Types

Strings

There is no string type in C

1/101

Types

Strings

There is no string type in C

There are arrays of char

2/101

Types
Strings
There is no string type in C
There are arrays of char
char str[] = "hello world";

This declares an array and initialises it

3/101

Types
Strings
There is no string type in C
There are arrays of char
char str[] = "hello world";
This declares an array and initialises it

C is clever enough to work out the size of the array needed
here, to save you a bit of counting

4/101

Types
Strings
There is no string type in C
There are arrays of char
char str[] = "hello world";
This declares an array and initialises it

C is clever enough to work out the size of the array needed
here, to save you a bit of counting

Then str[4] is the character o’

5/101

Types
Strings
There is no string type in C
There are arrays of char
char str[] = "hello world";
This declares an array and initialises it

C is clever enough to work out the size of the array needed
here, to save you a bit of counting

Then str[4] is the character o’

Which, of course, is just some integer value

6/101

Types

Strings

In printf use %s for strings
printf("str is ’%s’\n", str);
And %c for chars

printf("char is ’%c’\n", str(4]);

7/101

Types

Strings

There is nothing special about strings that distinguishes them
from other arrays, apart from having a special syntax using
quotes

8/101

Types

Strings

There is nothing special about strings that distinguishes them

from other arrays, apart from having a special syntax using
quotes

char str[] = { ’h’, ’e’, ’1°, 17,

’O’, P ’W’,
70;’ 7I", ;1;’ :d; };

9/101

Types

Strings

There is nothing special about strings that distinguishes them
from other arrays, apart from having a special syntax using
quotes

char str([] = { ’h’, ’e’, 1’2, ’17, 0, 7’ ‘w
70;, 7I", ;1;’ :d; };

There are two reasons why you wouldn’t normally write code
like this:

e it's easier to use normal quoted string syntax
e this code is semantically incorrect

10/101

Types
Strings
Just like other arrays, C does not store the length of a string in
the string, only the characters

11/101

Types
Strings
Just like other arrays, C does not store the length of a string in
the string, only the characters

So how can printf tell how long is the string in
printf("str is ’%s’\n", str);?

12/101

Types
Strings
Just like other arrays, C does not store the length of a string in
the string, only the characters

So how can printf tell how long is the string in
printf("str is ’%s’\n", str);?

It knows where the string starts (at str), but not where it ends

13/101

Types
Strings
Just like other arrays, C does not store the length of a string in
the string, only the characters

So how can printf tell how long is the string in
printf("str is ’%s’\n", str);?

It knows where the string starts (at str), but not where it ends

And other contexts? E.g.,n = strlen(str);

14/101

Types
Strings
Just like other arrays, C does not store the length of a string in
the string, only the characters

So how can printf tell how long is the string in
printf("str is ’%s’\n", str);?

It knows where the string starts (at str), but not where it ends
And other contexts? E.g.,n = strlen(str);

All it has is an array of characters of some unknown size

15/101

Types
Strings
Just like other arrays, C does not store the length of a string in
the string, only the characters

So how can printf tell how long is the string in
printf("str is ’%s’\n", str);?

It knows where the string starts (at str), but not where it ends
And other contexts? E.g.,n = strlen(str);
All it has is an array of characters of some unknown size

Stored as a contiguous sequence of bytes in memory: we need
some way to indicate the end of the string

16/101

Types
Strings
Just like other arrays, C does not store the length of a string in
the string, only the characters

So how can printf tell how long is the string in
printf("str is ’%s’\n", str);?

It knows where the string starts (at str), but not where it ends
And other contexts? E.g.,n = strlen(str);
All it has is an array of characters of some unknown size

Stored as a contiguous sequence of bytes in memory: we need
some way to indicate the end of the string

Thus, in C, all strings are conventionally terminated by a
(character value/byte) 0

17/101

Types
Strings
char str[] = {)hJ, ;e)’ ;1),)17’)O)’)),)WJ,
707, 7r:,)1)’ ’d’, O };
is the correct version of the simpler
char str[] = "hello world"

18/101

Types
Strings
char str[] = {)hJ, ;e)’ ;1),)17’)O)’)), ’W’,
707, 7r:,)1)’ ’d’, O };
is the correct version of the simpler
char str[] = "hello world"

So sizeof ("hello world") is 12 bytes, including the
terminating O

19/101

Types
Strings
char str[] = { ’h’, ;e;’ ;1),)17’)O)’) ;’ ’W’,
707, 7r:,)1)’ ’d’, O };
is the correct version of the simpler
char str[] = "hello world"

So sizeof ("hello world") is 12 bytes, including the
terminating O

This is another favourite source of bugs!

20/101

Types
Strings
char str[] = { ’h’, ;e;’ ;1),)17’)O)’) ;’ ’W’,
707, 7r:,)1)’ ’d’, O };
is the correct version of the simpler
char str[] = "hello world"

So sizeof ("hello world") is 12 bytes, including the
terminating O

This is another favourite source of bugs!

If you stick to simple uses of strings, this all just works without
you having to think

21/101

Types

Strings

char str[] - { ’h’, ;e;’ ;1),)17’)O)’) ;’ ’W’,
707, 7r:,)1)’ ’d’, O };

is the correct version of the simpler

char str[] = "hello world"

So sizeof ("hello world") is 12 bytes, including the
terminating O

This is another favourite source of bugs!

If you stick to simple uses of strings, this all just works without
you having to think

The double quote syntax includes the terminating 0; standard
string functions expect the terminating 0

22/101

Types

Strings

Exercise. Look up the ASCII encoding for characters

Exercise. Characters really are integers. What about the
following?

char message[] = { 104, 101, 108, 108, 111, 32, 119,
111, 114, 108, 100, O };

Exercise. And what about

printf("A has value %d\n", ’A’);
printf ("A has value %c\n", ’A’);

23/101

Types

Strings

Exercise. sizeof gives the size in bytes of a C value. Compare
sizeof ("cat")
against

strlen("cat")

24/101

Types

Strings

Since strings are not a proper type in C it does not have built-in
operations on strings, e.g., concatenate, as part of the
language

25/101

Types

Strings

Since strings are not a proper type in C it does not have built-in
operations on strings, e.g., concatenate, as part of the
language

This is provided by library functions, if you need them. They all
assume strings are zero-terminated

26/101

Types

Strings

Since strings are not a proper type in C it does not have built-in
operations on strings, e.g., concatenate, as part of the
language

This is provided by library functions, if you need them. They all
assume strings are zero-terminated

Exercise. Look up the various library functions that operate on
strings, e.g., strlen, strcpy, strcat, strcmp and lots more

27/101

Types

Types

More C types?

28/101

Types

Types
More C types?

In a very real sense, there are no more types natively
supported in C

29/101

Types

Types

More C types?

In a very real sense, there are no more types natively
supported in C

Again, C is close to the hardware

30/101

Types

Types

More C types?

In a very real sense, there are no more types natively
supported in C

Again, C is close to the hardware

However, there are a couple of ways of combining types into
compound types for the convenience of programming

31/101

Types

Types

More C types?

In a very real sense, there are no more types natively
supported in C

Again, C is close to the hardware

However, there are a couple of ways of combining types into
compound types for the convenience of programming

And for the convenience of the thought processes of the
programmers

32/101

Types

Structures

C has a simple structure type constructor, used when we need
to manage more complicated combinations of values

33/101

Types

Structures

C has a simple structure type constructor, used when we need
to manage more complicated combinations of values

struct rational {
int num, den;

};

struct rational r;
r.num = 1;
r.den = 2;

34/101

Types

Structures

e Don't forget the ; at the end of the declaration

35/101

Types

Structures

e Don't forget the ; at the end of the declaration
e They may look like Java classes, but they are not

36/101

Types

Structures

e Don't forget the ; at the end of the declaration
e They may look like Java classes, but they are not

e The type name is “struct rational”, always including
the word “struct”

37/101

Types

Structures

Don’t forget the ; at the end of the declaration

They may look like Java classes, but they are not

The type name is “struct rational”, always including
the word “struct”

The elements of the struct are accessed using the dot
notation

38/101

Types

Structures

Don’t forget the ; at the end of the declaration
They may look like Java classes, but they are not

The type name is “struct rational”, always including
the word “struct”

The elements of the struct are accessed using the dot
notation

r is not an object in the OO sense

39/101

Types

Structures

Don’t forget the ; at the end of the declaration
They may look like Java classes, but they are not

The type name is “struct rational”, always including
the word “struct”

The elements of the struct are accessed using the dot
notation

r is not an object in the OO sense
There are no classes, no objects, no methods in C

40/101

Types

Structures

Don’t forget the ; at the end of the declaration
They may look like Java classes, but they are not

The type name is “struct rational”, always including
the word “struct”

The elements of the struct are accessed using the dot
notation

r is not an object in the OO sense
There are no classes, no objects, no methods in C

The type declaration can only contain names of values, as
there are no methods in C

41/101

Types

Structures

Structure types are just like the built-in types

42/101

Types

Structures

Structure types are just like the built-in types

So we can have arrays of structs:
struct rational numbers[10];

43/101

Types
Structures
Structure types are just like the built-in types

So we can have arrays of structs:
struct rational numbers[10];

So numbers [7] .num

44/101

Types
Structures
Structure types are just like the built-in types

So we can have arrays of structs:
struct rational numbers[10];

So numbers [7] .num

We can declare structs containing arrays
struct numb { int nums[10]; int dens[10]; }

45/101

Types
Structures
Structure types are just like the built-in types

So we can have arrays of structs:
struct rational numbers[10];

So numbers [7] .num

We can declare structs containing arrays
struct numb { int nums[10]; int dens[10]; }

Then
struct numb n;
n.nums[7] = 42;

46/101

Types

Structures

Structs of structs, and so on
struct inner {

double first[10];

char rest;

};

struct complicated {
int sign;
struct rational r;
struct inner blob;

};

struct complicated c;
c.sign = -1;
c.r.num = 5;
c.blob.first[3] = 7.0;

47/101

Types

Structures

We can also declare structs “on the fly” as we are using them

struct complicated {

int sign;

struct rational r;

struct inner {
double first[10];
char rest;

} blob;

};

struct complicated c;
c.sign = -1;
c.r.num = 5;
c.blob.first[3] = 7.0;

48/101

Compound Types

In summary: the two main ways in C of collecting things
together to make compound things are

e arrays: collections of the same type of things
e structures: collections of different types of things

49/101

Compound Types

In summary: the two main ways in C of collecting things
together to make compound things are

e arrays: collections of the same type of things
e structures: collections of different types of things

Exercise. Read up on union types, another way of making
compound types in C

Exercise. Read up on typedef, a convenient way of
abbreviating type names

50/101

Compound Types

Exercise for geeks. What is the difference (at the machine
level) between

int al[2];
and

struct {
int al, a2;

} a;

?

51/101

Pointers

We now turn to one of the features of C that (a) some people
find difficult, and (b) makes C so useful: pointers

52/101

Pointers

We now turn to one of the features of C that (a) some people
find difficult, and (b) makes C so useful: pointers

We start by reviewing the way memory is laid out in hardware

53/101

Pointers

We now turn to one of the features of C that (a) some people
find difficult, and (b) makes C so useful: pointers

We start by reviewing the way memory is laid out in hardware

Recall that (thanks to the universal adoption of von Neumann’s
model) memory can be regarded as a big array of bytes;
conventionally numbered from 0 upwards

54/101

Pointers

We now turn to one of the features of C that (a) some people
find difficult, and (b) makes C so useful: pointers

We start by reviewing the way memory is laid out in hardware

Recall that (thanks to the universal adoption of von Neumann’s
model) memory can be regarded as a big array of bytes;
conventionally numbered from 0 upwards

55/101

Pointers

When a program is compiled, variables are mapped in some
useful way to memory location by the system (compiler and OS
program loader)

56/101

Pointers

When a program is compiled, variables are mapped in some
useful way to memory location by the system (compiler and OS
program loader)

So if we have a (4 byte) integer n in our code, the system might
choose to place it at memory address 4 (a very unlikely place in
real systems)

57/101

Pointers

Then every access of n in our code becomes a read or write of
bytes 4—7 of memory

58/101

Pointers

Then every access of n in our code becomes a read or write of
bytes 4—7 of memory

We say byte 4 is the address of the variable n

59/101

Pointers

Then every access of n in our code becomes a read or write of
bytes 4—7 of memory

We say byte 4 is the address of the variable n

It's where the variable lives in memory

60/101

Pointers

C gives us access to these addresses in our program: that is,
we can find out where a variable has been placed

61/101

Pointers

C gives us access to these addresses in our program: that is,
we can find out where a variable has been placed

Other languages might not reveal this kind of information,
preferring to hide these details from the programmer

62/101

Pointers

C gives us access to these addresses in our program: that is,
we can find out where a variable has been placed

Other languages might not reveal this kind of information,
preferring to hide these details from the programmer

But for low-level programs that manipulate bits and bytes of
memory this is just what they need

63/101

Pointers

C gives us access to these addresses in our program: that is,
we can find out where a variable has been placed

Other languages might not reveal this kind of information,
preferring to hide these details from the programmer

But for low-level programs that manipulate bits and bytes of
memory this is just what they need

To get the address of a variable use the & operator

64/101

Pointers

#include <stdio.h>

int main(void)

{
int n = 1234;
printf("n has value %d and address ’%p\n", n, &n);
return 0O;

}

65/101

Pointers

#include <stdio.h>
int main(void)
{

int n = 1234;

printf("n has value %d and address ’%p\n", n, &n);

return 0O;

}

Produces
n has value 1234 and address Ox7fff251f6d5c

66/101

Pointers

Note the difference between the value of n and the address of n

67/101

Pointers

Note the difference between the value of n and the address of n

The value of n will always be 1234; the address (this example:
140732877607788 in decimal) will likely be different on different
OSs, different on different compilers, possibly different on
different runs on the same machine

68/101

Pointers

Note the difference between the value of n and the address of n

The value of n will always be 1234; the address (this example:
140732877607788 in decimal) will likely be different on different
OSs, different on different compilers, possibly different on
different runs on the same machine

It all depends on where in memory n happens to be placed
when the program is loaded to be run

69/101

Pointers

But addresses are just integers

70/101

Pointers

Addresses are just integers

71/101

Pointers

Addresses are just integers

C does treat them slightly differently from normal integers to
make certain nice things happen, but, at base, they are just
integers

72/101

Pointers

Addresses are just integers

C does treat them slightly differently from normal integers to
make certain nice things happen, but, at base, they are just
integers

The %p in printf prints addresses in hexadecimal, as that is
often useful to the programmer

73/101

Pointers

Addresses are just integers

C does treat them slightly differently from normal integers to
make certain nice things happen, but, at base, they are just
integers

The %p in printf prints addresses in hexadecimal, as that is
often useful to the programmer

Exercise. Compare %x with %p

74/101

Pointers

Addresses are first-class values in C: this means you can use
and manipulate them just like any other values (like integers,
doubles, etc.)

75/101

Pointers

Addresses are first-class values in C: this means you can use
and manipulate them just like any other values (like integers,
doubles, etc.)

They are just integers, after all

76/101

Pointers

Addresses are first-class values in C: this means you can use
and manipulate them just like any other values (like integers,
doubles, etc.)

They are just integers, after all

Variables that hold addresses are called pointer variables

77/101

Pointers

Addresses are first-class values in C: this means you can use
and manipulate them just like any other values (like integers,
doubles, etc.)

They are just integers, after all
Variables that hold addresses are called pointer variables

(Though it’s not the variables that are pointers, but their
values...)

78/101

Pointers

So a pointer variable contains a simple integer (the address),
but to make things work nicely, C distinguishes between
pointers and integers, and also between pointers to different
types

79/101

Pointers

So a pointer variable contains a simple integer (the address),
but to make things work nicely, C distinguishes between
pointers and integers, and also between pointers to different

types

So a pointer to an integer is treated as different to a pointer to a
double

80/101

Pointers

So a pointer variable contains a simple integer (the address),
but to make things work nicely, C distinguishes between
pointers and integers, and also between pointers to different

types

So a pointer to an integer is treated as different to a pointer to a
double

And both are treated as different from a ordinary integer

81/101

Pointers

So a pointer variable contains a simple integer (the address),
but to make things work nicely, C distinguishes between
pointers and integers, and also between pointers to different

types

So a pointer to an integer is treated as different to a pointer to a
double

And both are treated as different from a ordinary integer

This is a bit subtle: they are all simple integers underneath; it’s
just how the compiler manipulates those integers that will be
different for different types

82/101

Pointers

So the interpretation of that pointer integer is what is important

83/101

Pointers

So the interpretation of that pointer integer is what is important

This is to make manipulations of them much more convenient

84/101

Pointers

So the interpretation of that pointer integer is what is important
This is to make manipulations of them much more convenient

Now, memory doesn’t “know” what kind of data is being stored
at a particular address; memory is just a bunch of bytes

85/101

Pointers

If I gave you 1000000010010010000111111011011 and asked
“what does that mean?” you could legitimately say “anything
you like”

86/101

Pointers

If I gave you 1000000010010010000111111011011 and asked
“what does that mean?” you could legitimately say “anything
you like”

It is purely the job of the program (and programmer) to say
what a particular bunch of bits is supposed to mean

87/101

Pointers

If I gave you 1000000010010010000111111011011 and asked
“what does that mean?” you could legitimately say “anything
you like”

It is purely the job of the program (and programmer) to say
what a particular bunch of bits is supposed to mean

The type of a variable or the type of a pointer encodes the
information as to what bits they refer to “mean”

88/101

Pointers

If I gave you 1000000010010010000111111011011 and asked
“what does that mean?” you could legitimately say “anything
you like”

It is purely the job of the program (and programmer) to say
what a particular bunch of bits is supposed to mean

The type of a variable or the type of a pointer encodes the
information as to what bits they refer to “mean”

Thus int n = 99; says “allocate four bytes of memory
somewhere and (while we access these bytes through this n)
interpret the bits in those bytes as an integer”

89/101

Pointers

At one point the program might store an integer at a given
address; later it might store a double there

90/101

Pointers

At one point the program might store an integer at a given
address; later it might store a double there

It is up to the program to interpret the bits at a given address in
whatever way it wants

91/101

Pointers

At one point the program might store an integer at a given
address; later it might store a double there

It is up to the program to interpret the bits at a given address in
whatever way it wants

Don’t make the mistake of assuming the computer magically
“knows” what a bunch of bits means. That'’s the job of the
program

92/101

Pointers

At one point the program might store an integer at a given
address; later it might store a double there

It is up to the program to interpret the bits at a given address in
whatever way it wants

Don’t make the mistake of assuming the computer magically
“knows” what a bunch of bits means. That'’s the job of the
program

Note: while C makes this quite plain, the same is true for all
computer languages

93/101

Pointers

We can declare pointer variables, e.g., pn
int n;
int *pn;

pn = &n;

The * is read as “pointer to”; the variable pn has type “pointer
to int”

94/101

Pointers

We can declare pointer variables, e.g., pn

int n;
int *pn;
pn = &n;

The * is read as “pointer to”; the variable pn has type “pointer
to int”

We also say “pn is an int pointer”; sometimes “pn is an integer
reference” or even “pn is a reference to an int”

95/101

Pointers

We can declare pointer variables, e.g., pn
int n;
int *pn;

pn = &n;

The * is read as “pointer to”; the variable pn has type “pointer
to int”

We also say “pn is an int pointer”; sometimes “pn is an integer
reference” or even “pn is a reference to an int”

“pointer to” and “reference to” are the same as “address of”

96/101

Pointers

Convention

Note: the convention is to write
int *pn;
rather than
int* pn;

97/101

Pointers

Convention
Note: the convention is to write
int *pn;
rather than
int* pn;

Both ways of writing are treated as exactly the same by the
compiler

98/101

Pointers

Convention

Note: the convention is to write
int *pn;
rather than
int* pn;

Both ways of writing are treated as exactly the same by the
compiler

The reason for this slightly awkward convention is that the
declaration

int n, *pn;

means an int n and a pointer to int pn

99/101

Pointers

Convention

Note: the convention is to write
int *pn;
rather than
int* pn;

Both ways of writing are treated as exactly the same by the
compiler

The reason for this slightly awkward convention is that the
declaration

int n, *pn;

means an int n and a pointer to int pn

You can read the above as “n is an int and pn is an int
pointer”

100/101

Pointers

Convention

Exercise. What are the types of the variables in the following?

int*x a, b;

101/101

