
Types

There are also unsigned variants of the integer types:
unsigned char, unsigned int and so on

So for an 8-bit char,

range
signed −128 . . . 127
unsigned 0 . . . 255

Again, C has these types as they are useful in real programs

Unsigned integers are often used as simple bit patterns rather
than integers per se, e.g., in cryptography

There is a signed keyword if you want to be explicit: e.g.,
signed char and signed int

1 / 102

Types

There are also unsigned variants of the integer types:
unsigned char, unsigned int and so on

So for an 8-bit char,

range
signed −128 . . . 127
unsigned 0 . . . 255

Again, C has these types as they are useful in real programs

Unsigned integers are often used as simple bit patterns rather
than integers per se, e.g., in cryptography

There is a signed keyword if you want to be explicit: e.g.,
signed char and signed int

2 / 102

Types

There are also unsigned variants of the integer types:
unsigned char, unsigned int and so on

So for an 8-bit char,

range
signed −128 . . . 127
unsigned 0 . . . 255

Again, C has these types as they are useful in real programs

Unsigned integers are often used as simple bit patterns rather
than integers per se, e.g., in cryptography

There is a signed keyword if you want to be explicit: e.g.,
signed char and signed int

3 / 102

Types

There are also unsigned variants of the integer types:
unsigned char, unsigned int and so on

So for an 8-bit char,

range
signed −128 . . . 127
unsigned 0 . . . 255

Again, C has these types as they are useful in real programs

Unsigned integers are often used as simple bit patterns rather
than integers per se, e.g., in cryptography

There is a signed keyword if you want to be explicit: e.g.,
signed char and signed int

4 / 102

Types

There are also unsigned variants of the integer types:
unsigned char, unsigned int and so on

So for an 8-bit char,

range
signed −128 . . . 127
unsigned 0 . . . 255

Again, C has these types as they are useful in real programs

Unsigned integers are often used as simple bit patterns rather
than integers per se, e.g., in cryptography

There is a signed keyword if you want to be explicit: e.g.,
signed char and signed int

5 / 102

Types
Integers

Exercise. %d is the printf specifier for signed int. Find the
specifiers for the other integer types

Exercise. Find out what happens to the value when you
overflow an unsigned char and a signed char

Exercise. An unadorned int is signed. Find out whether an
unadorned char has a sign or not

Exercise. Find out the sizes of the integer types on machines
you have access to

Exercise. Read up on the operators that operate on the bits of
the integer types: &, |, <<, >>, etc.

6 / 102

Types
Integers

So char is an integer type?

Correct: C does not have character as a separate type like
some other languages

We shall see in a moment that C does not have a string type
either!

In fact, it would probably be better to think of char as a byte
since many compilers have an 8-bit char

Aside: technically a “byte” is not necessarily 8 bits; use the
word “octet” to mean precisely 8 bits

But the name “char” indicates a popular use of this type:
characters encoded as ASCII integers

7 / 102

Types
Integers

So char is an integer type?

Correct: C does not have character as a separate type like
some other languages

We shall see in a moment that C does not have a string type
either!

In fact, it would probably be better to think of char as a byte
since many compilers have an 8-bit char

Aside: technically a “byte” is not necessarily 8 bits; use the
word “octet” to mean precisely 8 bits

But the name “char” indicates a popular use of this type:
characters encoded as ASCII integers

8 / 102

Types
Integers

So char is an integer type?

Correct: C does not have character as a separate type like
some other languages

We shall see in a moment that C does not have a string type
either!

In fact, it would probably be better to think of char as a byte
since many compilers have an 8-bit char

Aside: technically a “byte” is not necessarily 8 bits; use the
word “octet” to mean precisely 8 bits

But the name “char” indicates a popular use of this type:
characters encoded as ASCII integers

9 / 102

Types
Integers

So char is an integer type?

Correct: C does not have character as a separate type like
some other languages

We shall see in a moment that C does not have a string type
either!

In fact, it would probably be better to think of char as a byte
since many compilers have an 8-bit char

Aside: technically a “byte” is not necessarily 8 bits; use the
word “octet” to mean precisely 8 bits

But the name “char” indicates a popular use of this type:
characters encoded as ASCII integers

10 / 102

Types
Integers

So char is an integer type?

Correct: C does not have character as a separate type like
some other languages

We shall see in a moment that C does not have a string type
either!

In fact, it would probably be better to think of char as a byte
since many compilers have an 8-bit char

Aside: technically a “byte” is not necessarily 8 bits; use the
word “octet” to mean precisely 8 bits

But the name “char” indicates a popular use of this type:
characters encoded as ASCII integers

11 / 102

Types
Integers

So char is an integer type?

Correct: C does not have character as a separate type like
some other languages

We shall see in a moment that C does not have a string type
either!

In fact, it would probably be better to think of char as a byte
since many compilers have an 8-bit char

Aside: technically a “byte” is not necessarily 8 bits; use the
word “octet” to mean precisely 8 bits

But the name “char” indicates a popular use of this type:
characters encoded as ASCII integers

12 / 102

Types
Integers

The C syntax for characters is single quotes: ’A’ is the integer
value that encodes for the character “A”

To reiterate: ’A’ is a way of writing an integer value, typically
65 when using the usual ASCII encoding; the two ways of
writing sixty-five are then more-or-less interchangeable

char c = ’Z’ - ’A’ + 1;
is valid C

We use the single quote syntax as it is easier (we don’t have to
look up the relevant value) and it is portable: not everyone uses
ASCII

13 / 102

Types
Integers

The C syntax for characters is single quotes: ’A’ is the integer
value that encodes for the character “A”

To reiterate: ’A’ is a way of writing an integer value, typically
65 when using the usual ASCII encoding; the two ways of
writing sixty-five are then more-or-less interchangeable

char c = ’Z’ - ’A’ + 1;
is valid C

We use the single quote syntax as it is easier (we don’t have to
look up the relevant value) and it is portable: not everyone uses
ASCII

14 / 102

Types
Integers

The C syntax for characters is single quotes: ’A’ is the integer
value that encodes for the character “A”

To reiterate: ’A’ is a way of writing an integer value, typically
65 when using the usual ASCII encoding; the two ways of
writing sixty-five are then more-or-less interchangeable

char c = ’Z’ - ’A’ + 1;
is valid C

We use the single quote syntax as it is easier (we don’t have to
look up the relevant value) and it is portable: not everyone uses
ASCII

15 / 102

Types
Integers

The C syntax for characters is single quotes: ’A’ is the integer
value that encodes for the character “A”

To reiterate: ’A’ is a way of writing an integer value, typically
65 when using the usual ASCII encoding; the two ways of
writing sixty-five are then more-or-less interchangeable

char c = ’Z’ - ’A’ + 1;
is valid C

We use the single quote syntax as it is easier (we don’t have to
look up the relevant value) and it is portable: not everyone uses
ASCII

16 / 102

Types
Integers

Exercise. Find out which character encoding your machine
uses

Exercise. Is ’A’ + 1 always ’B’?

Exercise. Is ’A’ < ’B’ always true?

Exercise. What about ’A’ < ’a’ or ’a’ < ’A’?

17 / 102

Types
Floating Point

C has a few floating point types

• float also called “single precision float”
• double also called “double precision float”
• long double is sometimes supported

These overwhelmingly conform to a particular standard for
floating point representations, namely IEEE 754

Many machines support double in hardware, so this is the
“natural” size in programs: but not always

18 / 102

Types
Floating Point

C has a few floating point types

• float also called “single precision float”
• double also called “double precision float”
• long double is sometimes supported

These overwhelmingly conform to a particular standard for
floating point representations, namely IEEE 754

Many machines support double in hardware, so this is the
“natural” size in programs: but not always

19 / 102

Types
Floating Point

C has a few floating point types

• float also called “single precision float”
• double also called “double precision float”
• long double is sometimes supported

These overwhelmingly conform to a particular standard for
floating point representations, namely IEEE 754

Many machines support double in hardware, so this is the
“natural” size in programs: but not always

20 / 102

Types
Floating Point

C has a few floating point types

• float also called “single precision float”
• double also called “double precision float”
• long double is sometimes supported

These overwhelmingly conform to a particular standard for
floating point representations, namely IEEE 754

Many machines support double in hardware, so this is the
“natural” size in programs: but not always

21 / 102

Types
Floating Point

It turns out that the flexibility of having explicitly undefined sizes
works against you when you want to do numerical analysis with
floating point, so pretty much all hardware uses IEEE 754

Type bytes
float 4
double 8
long double 16

That said, there is a significant class of hardware out there that
does it differently, e.g., fixed-point arithmetic

22 / 102

Types
Floating Point

It turns out that the flexibility of having explicitly undefined sizes
works against you when you want to do numerical analysis with
floating point, so pretty much all hardware uses IEEE 754

Type bytes
float 4
double 8
long double 16

That said, there is a significant class of hardware out there that
does it differently, e.g., fixed-point arithmetic

23 / 102

Types
Floating Point

Most general-purpose hardware supports double (64 bit) floats
with range approximately ±10−323 to ±10308

IEEE 754 also has many other curious features, such as
support for infinities and “not a number”s

These have their expected behaviours, e.g., 1.0/0.0 returns
infinity; sqrt(-1.0) returns a NaN

Also, there is a signed zero, namely ±0.0. To understand why
all these things are desirable you should attend a course on
numerical analysis

24 / 102

Types
Floating Point

Most general-purpose hardware supports double (64 bit) floats
with range approximately ±10−323 to ±10308

IEEE 754 also has many other curious features, such as
support for infinities and “not a number”s

These have their expected behaviours, e.g., 1.0/0.0 returns
infinity; sqrt(-1.0) returns a NaN

Also, there is a signed zero, namely ±0.0. To understand why
all these things are desirable you should attend a course on
numerical analysis

25 / 102

Types
Floating Point

Most general-purpose hardware supports double (64 bit) floats
with range approximately ±10−323 to ±10308

IEEE 754 also has many other curious features, such as
support for infinities and “not a number”s

These have their expected behaviours, e.g., 1.0/0.0 returns
infinity; sqrt(-1.0) returns a NaN

Also, there is a signed zero, namely ±0.0. To understand why
all these things are desirable you should attend a course on
numerical analysis

26 / 102

Types
Floating Point

Most general-purpose hardware supports double (64 bit) floats
with range approximately ±10−323 to ±10308

IEEE 754 also has many other curious features, such as
support for infinities and “not a number”s

These have their expected behaviours, e.g., 1.0/0.0 returns
infinity; sqrt(-1.0) returns a NaN

Also, there is a signed zero, namely ±0.0. To understand why
all these things are desirable you should attend a course on
numerical analysis

27 / 102

Types
Floating Point

Exercise. Look up the documentation on the functions atan
and atan2

Exercise. Read up on IEEE 754 features

28 / 102

Types
Floating Point

To write a double in C, use the familiar 1.234 and -2.3e-5
formats

For single precision (32 bit) floats, append an f, e.g, 3.141f.
An unadorned 3.141 indicates a double (64 bit)

There is little use for single precision floats in modern hardware
with built-in doubles: some hardware doesn’t even support
float natively

29 / 102

Types
Floating Point

To write a double in C, use the familiar 1.234 and -2.3e-5
formats

For single precision (32 bit) floats, append an f, e.g, 3.141f.
An unadorned 3.141 indicates a double (64 bit)

There is little use for single precision floats in modern hardware
with built-in doubles: some hardware doesn’t even support
float natively

30 / 102

Types
Floating Point

To write a double in C, use the familiar 1.234 and -2.3e-5
formats

For single precision (32 bit) floats, append an f, e.g, 3.141f.
An unadorned 3.141 indicates a double (64 bit)

There is little use for single precision floats in modern hardware
with built-in doubles: some hardware doesn’t even support
float natively

31 / 102

Types
Floating Point

So in those kinds of machines

float f = 1.0f * 2.0f

the single floats 1.0f and 2.0f would be widened
automatically by the compiler to double; the multiplication
computed in double precision; the result is then truncated to fit
back into f

This could well actually be slower than plain double precision
computation all the way through

32 / 102

Types
Floating Point

So in those kinds of machines

float f = 1.0f * 2.0f

the single floats 1.0f and 2.0f would be widened
automatically by the compiler to double; the multiplication
computed in double precision; the result is then truncated to fit
back into f

This could well actually be slower than plain double precision
computation all the way through

33 / 102

Types
Floating Point

The only reasons to use float are (a) when you are short on
space, or (b) the hardware does not support double well or at
all (embedded chips, graphics cards, etc.)

The printf specifier for both float and double is %f

There is no separate specifier for float as any float in a
printf argument will be automatically widened to a double
before being passed into printf

34 / 102

Types
Floating Point

The only reasons to use float are (a) when you are short on
space, or (b) the hardware does not support double well or at
all (embedded chips, graphics cards, etc.)

The printf specifier for both float and double is %f

There is no separate specifier for float as any float in a
printf argument will be automatically widened to a double
before being passed into printf

35 / 102

Types
Floating Point

The only reasons to use float are (a) when you are short on
space, or (b) the hardware does not support double well or at
all (embedded chips, graphics cards, etc.)

The printf specifier for both float and double is %f

There is no separate specifier for float as any float in a
printf argument will be automatically widened to a double
before being passed into printf

36 / 102

Types

A note on mixing values of different types: C (in common with
many other languages) has a raft of automatic coercions of
types of values

In
double x; ... x + 1
the integer 1 is automatically coerced to double 1.0 (“floating
point contagion”)

In
char c; int n; ... n + c
the c is automatically coerced (widened) to an int

Usually it does what you want, but you should always look at
mixed-type expressions carefully

37 / 102

Types

A note on mixing values of different types: C (in common with
many other languages) has a raft of automatic coercions of
types of values

In
double x; ... x + 1
the integer 1 is automatically coerced to double 1.0 (“floating
point contagion”)

In
char c; int n; ... n + c
the c is automatically coerced (widened) to an int

Usually it does what you want, but you should always look at
mixed-type expressions carefully

38 / 102

Types

A note on mixing values of different types: C (in common with
many other languages) has a raft of automatic coercions of
types of values

In
double x; ... x + 1
the integer 1 is automatically coerced to double 1.0 (“floating
point contagion”)

In
char c; int n; ... n + c
the c is automatically coerced (widened) to an int

Usually it does what you want, but you should always look at
mixed-type expressions carefully

39 / 102

Types

A note on mixing values of different types: C (in common with
many other languages) has a raft of automatic coercions of
types of values

In
double x; ... x + 1
the integer 1 is automatically coerced to double 1.0 (“floating
point contagion”)

In
char c; int n; ... n + c
the c is automatically coerced (widened) to an int

Usually it does what you want, but you should always look at
mixed-type expressions carefully

40 / 102

Types

Note there is a significant difference between coercion of ints to
doubles and coercion of chars to ints

Widening a char to an int just takes the bit pattern that
represents the char and puts it in a bigger, int-sized box

The bit pattern is not changed, just extended

41 / 102

Types

Note there is a significant difference between coercion of ints to
doubles and coercion of chars to ints

Widening a char to an int just takes the bit pattern that
represents the char and puts it in a bigger, int-sized box

The bit pattern is not changed, just extended

42 / 102

Types

Note there is a significant difference between coercion of ints to
doubles and coercion of chars to ints

Widening a char to an int just takes the bit pattern that
represents the char and puts it in a bigger, int-sized box

The bit pattern is not changed, just extended

43 / 102

Types

Coercing an int to a double takes the bit pattern that represents
the int (2s complement, perhaps), calculates the bit-pattern that
represents the closest numerically equivalent floating point
(IEEE, probably) and returns that

This will an entirely different bit pattern

Usually you don’t have to care that this is happening, but you
should be aware that it is

44 / 102

Types

Coercing an int to a double takes the bit pattern that represents
the int (2s complement, perhaps), calculates the bit-pattern that
represents the closest numerically equivalent floating point
(IEEE, probably) and returns that

This will an entirely different bit pattern

Usually you don’t have to care that this is happening, but you
should be aware that it is

45 / 102

Types

Coercing an int to a double takes the bit pattern that represents
the int (2s complement, perhaps), calculates the bit-pattern that
represents the closest numerically equivalent floating point
(IEEE, probably) and returns that

This will an entirely different bit pattern

Usually you don’t have to care that this is happening, but you
should be aware that it is

46 / 102

Types

On some classes of hardware, this is actually a very expensive
(slow) operation!

Thus for double x;

x = 1;

could be a lot slower than

x = 1.0;

Though this is relatively rare

47 / 102

Types

On some classes of hardware, this is actually a very expensive
(slow) operation!

Thus for double x;

x = 1;

could be a lot slower than

x = 1.0;

Though this is relatively rare

48 / 102

Types

Exercise. Assuming standard IEEE and 2-s complement
representations:

long int n = 42;

double x = n;

What is the bit pattern stored in the 8-byte integer n?

What is the bit pattern stored in the 8-byte float x?

49 / 102

Types

Exercise. What’s happening here?

int n = 1, m = 2;

double x = n/m;

printf("x is %g\n", x);

Exercise. Some compilers have flags to warn about automatic
type coercions. Look this up

50 / 102

Types
Floating Point

Summary: stick to double for floating point

When you hear the phrase “floating point” the speaker usually
means “double precision floating point”

The newest C compilers also support a complex type, e.g.,
#include <complex.h>

...

complex c = 5.0 + 3.0 * I;
c = c + 1.0;

The double 1.0 will be automatically coerced (widened?) to a
complex

51 / 102

Types
Floating Point

Summary: stick to double for floating point

When you hear the phrase “floating point” the speaker usually
means “double precision floating point”

The newest C compilers also support a complex type, e.g.,
#include <complex.h>

...

complex c = 5.0 + 3.0 * I;
c = c + 1.0;

The double 1.0 will be automatically coerced (widened?) to a
complex

52 / 102

Types
Floating Point

Summary: stick to double for floating point

When you hear the phrase “floating point” the speaker usually
means “double precision floating point”

The newest C compilers also support a complex type, e.g.,
#include <complex.h>

...

complex c = 5.0 + 3.0 * I;
c = c + 1.0;

The double 1.0 will be automatically coerced (widened?) to a
complex

53 / 102

Types
Floating Point

Exercise. Think about the difference between
sqrt(-1.0)
and
csqrt(-1.0)
where csqrt is the complex square root function

Compilers also support wide characters, to support character
sets from global languages

54 / 102

Types
Floating Point

Exercise. Think about the difference between
sqrt(-1.0)
and
csqrt(-1.0)
where csqrt is the complex square root function

Compilers also support wide characters, to support character
sets from global languages

55 / 102

Types
Floating Point

Exercise. Let a = 1.0 × 108, b = −1.0 × 108 and c = 1.0. Write
code to evaluate and print the result of

(a + b) + c

and
a + (b + c)

Compare the results using float and double

56 / 102

Types
Boolean

C does not have a separate Boolean type

Integer 0 plays the role of false, while any non-zero integer is
interpreted as true

int bigger(double a, double b)

{

if (a > b) return 1;

return 0;

}

...

if (bigger(x+1.0, y)) ...

Though this would not be regarded as a natural C

57 / 102

Types
Boolean

C does not have a separate Boolean type

Integer 0 plays the role of false, while any non-zero integer is
interpreted as true

int bigger(double a, double b)

{

if (a > b) return 1;

return 0;

}

...

if (bigger(x+1.0, y)) ...

Though this would not be regarded as a natural C

58 / 102

Types
Boolean

C does not have a separate Boolean type

Integer 0 plays the role of false, while any non-zero integer is
interpreted as true

int bigger(double a, double b)

{

if (a > b) return 1;

return 0;

}

...

if (bigger(x+1.0, y)) ...

Though this would not be regarded as a natural C

59 / 102

Types
Boolean

C does not have a separate Boolean type

Integer 0 plays the role of false, while any non-zero integer is
interpreted as true

int bigger(double a, double b)

{

if (a > b) return 1;

return 0;

}

...

if (bigger(x+1.0, y)) ...

Though this would not be regarded as a natural C

60 / 102

Types
Boolean

The expression “a > b” is just that: an expression

Just like the expression “a + b” returns a value, “a > b” also
returns a value, false or true, i.e., zero or non-zero

More idiomatic C would be:

int bigger(double a, double b)

{

return a > b;

}

61 / 102

Types
Boolean

The expression “a > b” is just that: an expression

Just like the expression “a + b” returns a value, “a > b” also
returns a value, false or true, i.e., zero or non-zero

More idiomatic C would be:

int bigger(double a, double b)

{

return a > b;

}

62 / 102

Types
Boolean

The expression “a > b” is just that: an expression

Just like the expression “a + b” returns a value, “a > b” also
returns a value, false or true, i.e., zero or non-zero

More idiomatic C would be:

int bigger(double a, double b)

{

return a > b;

}

63 / 102

Types
Boolean

You can even write n = 5 + (a > b); but that would be
questionable style

The C standard requires such Boolean expressions should
always return 1 or 0; i.e., 1 is specified as the canonical true
value

So n will be 5 or 6

But, again, only mix expressions like this if you really
understand what you are doing

64 / 102

Types
Boolean

You can even write n = 5 + (a > b); but that would be
questionable style

The C standard requires such Boolean expressions should
always return 1 or 0; i.e., 1 is specified as the canonical true
value

So n will be 5 or 6

But, again, only mix expressions like this if you really
understand what you are doing

65 / 102

Types
Boolean

You can even write n = 5 + (a > b); but that would be
questionable style

The C standard requires such Boolean expressions should
always return 1 or 0; i.e., 1 is specified as the canonical true
value

So n will be 5 or 6

But, again, only mix expressions like this if you really
understand what you are doing

66 / 102

Types
Boolean

You can even write n = 5 + (a > b); but that would be
questionable style

The C standard requires such Boolean expressions should
always return 1 or 0; i.e., 1 is specified as the canonical true
value

So n will be 5 or 6

But, again, only mix expressions like this if you really
understand what you are doing

67 / 102

Types
Boolean

The equality test is ==, not =

A common source of bugs is to write
if (a = 2) ...
rather than
if (a == 2) ...

The first is valid C: it assigns 2 to a, and then the expression “a
= 2” returns the value 2, i.e., true in a Boolean context

68 / 102

Types
Boolean

The equality test is ==, not =

A common source of bugs is to write
if (a = 2) ...
rather than
if (a == 2) ...

The first is valid C: it assigns 2 to a, and then the expression “a
= 2” returns the value 2, i.e., true in a Boolean context

69 / 102

Types
Boolean

The equality test is ==, not =

A common source of bugs is to write
if (a = 2) ...
rather than
if (a == 2) ...

The first is valid C: it assigns 2 to a, and then the expression “a
= 2” returns the value 2, i.e., true in a Boolean context

70 / 102

Types
Boolean

Exercise. Read up on the various Boolean connectives &&, ||
etc.

Exercise. Compare the Boolean connectives with the bitwise
operators &, | etc.

Exercise. And the shift operators >> and <<. Particularly with
regard to signed and unsigned integers

Exercise. Read up on the ?: operator

Exercise. What happens with n = 1 + (m = 2) ?

71 / 102

Types
Boolean

Exercise. Look at what your compiler says about
#include <stdio.h>

int main(void)

{

int s = 0;

if (s = 2) printf("hi\n");

else printf("lo\n");

return 0;

}

72 / 102

Types
Arrays

Given a type in C, we can have an array of things of that type

int a[5];

double b[1024];

The elements are referenced as you might expect
int i;

...

for (i = 0; i < 1024; i++) {

b[i] += 1.0;

}

Indexed from 0 to length − 1

73 / 102

Types
Arrays

Given a type in C, we can have an array of things of that type

int a[5];

double b[1024];

The elements are referenced as you might expect
int i;

...

for (i = 0; i < 1024; i++) {

b[i] += 1.0;

}

Indexed from 0 to length − 1

74 / 102

Types
Arrays

Given a type in C, we can have an array of things of that type

int a[5];

double b[1024];

The elements are referenced as you might expect
int i;

...

for (i = 0; i < 1024; i++) {

b[i] += 1.0;

}

Indexed from 0 to length − 1

75 / 102

Types
Arrays

a[0] a[1] a[2] a[3] ...

Arrays are simply laid out in memory, with successive values
next to each other (contiguous) in memory

The C standard specifies this layout, and this will become
important later

76 / 102

Types
Arrays

a[0] a[1] a[2] a[3] ...

Arrays are simply laid out in memory, with successive values
next to each other (contiguous) in memory

The C standard specifies this layout, and this will become
important later

77 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in
that array

Maybe writing (d[3])[0] is clearer?

78 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in
that array

Maybe writing (d[3])[0] is clearer?

79 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in
that array

Maybe writing (d[3])[0] is clearer?

80 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in
that array

Maybe writing (d[3])[0] is clearer?

81 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in
that array

Maybe writing (d[3])[0] is clearer?

82 / 102

Types
Arrays

Arrays of things are a type, so we can have arrays of them

So char d[6][7]; is an array of 6 items; each item is an array
of 7 chars

This is how C provides two (and higher) dimensional arrays: as
arrays of arrays

But, also, d[3] is a valid thing to write: it refers to the 4th array
of characters

So d[3][0], d[3][1], . . . , d[3][6], are the 7 characters in
that array

Maybe writing (d[3])[0] is clearer?

83 / 102

Types
Arrays

d[0]

d[2]

d[1]

d[0][0] d[0][1] d[0][2] d[0][3]

d[1][0] d[1][1] d[1][2] d[1][3]

d[2][0] d[2][1] d[2][2] d[2][3]

...

...

...

Higher dimensional arrays

84 / 102

Types
Arrays

void fill(int arr[], int n)

{

int i;

for (i = 0; i < n; i++) {

arr[i] = 99;

}

}

...

int a[5], d[6][7];

fill(a, 5);

fill(d[3], 7);

85 / 102

Types
Arrays

Exercise. What about

fill(d, 6);

86 / 102

Types
Arrays

So:

• Arrays can be passed as arguments to functions
• The size of the array need not be specified in the function

definition (for simple, 1D arrays)
• An array does not “know its own size”. That information

has to be given separately, if needed. This is a common
source of bugs

87 / 102

Types
Arrays

So:

• Arrays can be passed as arguments to functions

• The size of the array need not be specified in the function
definition (for simple, 1D arrays)

• An array does not “know its own size”. That information
has to be given separately, if needed. This is a common
source of bugs

88 / 102

Types
Arrays

So:

• Arrays can be passed as arguments to functions
• The size of the array need not be specified in the function

definition (for simple, 1D arrays)

• An array does not “know its own size”. That information
has to be given separately, if needed. This is a common
source of bugs

89 / 102

Types
Arrays

So:

• Arrays can be passed as arguments to functions
• The size of the array need not be specified in the function

definition (for simple, 1D arrays)
• An array does not “know its own size”. That information

has to be given separately, if needed. This is a common
source of bugs

90 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and return the same answer every time

It might run and return a different answer some times

It might run and crash

91 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and return the same answer every time

It might run and return a different answer some times

It might run and crash

92 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and return the same answer every time

It might run and return a different answer some times

It might run and crash

93 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and return the same answer every time

It might run and return a different answer some times

It might run and crash

94 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and return the same answer every time

It might run and return a different answer some times

It might run and crash

95 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and return the same answer every time

It might run and return a different answer some times

It might run and crash

96 / 102

Types
Arrays

Normally, C does not check for correct access to arrays

int a[5];

...

a[10] = 42;

may well compile without error, or even warning

The program might even run, not report an error and return the
correct answer

It might run, not report an error and return the wrong answer

It might run and return the same answer every time

It might run and return a different answer some times

It might run and crash
97 / 102

Types
Arrays

This is one of C’s chosen trade-offs

More speed for less checking and safety

C allows the programmer to do all kinds of weird stuff, often
without warning

This is good for good programmers; bad for bad programmers

98 / 102

Types
Arrays

This is one of C’s chosen trade-offs

More speed for less checking and safety

C allows the programmer to do all kinds of weird stuff, often
without warning

This is good for good programmers; bad for bad programmers

99 / 102

Types
Arrays

This is one of C’s chosen trade-offs

More speed for less checking and safety

C allows the programmer to do all kinds of weird stuff, often
without warning

This is good for good programmers; bad for bad programmers

100 / 102

Types
Arrays

This is one of C’s chosen trade-offs

More speed for less checking and safety

C allows the programmer to do all kinds of weird stuff, often
without warning

This is good for good programmers; bad for bad programmers

101 / 102

Types
Arrays

Exercise. Implement a function which, given an array of
integers fills that array with the squares of 0, 1, 2, and so on

Exercise. Implement a function which, given an array of
integers, returns the sum of the values in the array

Exercise. Implement the Sieve of Eratosthenes to find primes

102 / 102

