

45 / 109



C

The program is a stand-alone binary (machine instructions)
which you can simply run

It is compiled for a specific OS and hardware architecture,
generally the machine you used the compiler on

So that binary probably won’t run on a different OS or different
hardware architecture: the program will need recompiling for
them

There is no analogue to the java runtime you need to run a
Java program

46 / 109



C

The program is a stand-alone binary (machine instructions)
which you can simply run

It is compiled for a specific OS and hardware architecture,
generally the machine you used the compiler on

So that binary probably won’t run on a different OS or different
hardware architecture: the program will need recompiling for
them

There is no analogue to the java runtime you need to run a
Java program

47 / 109



C

Java: “write once, compile once, run everywhere”

C: “write once, compile everywhere, run everywhere”

Another trade-off

Compiling Java produces machine-independent (byte)code that
will run anywhere — anywhere there is a Java runtime to
execute that code

Compile C produces machine-specific code that only runs on
one OS/architecture, but is optimised for that architecture

48 / 109



C

Java: “write once, compile once, run everywhere”

C: “write once, compile everywhere, run everywhere”

Another trade-off

Compiling Java produces machine-independent (byte)code that
will run anywhere — anywhere there is a Java runtime to
execute that code

Compile C produces machine-specific code that only runs on
one OS/architecture, but is optimised for that architecture

49 / 109



C

Java: “write once, compile once, run everywhere”

C: “write once, compile everywhere, run everywhere”

Another trade-off

Compiling Java produces machine-independent (byte)code that
will run anywhere — anywhere there is a Java runtime to
execute that code

Compile C produces machine-specific code that only runs on
one OS/architecture, but is optimised for that architecture

50 / 109



C

Java: “write once, compile once, run everywhere”

C: “write once, compile everywhere, run everywhere”

Another trade-off

Compiling Java produces machine-independent (byte)code that
will run anywhere — anywhere there is a Java runtime to
execute that code

Compile C produces machine-specific code that only runs on
one OS/architecture, but is optimised for that architecture

51 / 109



C
Compiler Warnings

A bad program. hello2.c

#include <stdio.h>

int main(void)

{

int n;

n = n + 1;

printf("hello world\n");

return 0;

}

52 / 109



C
Compiler Warnings

% cc -Wall -o hello2 hello2.c

hello2.c: In function ’main’:

hello2.c:7:5: warning: ’n’ is used uninitialized

in this function

53 / 109



C
Compiler Warnings

A simple example of a warning message

It is very important you get used to reading warning and error
messages

You will see loads!

Get used to them, and get used to fixing the things they refer to:
don’t ignore warnings

The quality of error messages varies with the compiler. Gcc
produces generally reasonable messages

54 / 109



C
Compiler Warnings

A simple example of a warning message

It is very important you get used to reading warning and error
messages

You will see loads!

Get used to them, and get used to fixing the things they refer to:
don’t ignore warnings

The quality of error messages varies with the compiler. Gcc
produces generally reasonable messages

55 / 109



C
Compiler Warnings

A simple example of a warning message

It is very important you get used to reading warning and error
messages

You will see loads!

Get used to them, and get used to fixing the things they refer to:
don’t ignore warnings

The quality of error messages varies with the compiler. Gcc
produces generally reasonable messages

56 / 109



C
Compiler Warnings

A simple example of a warning message

It is very important you get used to reading warning and error
messages

You will see loads!

Get used to them, and get used to fixing the things they refer to:
don’t ignore warnings

The quality of error messages varies with the compiler. Gcc
produces generally reasonable messages

57 / 109



C
Compiler Warnings

A simple example of a warning message

It is very important you get used to reading warning and error
messages

You will see loads!

Get used to them, and get used to fixing the things they refer to:
don’t ignore warnings

The quality of error messages varies with the compiler. Gcc
produces generally reasonable messages

58 / 109



C
Compiler Warnings

In this case, the compiler happens to generate a runnable
executable; for more serious errors it wouldn’t

What happens when you run it is difficult to say. . .

Note that very exceptionally this kind of thing (running with
undefined results) it what you want, but only if you are a
programmer who is either (a) very clever, or (b) very stupid

59 / 109



C
Compiler Warnings

In this case, the compiler happens to generate a runnable
executable; for more serious errors it wouldn’t

What happens when you run it is difficult to say. . .

Note that very exceptionally this kind of thing (running with
undefined results) it what you want, but only if you are a
programmer who is either (a) very clever, or (b) very stupid

60 / 109



C
Compiler Warnings

In this case, the compiler happens to generate a runnable
executable; for more serious errors it wouldn’t

What happens when you run it is difficult to say. . .

Note that very exceptionally this kind of thing (running with
undefined results) it what you want, but only if you are a
programmer who is either (a) very clever, or (b) very stupid

61 / 109



C
Compiler Warnings

The C compiler Clang is reasonably widely available

One of its design aims is to give detailed and accurate error
and warning messages

And to replace Gcc

It is still under heavy development

It also uses -Wall to show warnings

62 / 109



C
Compiler Warnings

The C compiler Clang is reasonably widely available

One of its design aims is to give detailed and accurate error
and warning messages

And to replace Gcc

It is still under heavy development

It also uses -Wall to show warnings

63 / 109



C
Compiler Warnings

The C compiler Clang is reasonably widely available

One of its design aims is to give detailed and accurate error
and warning messages

And to replace Gcc

It is still under heavy development

It also uses -Wall to show warnings

64 / 109



C
Compiler Warnings

The C compiler Clang is reasonably widely available

One of its design aims is to give detailed and accurate error
and warning messages

And to replace Gcc

It is still under heavy development

It also uses -Wall to show warnings

65 / 109



C
Compiler Warnings

The C compiler Clang is reasonably widely available

One of its design aims is to give detailed and accurate error
and warning messages

And to replace Gcc

It is still under heavy development

It also uses -Wall to show warnings

66 / 109



C
Compiler Warnings

% clang -Wall -o hello2 hello2.c

hello2.c:7:7: warning: variable ’n’ is uninitialized when

used here

[-Wuninitialized]

n = n + 1;

^

hello2.c:5:8: note: initialize the variable ’n’ to silence

this warning

int n;

^

= 0

Here Clang even gives a suggestion on how to fix the warning

67 / 109



C
Compiler Warnings

% clang -Wall -o hello2 hello2.c

hello2.c:7:7: warning: variable ’n’ is uninitialized when

used here

[-Wuninitialized]

n = n + 1;

^

hello2.c:5:8: note: initialize the variable ’n’ to silence

this warning

int n;

^

= 0

Here Clang even gives a suggestion on how to fix the warning

68 / 109



C
Function Definition

#include <stdio.h>

int factorial(int n)

{

if (n < 2) return 1;

return n*factorial(n-1);

}

int main(void)

{

printf("factorial of %d is %d\n", 10, factorial(10));

return 0;

}

69 / 109



C

Produces output

factorial of 10 is 3628800

70 / 109



C

printf("factorial of %d is %d\n", 10, factorial(10));

The first argument to printf is a template for the output

Everything apart from % and \n are copied directly

The backslash introduces special characters; in particular \n
means “put a newline here”

The % says “read the next argument and put its value here”

71 / 109



C

printf("factorial of %d is %d\n", 10, factorial(10));

The first argument to printf is a template for the output

Everything apart from % and \n are copied directly

The backslash introduces special characters; in particular \n
means “put a newline here”

The % says “read the next argument and put its value here”

72 / 109



C

printf("factorial of %d is %d\n", 10, factorial(10));

The first argument to printf is a template for the output

Everything apart from % and \n are copied directly

The backslash introduces special characters; in particular \n
means “put a newline here”

The % says “read the next argument and put its value here”

73 / 109



C

printf("factorial of %d is %d\n", 10, factorial(10));

The first argument to printf is a template for the output

Everything apart from % and \n are copied directly

The backslash introduces special characters; in particular \n
means “put a newline here”

The % says “read the next argument and put its value here”

74 / 109



C

The character after the % indicates how the argument should be
treated

%d means an integer

%f means a floating point number

%s means a string

Generally it is up to the programmer to get arguments of the
right types in the right order

75 / 109



C

The character after the % indicates how the argument should be
treated

%d means an integer

%f means a floating point number

%s means a string

Generally it is up to the programmer to get arguments of the
right types in the right order

76 / 109



C

The character after the % indicates how the argument should be
treated

%d means an integer

%f means a floating point number

%s means a string

Generally it is up to the programmer to get arguments of the
right types in the right order

77 / 109



C

The character after the % indicates how the argument should be
treated

%d means an integer

%f means a floating point number

%s means a string

Generally it is up to the programmer to get arguments of the
right types in the right order

78 / 109



C

The character after the % indicates how the argument should be
treated

%d means an integer

%f means a floating point number

%s means a string

Generally it is up to the programmer to get arguments of the
right types in the right order

79 / 109



C

printf("integer %d\nfloating point %f\nstring %s\n",

23 + 42, 99.0, "hello world");

produces

integer 65

floating point 99.000000

string hello world

when run

80 / 109



C

Incorrect code:

printf("integer %d\nfloating point %f\nstring %s\n",

99.0, 23 + 42, "hello world");

produces

printf1.c: In function ’main’:

printf1.c:9:3: warning: format ’%d’ expects type ’int’,

but argument 2 has type ’double’

printf1.c:9:3: warning: format ’%f’ expects type ’double’,

but argument 3 has type ’int’

when you try to compile it

81 / 109



C

Other compilers might not be so helpful and simply do what you
ask

Giving a floating point number to %d the compiler might simply
interpret the (bit pattern that represents the) floating point
number as (a bit pattern that represents) an integer, and print it

This is a part of the “you asked for it, you got it” approach of C

82 / 109



C

Other compilers might not be so helpful and simply do what you
ask

Giving a floating point number to %d the compiler might simply
interpret the (bit pattern that represents the) floating point
number as (a bit pattern that represents) an integer, and print it

This is a part of the “you asked for it, you got it” approach of C

83 / 109



C

Other compilers might not be so helpful and simply do what you
ask

Giving a floating point number to %d the compiler might simply
interpret the (bit pattern that represents the) floating point
number as (a bit pattern that represents) an integer, and print it

This is a part of the “you asked for it, you got it” approach of C

84 / 109



C

printf is a lot more powerful than this: it does all kinds of
formatted output (thus the “f” in the name)

Look at the documentation for printf for the gory details

man printf on Linux/Unix systems

In fact, there is masses of documentation online, e.g., man cos
for the cosine function

These manual pages contain a great amount of detailed
information: make sure you read them closely to get the most
benefit

85 / 109



C

printf is a lot more powerful than this: it does all kinds of
formatted output (thus the “f” in the name)

Look at the documentation for printf for the gory details

man printf on Linux/Unix systems

In fact, there is masses of documentation online, e.g., man cos
for the cosine function

These manual pages contain a great amount of detailed
information: make sure you read them closely to get the most
benefit

86 / 109



C

printf is a lot more powerful than this: it does all kinds of
formatted output (thus the “f” in the name)

Look at the documentation for printf for the gory details

man printf on Linux/Unix systems

In fact, there is masses of documentation online, e.g., man cos
for the cosine function

These manual pages contain a great amount of detailed
information: make sure you read them closely to get the most
benefit

87 / 109



C

printf is a lot more powerful than this: it does all kinds of
formatted output (thus the “f” in the name)

Look at the documentation for printf for the gory details

man printf on Linux/Unix systems

In fact, there is masses of documentation online, e.g., man cos
for the cosine function

These manual pages contain a great amount of detailed
information: make sure you read them closely to get the most
benefit

88 / 109



C

printf is a lot more powerful than this: it does all kinds of
formatted output (thus the “f” in the name)

Look at the documentation for printf for the gory details

man printf on Linux/Unix systems

In fact, there is masses of documentation online, e.g., man cos
for the cosine function

These manual pages contain a great amount of detailed
information: make sure you read them closely to get the most
benefit

89 / 109



C

Exercise. Compile and run hello.c on your own machine

Exercise. Modify hello2.c to print the value of n. Try on a
variety of different OSs and compilers and compare the results

Exercise. Read up on printf. How do you print a percent (%),
a double quote (") and a backslash (\)? What is the difference
between %e, %f and %g?

90 / 109



C

Exercise. Modify factorial to print

1 1

2 2

3 6

4 24

5 120

7 5040

8 40320

9 362880

10 3628800

91 / 109



Types

C has relatively few built-in types—remember it’s low
level!—actually just versions of types supported natively by
hardware

Integers of various kinds and sizes:

• char

• short int (or simply short)
• int

• long int (or simply long)
• long long int (or simply long long)

92 / 109



Types

C has relatively few built-in types—remember it’s low
level!—actually just versions of types supported natively by
hardware

Integers of various kinds and sizes:

• char

• short int (or simply short)
• int

• long int (or simply long)
• long long int (or simply long long)

93 / 109



Types

C has relatively few built-in types—remember it’s low
level!—actually just versions of types supported natively by
hardware

Integers of various kinds and sizes:

• char

• short int (or simply short)
• int

• long int (or simply long)
• long long int (or simply long long)

94 / 109



Types
Integers

Not every compiler supports all these types, particularly long
long

As a language, C is adaptable to many kinds of hardware, from
tiny embedded systems to huge mainframes

These are all ranges of integers that have proved to be useful in
real programs

Interestingly, the C standard does not specify how big each of
these types are

An int is often 32 bits (4 bytes), but it doesn’t have to be

95 / 109



Types
Integers

Not every compiler supports all these types, particularly long
long

As a language, C is adaptable to many kinds of hardware, from
tiny embedded systems to huge mainframes

These are all ranges of integers that have proved to be useful in
real programs

Interestingly, the C standard does not specify how big each of
these types are

An int is often 32 bits (4 bytes), but it doesn’t have to be

96 / 109



Types
Integers

Not every compiler supports all these types, particularly long
long

As a language, C is adaptable to many kinds of hardware, from
tiny embedded systems to huge mainframes

These are all ranges of integers that have proved to be useful in
real programs

Interestingly, the C standard does not specify how big each of
these types are

An int is often 32 bits (4 bytes), but it doesn’t have to be

97 / 109



Types
Integers

Not every compiler supports all these types, particularly long
long

As a language, C is adaptable to many kinds of hardware, from
tiny embedded systems to huge mainframes

These are all ranges of integers that have proved to be useful in
real programs

Interestingly, the C standard does not specify how big each of
these types are

An int is often 32 bits (4 bytes), but it doesn’t have to be

98 / 109



Types
Integers

Not every compiler supports all these types, particularly long
long

As a language, C is adaptable to many kinds of hardware, from
tiny embedded systems to huge mainframes

These are all ranges of integers that have proved to be useful in
real programs

Interestingly, the C standard does not specify how big each of
these types are

An int is often 32 bits (4 bytes), but it doesn’t have to be

99 / 109



Types
Integers

This helps the adaptability of C to many kinds of hardware

But it also introduces a certain amount of extra work in porting
a program from one kind of hardware to another

But this is probably a good thing: you don’t want to blindly run
your program assuming ints are 32 bit on some hardware
where they are not

E.g., the processor in an embedded system might not support
32 bit integers, but only 16 bit, perhaps

100 / 109



Types
Integers

This helps the adaptability of C to many kinds of hardware

But it also introduces a certain amount of extra work in porting
a program from one kind of hardware to another

But this is probably a good thing: you don’t want to blindly run
your program assuming ints are 32 bit on some hardware
where they are not

E.g., the processor in an embedded system might not support
32 bit integers, but only 16 bit, perhaps

101 / 109



Types
Integers

This helps the adaptability of C to many kinds of hardware

But it also introduces a certain amount of extra work in porting
a program from one kind of hardware to another

But this is probably a good thing: you don’t want to blindly run
your program assuming ints are 32 bit on some hardware
where they are not

E.g., the processor in an embedded system might not support
32 bit integers, but only 16 bit, perhaps

102 / 109



Types
Integers

This helps the adaptability of C to many kinds of hardware

But it also introduces a certain amount of extra work in porting
a program from one kind of hardware to another

But this is probably a good thing: you don’t want to blindly run
your program assuming ints are 32 bit on some hardware
where they are not

E.g., the processor in an embedded system might not support
32 bit integers, but only 16 bit, perhaps

103 / 109



Types
Integers

All the C standard says is that

1 = sizeof(char)
≤ sizeof(short int)
≤ sizeof(int)
≤ sizeof(long int)
≤ sizeof(long long int)

While sizeof(char) = 1 this does not mean a char is always
one byte

CPUs with 4 byte chars exist

They have 32-bit ints with sizeof(int) = 1

104 / 109



Types
Integers

All the C standard says is that

1 = sizeof(char)
≤ sizeof(short int)
≤ sizeof(int)
≤ sizeof(long int)
≤ sizeof(long long int)

While sizeof(char) = 1 this does not mean a char is always
one byte

CPUs with 4 byte chars exist

They have 32-bit ints with sizeof(int) = 1

105 / 109



Types
Integers

All the C standard says is that

1 = sizeof(char)
≤ sizeof(short int)
≤ sizeof(int)
≤ sizeof(long int)
≤ sizeof(long long int)

While sizeof(char) = 1 this does not mean a char is always
one byte

CPUs with 4 byte chars exist

They have 32-bit ints with sizeof(int) = 1

106 / 109



Types
Integers

All the C standard says is that

1 = sizeof(char)
≤ sizeof(short int)
≤ sizeof(int)
≤ sizeof(long int)
≤ sizeof(long long int)

While sizeof(char) = 1 this does not mean a char is always
one byte

CPUs with 4 byte chars exist

They have 32-bit ints with sizeof(int) = 1

107 / 109



Types

Typically, on modern 64 bit PCs we have

Type bytes
char 1
short int 2
int 4
long int 8
long long int 8

But you should not rely on this in a portable program

Sizes were indeed a problem when people started moving their
C programs from 32 bit processors to 64 bit processors

108 / 109



Types

Typically, on modern 64 bit PCs we have

Type bytes
char 1
short int 2
int 4
long int 8
long long int 8

But you should not rely on this in a portable program

Sizes were indeed a problem when people started moving their
C programs from 32 bit processors to 64 bit processors

109 / 109


