Pointers

In the opposite direction to &, given a pointer value we can get
at the value stored at that address using the * operator

int n = 1234, *pn = &n; // declaration with initialisation

printf("n has value %d, pn has value %p\n", n, pn);
printf("the value pn points to is %d\n", *pn);

*pn = 23;

printf("n has value %d, pn has value %p\n", n, pn);

1/112

Pointers

In the opposite direction to &, given a pointer value we can get
at the value stored at that address using the * operator

int n = 1234, *pn = &n; // declaration with initialisation

printf("n has value %d, pn has value %p\n", n, pn);
printf("the value pn points to is %d\n", *pn);

*pn = 23;

printf("n has value %d, pn has value %p\n", n, pn);

Produces

n has value 1234, pn has value O0x7fff81aa38d4
the value pn points to is 1234
n has value 23, pn has value Ox7fff81aa38d4

2/112

Pointers

Initial values

n pn
‘ 1234 ‘ ‘ ‘ 7fff8laa38d4 ‘
7fff8laa38d4

3/112

Pointers

n pn
‘ 23 ‘ ‘ ‘ 7fff8laa38d4 ‘

7fff8laa38d4

After xpn = 23

4/112

Pointers

The * operator says “the value in this variable is a pointer;
operate on the value at that address”

5/112

Pointers

The * operator says “the value in this variable is a pointer;
operate on the value at that address”

Following a pointer to find the value at the address it indicates
is called indirecting through that pointer

6/112

Pointers

The * operator says “the value in this variable is a pointer;
operate on the value at that address”

Following a pointer to find the value at the address it indicates
is called indirecting through that pointer

The type of the pointer tell us how to interpret the bytes at that
address

7/112

Pointers

The * operator says “the value in this variable is a pointer;
operate on the value at that address”

Following a pointer to find the value at the address it indicates
is called indirecting through that pointer

The type of the pointer tell us how to interpret the bytes at that
address

So if the variable has type pointer to integer, it will address 4
bytes of integer; if the variable has type pointer to double, it will
address 8 bytes of double; and so on

8/112

Pointers

The * operator says “the value in this variable is a pointer;
operate on the value at that address”

Following a pointer to find the value at the address it indicates
is called indirecting through that pointer

The type of the pointer tell us how to interpret the bytes at that
address

So if the variable has type pointer to integer, it will address 4
bytes of integer; if the variable has type pointer to double, it will
address 8 bytes of double; and so on

This is a big reason why pointers to different types are
distinguished: to determine how many bytes of value to access

9/112

Pointers

It is important to realise that *pn = 99 does not modify the
value of variable pn, but the value at the address contained by

pn

10/112

Pointers

It is important to realise that *pn = 99 does not modify the
value of variable pn, but the value at the address contained by

pn
So *pn = 99 means “get the value of pn; store 99 at that
address”

11/112

Pointers

It is important to realise that *pn = 99 does not modify the
value of variable pn, but the value at the address contained by

pn

So *pn = 99 means “get the value of pn; store 99 at that
address”

And modifying pn does not move n in memory; just that pn now
points to somewhere else

12/112

Pointers

n pn
‘ 23 ‘ ‘ ‘ 7fff8laa38d4 ‘

Initial values

7fff8laa38d4

13/112

Pointers

n pn
‘ 23 ‘ ‘ ‘ 7fff8laa38ds ‘

7fff8laa38d4 7fff8laa38d8

After pn = 0x7ff£81aa38d8

14/112

Pointers

n pn

T T

‘ 23 ‘ ‘ ‘ 7fff8laa38ds ‘

7fff8laa38d4 7fff8laa38d8

After pn = 0x7ff£81aa38d8

Now accessing *pn will access the four bytes at the address
0x7fff81aa38d8 (four bytes, as pn is an int pointer)

15/112

Pointers

n pn

T T

‘ 23 ‘ ‘ ‘ 7fff8laa38d8 ‘

7fff8laa38d4 7fff8laa38d8

After pn = 0x7ff£81aa38d8

Now accessing *pn will access the four bytes at the address
0x7fff81aa38d8 (four bytes, as pn is an int pointer)

Danger here if those four bytes are being used by something
else in the program!

16/112

Pointers

n pn

T T

‘ 23 ‘ ‘ ‘ 7fff8laa38d8 ‘

7fff8laa38d4 7fff8laa38d8

After pn = 0x7ff£81aa38d8

Now accessing *pn will access the four bytes at the address
0x7fff81aa38d8 (four bytes, as pn is an int pointer)

Danger here if those four bytes are being used by something
else in the program!

C does not stop you messing with any bytes in memory!

17/112

Pointers

Note that these assignments never change the locations of
variables, merely their values

18/112

Pointers

Note that these assignments never change the locations of
variables, merely their values

If I changed the address | have for you in my address book, that
doesn’t make you move house!

19/112

Pointers

Note that these assignments never change the locations of
variables, merely their values

If I changed the address | have for you in my address book, that
doesn’t make you move house!

| would just have the address of something that isn’t your house

20/112

Pointers

Note that these assignments never change the locations of
variables, merely their values

If I changed the address | have for you in my address book, that
doesn’t make you move house!

| would just have the address of something that isn’t your house

Pointers can point anywhere in memory, they are not restricted
to point at locations of variables

21/112

Pointers

Note that these assignments never change the locations of
variables, merely their values

If I changed the address | have for you in my address book, that
doesn’t make you move house!

| would just have the address of something that isn’t your house

Pointers can point anywhere in memory, they are not restricted
to point at locations of variables

In fact, most useful applications of pointers are not pointing at
variables

22/112

Pointers

As pn is a perfectly normal variable, it will be associated with
some memory location

23/112

Pointers

As pn is a perfectly normal variable, it will be associated with
some memory location

1024 1025 1031

8 bytes of address on this 64-bit machine

24/112

Pointers

Note: different machines and operating systems may have
different size of pointers, according to the needs of the
particular machine

25/112

Pointers

Note: different machines and operating systems may have
different size of pointers, according to the needs of the
particular machine

General-purpose 32-bit machines will likely have pointers of
size 4 bytes

26/112

Pointers

Note: different machines and operating systems may have
different size of pointers, according to the needs of the
particular machine

General-purpose 32-bit machines will likely have pointers of
size 4 bytes

A major gotcha when porting poorly-written programs from 32
to 64 bit architectures

27/112

Pointers

Note: different machines and operating systems may have
different size of pointers, according to the needs of the
particular machine

General-purpose 32-bit machines will likely have pointers of
size 4 bytes

A major gotcha when porting poorly-written programs from 32
to 64 bit architectures

Some versions of C on early computers had 2 byte (16 bit)
pointers: they didn’t have enough memory to make 4 byte
pointers necessary!

28/112

Pointers

On a 64-bit architecture:

1024 1025 1031

29/112

Pointers

In our example the value stored in the 8 bytes starting at byte
number 1024 will be the integer “4”, namely the address of n

30/112

Pointers

In our example the value stored in the 8 bytes starting at byte
number 1024 will be the integer “4”, namely the address of n

But we need not stop here: pn is a variable, so it has an
address: &pn is 1024 in this picture

31/112

Pointers

In our example the value stored in the 8 bytes starting at byte
number 1024 will be the integer “4”, namely the address of n

But we need not stop here: pn is a variable, so it has an
address: &pn is 1024 in this picture

Then &pn is a pointer to a pointer to an integer

32/112

Pointers

In our example the value stored in the 8 bytes starting at byte
number 1024 will be the integer “4”, namely the address of n

But we need not stop here: pn is a variable, so it has an
address: &pn is 1024 in this picture

Then &pn is a pointer to a pointer to an integer
int **ppn = &pn;

declares ppn to be of type pointer to pointer to integer, and
initialises it with a value, namely the address of the variable pn

33/112

Pointers

In our example the value stored in the 8 bytes starting at byte
number 1024 will be the integer “4”, namely the address of n

But we need not stop here: pn is a variable, so it has an
address: &pn is 1024 in this picture

Then &pn is a pointer to a pointer to an integer

int **ppn = &pn;

declares ppn to be of type pointer to pointer to integer, and
initialises it with a value, namely the address of the variable pn

Use multiple *s as appropriate to the number of “pointer to”s

34/112

Pointers

What does this assignment do?
**xppn = 100;

35/112

Pointers

What does this assignment do?
**xppn = 100;

This will update the value of an integer at address 4 (namely n):

*ppn retrieves the address of pn, then **ppn follows that
pointer to the address of an integer, the value 100 is then
stored there

36/112

Pointers

What does this assignment do?
**xppn = 100;

This will update the value of an integer at address 4 (namely n):
*ppn retrieves the address of pn, then **ppn follows that
pointer to the address of an integer, the value 100 is then
stored there

Updating *ppn will change the address stored in pn, e.g.,
*ppn = 8; isthe same aspn = 8;

37/112

Pointers

What does this assignment do?
**xppn = 100;

This will update the value of an integer at address 4 (namely n):
*ppn retrieves the address of pn, then **ppn follows that
pointer to the address of an integer, the value 100 is then
stored there

Updating *ppn will change the address stored in pn, e.g.,
*ppn = 8; isthe same aspn = 8;

Now pn no longer points at n but another place in memory

38/112

Pointers

Exercise (harder). The following does not work. Explain why
and fix it using pointers.

void swap(int a, int b)

{
int tmp = a;
a = b;
b = tmp;

}

intn=1, m = 2;
swap(n, m);
printf("n = %d m = %d\n", n, m);

39/112

Pointers

One of Java’s design principles was to eliminate pointers. In
reality, it does have pointers, it just hides the fact from the naive
programmer

40/112

Pointers

One of Java’s design principles was to eliminate pointers. In
reality, it does have pointers, it just hides the fact from the naive
programmer

And makes it harder for experienced programmers

41/112

Pointers

One of Java’s design principles was to eliminate pointers. In
reality, it does have pointers, it just hides the fact from the naive
programmer

And makes it harder for experienced programmers
Exercise. Find out how Java manages pointers

Exercise. Is it possible to write a (primitive) integer swap
function in Java?

42/112

Arrays and Pointers

Pointers are intimately associated with arrays in C

43/112

Arrays and Pointers

Pointers are intimately associated with arrays in C

Consider an array int a[4];

44/112

Arrays and Pointers

Pointers are intimately associated with arrays in C
Consider an array int a[4];

In memory, C arrays are laid out simply

LTI Il

100 104 108 112

To be definite, we fix on using 4 byte (32 bit) integers

45/112

Arrays and Pointers

Adjacent members of the array are adjacent in memory

46/112

Arrays and Pointers

Adjacent members of the array are adjacent in memory

If the array starts at address 100, so a[0] is at address 100,
then a[1] is at address 100 + sizeof (int) = 104;

a[2] is at address 100 + 2 x sizeof (int) = 108;

and so on

47/112

Arrays and Pointers

Adjacent members of the array are adjacent in memory

If the array starts at address 100, so a[0] is at address 100,
then a[1] is at address 100 + sizeof (int) = 104;

a[2] is at address 100 + 2 x sizeof (int) = 108;

and so on

Array element nis at address

100 + n x sizeof (int)

48/112

Arrays and Pointers

In fact the variable a contains the address of the start of the
array

Y Ty Ty T
[] \ \ \ []
100 104 108 112
a
e
\ 100 \

49/112

Arrays and Pointers

In fact the variable a contains the address of the start of the
array

YT Yy Yy Y
[\ \ \ []
100 104 108 112
a
e

So a actually has type int* (with a caveat)

50/112

Arrays and Pointers

The array index operator [] is simply a bit of pointer arithmetic

51/112

Arrays and Pointers

The array index operator [] is simply a bit of pointer arithmetic

a[3] isthe same as *(a + 3)

52/112

Arrays and Pointers

The array index operator [] is simply a bit of pointer arithmetic
a[3] is the same as *(a + 3)

An important point here: arithmetic on pointers is different
from arithmetic on integers

53/112

Arrays and Pointers

The array index operator [] is simply a bit of pointer arithmetic
a[3] is the same as *(a + 3)

An important point here: arithmetic on pointers is different
from arithmetic on integers

For an integer pointer a the expression a + 3 is not simply the
address 3 along from the value in a, but instead is the address
of the 3rd integer along

54/112

Arrays and Pointers

The array index operator [] is simply a bit of pointer arithmetic
a[3] is the same as *(a + 3)

An important point here: arithmetic on pointers is different
from arithmetic on integers

For an integer pointer a the expression a + 3 is not simply the
address 3 along from the value in a, but instead is the address
of the 3rd integer along

If the value in a is 100, and integers are of size 4, thena + 3is
the address 100 +3 x 4 = 112

55/112

Arrays and Pointers

This is strange at first, but turns out to be what you always want

56/112

Arrays and Pointers

This is strange at first, but turns out to be what you always want

This is another reason to distinguish types of pointers. For a
variable v of type T*, the expression v + nis computed as

v+ nx sizeof (T)

Giving the address of the nth item along

57/112

Arrays and Pointers

This is strange at first, but turns out to be what you always want

This is another reason to distinguish types of pointers. For a
variable v of type T*, the expression v + nis computed as

v+ nx sizeof (T)
Giving the address of the nth item along

Pointer arithmetic counts in items, not bytes

58/112

Arrays and Pointers

The result is that for an array a[]

the value of a is the address of the start of the array

*a is the same as a[0]

a + 3isthe address of the item 3 further along (the 4th
item)

so x(a + 3) is the value there; just like a[3]

&(a[3]) is the address of that item; asisa + 3

59/112

Arrays and Pointers

The result is that for an array a[]

the value of a is the address of the start of the array

*a is the same as a[0]

a + 3isthe address of the item 3 further along (the 4th
item)

so x(a + 3) is the value there; just like a[3]

&(a[3]) is the address of that item; asisa + 3

And exactly the same is true for a pointer variable, though this
may or may not be pointing at the memory for an array

60/112

Arrays and Pointers

Also ++ works well. If we define an integer pointer
int *b;

b = a;

then *b (equivalently, b[0]) is the same as a[0]

all a b

100 104 108 112

61/112

Arrays and Pointers

Also ++ works well. If we define an integer pointer
int *b;

b = a;

then *b (equivalently, b[0]) is the same as a[0]

After we increment b++; which is the same asb = b+1; the
pointer moves one integer along. Now *b is the same as a[1]

all a b
LT T T 7 [0 | [104 |
100 104 108 112

62/112

Arrays and Pointers

Also ++ works well. If we define an integer pointer
int *b;

b = a;

then *b (equivalently, b[0]) is the same as a[0]

After we increment b++; which is the same asb = b+1; the
pointer moves one integer along. Now *b is the same as a[1]

all a b
LT T T 7 [0 | [104 |
100 104 108 112

So we can iterate b along the array using ++

63/112

Arrays and Pointers

Also ++ works well. If we define an integer pointer
int *b;

b = a;

then *b (equivalently, b[0]) is the same as a[0]

After we increment b++; which is the same asb = b+1; the
pointer moves one integer along. Now *b is the same as a[1]

all a b
LT T T 7 [0 | [104 |
100 104 108 112

So we can iterate b along the array using ++

The increment operator is an array iteration operator (as well as
the normal increase-by-one on usual integers)

64/112

Arrays and Pointers

for (b =a; ... ; b++) {
... *b ...
}

is a common sight in C programs

65/112

Arrays and Pointers

for (b =a; ... ; b++) {
... *b ...
}

is a common sight in C programs

Conversely, for a pointer b we can write also b[i] just asif b
was the name of an array

66/112

Arrays and Pointers

for (b =a; ... ; b++) {
... *b ...
}

is a common sight in C programs

Conversely, for a pointer b we can write also b[i] just asif b
was the name of an array

The x[n] syntax really is just a short way of writing *(x + n)
and is equally applicable to both arrays and pointers

67/112

Arrays and Pointers

for (b =a; ... ; b++) {
*b ...

}
is a common sight in C programs

Conversely, for a pointer b we can write also b[i] just asif b
was the name of an array

The x[n] syntax really is just a short way of writing *(x + n)
and is equally applicable to both arrays and pointers

expri[expr2] is the same as *(expr1 + expr2)

68/112

Arrays and Pointers

Exercise.

int n = 7;

int *p = &n;

Is p[0] meaningful?

69/112

Arrays and Pointers

In a very real sense, C does not have arrays as a basic type!

70/112

Arrays and Pointers

In a very real sense, C does not have arrays as a basic type!

Just integers, floating point, and pointers (which are integers)

71/112

Arrays and Pointers

In a very real sense, C does not have arrays as a basic type!
Just integers, floating point, and pointers (which are integers)

And [] and "" are just some convenient syntax

72/112

Arrays and Pointers

In a very real sense, C does not have arrays as a basic type!
Just integers, floating point, and pointers (which are integers)
And [] and "" are just some convenient syntax

Not necessarily a useful point of view, though!

73/112

Arrays and Pointers

Exercise. Explain

void copy(int *dst, int *src, int len)
{
while (len--) {
*dst++ = *srct++;
}
}

int a[128], b[128];

copy(b, a, 128);

74/112

Arrays and Pointers

Exercise. Then think through

copy(a, a + 64, 64);

75/112

Arrays and Pointers

We can now see the close identification of pointers and arrays

76/112

Arrays and Pointers

We can now see the close identification of pointers and arrays

In the declaration int a[4]; we can regard the variable a to
have type “array of integer”, or as type “pointer to integer”

77/112

Arrays and Pointers

We can now see the close identification of pointers and arrays

In the declaration int a[4]; we can regard the variable a to
have type “array of integer”, or as type “pointer to integer”

In all but a few useful circumstances the two concepts are
interchangeable

78/112

Arrays and Pointers

We can now see the close identification of pointers and arrays

In the declaration int a[4]; we can regard the variable a to
have type “array of integer”, or as type “pointer to integer”

In all but a few useful circumstances the two concepts are
interchangeable

We can use pointers as arrays and arrays as pointers

79/112

Arrays and Pointers

We can now see the close identification of pointers and arrays

In the declaration int a[4]; we can regard the variable a to
have type “array of integer”, or as type “pointer to integer”

In all but a few useful circumstances the two concepts are
interchangeable

We can use pointers as arrays and arrays as pointers

As long as you understand what you are doing

80/112

Arrays and Pointers

Except for a few subtleties

Array types and pointer types are
interchangeable

81/112

Arrays and Pointers

Except for a few subtleties

Array types and pointer types are
interchangeable

Array types are a special subset of pointer types: they are
pointers that point at pre-allocated blocks of memory

82/112

Arrays and Pointers

This identification makes it easy to see what happens when we
mis-index an array

83/112

Arrays and Pointers

This identification makes it easy to see what happens when we
mis-index an array

Given the example above (int a[4];), whatis a[10]?

84/112

Arrays and Pointers

This identification makes it easy to see what happens when we
mis-index an array

Given the example above (int a[4];), whatis a[10]?

Itis x(a + 10), namely the value stored at address
100 4+ 10 x 4 = 140, regarded as an integer

85/112

Arrays and Pointers

This identification makes it easy to see what happens when we
mis-index an array

Given the example above (int a[4];), whatis a[10]?

Itis x(a + 10), namely the value stored at address
100 4+ 10 x 4 = 140, regarded as an integer

This is beyond the end of the memory reserved by the system
for the array a

86/112

Arrays and Pointers

This might

87/112

Arrays and Pointers

This might

e successfully return some integer value from whatever
happens to be at that memory location

88/112

Arrays and Pointers

This might

e successfully return some integer value from whatever
happens to be at that memory location

¢ this might be previously unused and uninitialised memory,
or it might be where some other value (not necessarily an
integer) is currently placed

89/112

Arrays and Pointers

This might

e successfully return some integer value from whatever
happens to be at that memory location

¢ this might be previously unused and uninitialised memory,
or it might be where some other value (not necessarily an
integer) is currently placed

e or it might refer to an unmapped memory location (think
about virtual memory and unmapped pages), when the OS
might cause an interrupt and likely terminate your program

90/112

Arrays and Pointers

If your program crashes with a segmentation violation error or a
general protection fault, this is likely what is happening: your
program is reading or writing to an unexpected area of memory

91/112

Arrays and Pointers

If your program crashes with a segmentation violation error or a
general protection fault, this is likely what is happening: your
program is reading or writing to an unexpected area of memory

Occasionally you will see bus error for the same kind of thing

92/112

Arrays and Pointers

If your program crashes with a segmentation violation error or a
general protection fault, this is likely what is happening: your
program is reading or writing to an unexpected area of memory

Occasionally you will see bus error for the same kind of thing

If this happens you need to look carefully at your program to
find the error

93/112

Arrays and Pointers

If your program crashes with a segmentation violation error or a
general protection fault, this is likely what is happening: your
program is reading or writing to an unexpected area of memory

Occasionally you will see bus error for the same kind of thing

If this happens you need to look carefully at your program to
find the error

Exercise for geeks. Read up on value alignment

94/112

Arrays and Pointers

Under Linux there is a useful checking program called
valgrind that is good at finding memory mis-access errors

95/112

Arrays and Pointers

Under Linux there is a useful checking program called
valgrind that is good at finding memory mis-access errors

Compile your program using the —g option to include debugging
information: cc -Wall -g ...

96/112

Arrays and Pointers

Under Linux there is a useful checking program called
valgrind that is good at finding memory mis-access errors

Compile your program using the —g option to include debugging
information: cc -Wall -g ...

valgrind ./myprog
will run the program . /myprog checking all the program’s
accesses to memory

97/112

Arrays and Pointers

Under Linux there is a useful checking program called
valgrind that is good at finding memory mis-access errors

Compile your program using the —g option to include debugging
information: cc -Wall -g ...

valgrind ./myprog
will run the program . /myprog checking all the program’s
accesses to memory

This will slow execution horribly, of course, but it will highlight
when you do something stupid

98/112

Arrays and Pointers

Under Linux there is a useful checking program called
valgrind that is good at finding memory mis-access errors

Compile your program using the —g option to include debugging
information: cc -Wall -g ...

valgrind ./myprog
will run the program . /myprog checking all the program’s
accesses to memory

This will slow execution horribly, of course, but it will highlight
when you do something stupid

Thus valgrind is a way of inserting that slow checking that
other languages do all the time

99/112

Arrays and Pointers

Clang users can use —fsanitize=address when compiling to
insert code that does something similar

100/112

Arrays and Pointers

As mentioned, usually C does not check for these kids of errors
as

101/112

Arrays and Pointers

As mentioned, usually C does not check for these kids of errors
as

¢ the significant overhead of checking memory accesses

102/112

Arrays and Pointers

As mentioned, usually C does not check for these kids of errors
as

¢ the significant overhead of checking memory accesses

e sometimes the programmer does want to write code that
accesses off the nominal ends of an array; you can
sometimes find code like a[-1]. This is valid C, and the
programmer will get everything they deserve

103/112

Arrays and Pointers

In the declarations of an array and a pointer
int al4];

int *b;

we need to be clear about what is happening

104/112

Arrays and Pointers

In the declarations of an array and a pointer
int al4];

int *b;

we need to be clear about what is happening

a is a variable of type pointer to integer and a chunk of memory
(e.g., 16 bytes) is reserved somewhere for the array; the value
of the variable a will be the address of that chunk of memory

105/112

Arrays and Pointers

In the declarations of an array and a pointer
int al4];

int *b;

we need to be clear about what is happening

a is a variable of type pointer to integer and a chunk of memory
(e.g., 16 bytes) is reserved somewhere for the array; the value
of the variable a will be the address of that chunk of memory

b is a variable of type pointer to integer, with no particular
value, and no chunk of memory is reserved

106/112

Arrays and Pointers

all

100 104 108 112

\ 100 |
b

S junk |

int a[4] sets up both a and the space for the array;
int *bjustsetsupb

107/112

Arrays and Pointers

b is a pointer variable, so we can set its value: b = a;

108/112

Arrays and Pointers

b is a pointer variable, so we can set its value: b = a;

And now b[1] makes sense; it is the same as a[1]
b[1] is ataddress 100 +1 x 4 = 104

109/112

Arrays and Pointers

We could equallydob = a + 2

110/112

Arrays and Pointers

We could equallydob = a + 2

al]

100 104 108 12
[
\ 100\ \

b
\ 108 \

And now b [1] makes sense; it is the same as a[3]
b[1] is at address 108 +1 x 4 = 112

111/112

Arrays and Pointers

We could equallydob = a + 2

al]

L] l l l []

100 104 108 12
[
\ 100\ \

b
\ 108 \

And now b[1] makes sense; it is the same as a[3]
b[1] is at address 108 +1 x 4 = 112

And now b[-1] makes sense; it is the same as a[1]
b[-1] is at address 108 + (—1) x 4 = 104

112/112

