
Arrays and Pointers

Another difference in this declaration is that a is a constant
variable (!)

We can’t change the value of a

This is what we usually want from arrays: if we are thinking of a
as indicating the start of an array we don’t want its value
wandering about in memory

And b is explicitly a variable pointer: if we need something
variable, use a pointer

1 / 100

Arrays and Pointers

Another difference in this declaration is that a is a constant
variable (!)

We can’t change the value of a

This is what we usually want from arrays: if we are thinking of a
as indicating the start of an array we don’t want its value
wandering about in memory

And b is explicitly a variable pointer: if we need something
variable, use a pointer

2 / 100

Arrays and Pointers

Another difference in this declaration is that a is a constant
variable (!)

We can’t change the value of a

This is what we usually want from arrays: if we are thinking of a
as indicating the start of an array we don’t want its value
wandering about in memory

And b is explicitly a variable pointer: if we need something
variable, use a pointer

3 / 100

Arrays and Pointers

Another difference in this declaration is that a is a constant
variable (!)

We can’t change the value of a

This is what we usually want from arrays: if we are thinking of a
as indicating the start of an array we don’t want its value
wandering about in memory

And b is explicitly a variable pointer: if we need something
variable, use a pointer

4 / 100

Arrays and Pointers

void foo(void)

{

int a[4];

a++;

}

gives an error message in the compiler

const.c: In function ’foo’:

const.c:5:3: error: lvalue required as increment operand

An “lvalue” is a thing that can appear on the left side of an
assignment, e.g., an updatable variable

5 / 100

Arrays and Pointers

Clang says:

const.c:4:4: error: cannot increment value of type ’int [4]’

a++;

~^

1 error generated.

6 / 100

Arrays and Pointers

void foo(void)

{

int a[4], *b = a;

b++;

}

is OK as b is allowed to vary

7 / 100

Arrays and Pointers
This may seem trivial but the following is very popular,
particularly from Java-trained “programmers”
void foo(void)

{

int a[4], *b;

...

b = ... // b gets some value

...

a = b;

...

}

Bad!

Clearly bad here, but Java allows lots of other types of
composite objects (i.e., its “objects”) where this kind of thing is
not so visually obviously bad

8 / 100

Arrays and Pointers
This may seem trivial but the following is very popular,
particularly from Java-trained “programmers”
void foo(void)

{

int a[4], *b;

...

b = ... // b gets some value

...

a = b;

...

}

Bad!
Clearly bad here, but Java allows lots of other types of
composite objects (i.e., its “objects”) where this kind of thing is
not so visually obviously bad

9 / 100

Strings and Pointers

Strings are just arrays of char; string variables thus have type
pointer to char, i.e., char *

We can have

char a[4] = "xyz", *b;

just as before; a can be used as a char *

Now the value of a is a (constant) pointer to an array of 4
characters; the value of b is nothing in particular

10 / 100

Strings and Pointers

Strings are just arrays of char; string variables thus have type
pointer to char, i.e., char *

We can have

char a[4] = "xyz", *b;

just as before; a can be used as a char *

Now the value of a is a (constant) pointer to an array of 4
characters; the value of b is nothing in particular

11 / 100

Strings and Pointers

What happens with b = a?

Just as before, the variable b now points to the same memory
as a

Note there is no copying of characters involved

Just the value in a (an address) is copied into b, nothing more

12 / 100

Strings and Pointers

What happens with b = a?

Just as before, the variable b now points to the same memory
as a

Note there is no copying of characters involved

Just the value in a (an address) is copied into b, nothing more

13 / 100

Strings and Pointers

What happens with b = a?

Just as before, the variable b now points to the same memory
as a

Note there is no copying of characters involved

Just the value in a (an address) is copied into b, nothing more

14 / 100

Strings and Pointers

What happens with b = a?

Just as before, the variable b now points to the same memory
as a

Note there is no copying of characters involved

Just the value in a (an address) is copied into b, nothing more

15 / 100

Strings and Pointers

100

100

junk

b

a

a[]

101 102 113

x y z 0

b = a;

16 / 100

Strings and Pointers

100

100

100

a

b

a[]

101 109 110

x y z 0

b = a;

17 / 100

Strings and Pointers
Maybe if we had

char a[4] = "xyz", b[4];

then b = a; would copy characters from a to b?

No. b is now a constant variable, so this would not even
compile as you are still trying to update the value of b

The point is that a and b are simply pointers to where the
characters live: they are not the characters

The characters are a[0], a[1], etc.

To copy the characters we can go
b[0] = a[0]; b[1] = a[1]; ...
more likely using a for loop

18 / 100

Strings and Pointers
Maybe if we had

char a[4] = "xyz", b[4];

then b = a; would copy characters from a to b?

No. b is now a constant variable, so this would not even
compile as you are still trying to update the value of b

The point is that a and b are simply pointers to where the
characters live: they are not the characters

The characters are a[0], a[1], etc.

To copy the characters we can go
b[0] = a[0]; b[1] = a[1]; ...
more likely using a for loop

19 / 100

Strings and Pointers
Maybe if we had

char a[4] = "xyz", b[4];

then b = a; would copy characters from a to b?

No. b is now a constant variable, so this would not even
compile as you are still trying to update the value of b

The point is that a and b are simply pointers to where the
characters live: they are not the characters

The characters are a[0], a[1], etc.

To copy the characters we can go
b[0] = a[0]; b[1] = a[1]; ...
more likely using a for loop

20 / 100

Strings and Pointers
Maybe if we had

char a[4] = "xyz", b[4];

then b = a; would copy characters from a to b?

No. b is now a constant variable, so this would not even
compile as you are still trying to update the value of b

The point is that a and b are simply pointers to where the
characters live: they are not the characters

The characters are a[0], a[1], etc.

To copy the characters we can go
b[0] = a[0]; b[1] = a[1]; ...
more likely using a for loop

21 / 100

Strings and Pointers
Maybe if we had

char a[4] = "xyz", b[4];

then b = a; would copy characters from a to b?

No. b is now a constant variable, so this would not even
compile as you are still trying to update the value of b

The point is that a and b are simply pointers to where the
characters live: they are not the characters

The characters are a[0], a[1], etc.

To copy the characters we can go
b[0] = a[0]; b[1] = a[1]; ...
more likely using a for loop

22 / 100

Strings and Pointers

So to copy the contents of one string to another we can either
(a) use a loop, or (b) use the library function strcpy

This function has type
char *strcpy(char *dest, const char *src);
copying src to dest

So
int a[4] = "xyz", b[4];
strcpy(b, a);
will copy the contents of the (zero-terminated) string pointed to
by a to the area of memory pointed to by b

Note strcpy will continue copy characters until it hits a 0 in a

23 / 100

Strings and Pointers

So to copy the contents of one string to another we can either
(a) use a loop, or (b) use the library function strcpy

This function has type
char *strcpy(char *dest, const char *src);
copying src to dest

So
int a[4] = "xyz", b[4];
strcpy(b, a);
will copy the contents of the (zero-terminated) string pointed to
by a to the area of memory pointed to by b

Note strcpy will continue copy characters until it hits a 0 in a

24 / 100

Strings and Pointers

So to copy the contents of one string to another we can either
(a) use a loop, or (b) use the library function strcpy

This function has type
char *strcpy(char *dest, const char *src);
copying src to dest

So
int a[4] = "xyz", b[4];
strcpy(b, a);
will copy the contents of the (zero-terminated) string pointed to
by a to the area of memory pointed to by b

Note strcpy will continue copy characters until it hits a 0 in a

25 / 100

Strings and Pointers

So to copy the contents of one string to another we can either
(a) use a loop, or (b) use the library function strcpy

This function has type
char *strcpy(char *dest, const char *src);
copying src to dest

So
int a[4] = "xyz", b[4];
strcpy(b, a);
will copy the contents of the (zero-terminated) string pointed to
by a to the area of memory pointed to by b

Note strcpy will continue copy characters until it hits a 0 in a

26 / 100

Strings and Pointers

Notes

• The variable b here is constant, not the memory it refers to
• It is the responsibility of the programmer to ensure the area

of memory referred to by a does have a terminating 0 in an
appropriate place

• It is the responsibility of the programmer to ensure the area
of memory referred to by b is large enough to contain a
copy of a

Forgetting these is a popular source of bugs

27 / 100

Strings and Pointers

Notes

• The variable b here is constant, not the memory it refers to

• It is the responsibility of the programmer to ensure the area
of memory referred to by a does have a terminating 0 in an
appropriate place

• It is the responsibility of the programmer to ensure the area
of memory referred to by b is large enough to contain a
copy of a

Forgetting these is a popular source of bugs

28 / 100

Strings and Pointers

Notes

• The variable b here is constant, not the memory it refers to
• It is the responsibility of the programmer to ensure the area

of memory referred to by a does have a terminating 0 in an
appropriate place

• It is the responsibility of the programmer to ensure the area
of memory referred to by b is large enough to contain a
copy of a

Forgetting these is a popular source of bugs

29 / 100

Strings and Pointers

Notes

• The variable b here is constant, not the memory it refers to
• It is the responsibility of the programmer to ensure the area

of memory referred to by a does have a terminating 0 in an
appropriate place

• It is the responsibility of the programmer to ensure the area
of memory referred to by b is large enough to contain a
copy of a

Forgetting these is a popular source of bugs

30 / 100

Strings and Pointers

Notes

• The variable b here is constant, not the memory it refers to
• It is the responsibility of the programmer to ensure the area

of memory referred to by a does have a terminating 0 in an
appropriate place

• It is the responsibility of the programmer to ensure the area
of memory referred to by b is large enough to contain a
copy of a

Forgetting these is a popular source of bugs

31 / 100

Strings and Pointers

char a[] = "hello world", b[4];

strcpy(b, a);

will likely not do what you want

Exercise. What is the output from the following?

char a[] = "the cat sat on the mat", *b;

b = a;

b[4] = ’r’;

printf("a is ’%s’\nb is ’%s’\n", a, b);

Exercise. What is the bug here?

char a[] = "the cat sat on the mat", *b;

strcpy(b, a);

32 / 100

Strings and Pointers

char a[] = "hello world", b[4];

strcpy(b, a);

will likely not do what you want

Exercise. What is the output from the following?

char a[] = "the cat sat on the mat", *b;

b = a;

b[4] = ’r’;

printf("a is ’%s’\nb is ’%s’\n", a, b);

Exercise. What is the bug here?

char a[] = "the cat sat on the mat", *b;

strcpy(b, a);

33 / 100

Strings and Pointers

Exercise. What about

char a[] = "hello", b[5];

strcpy(b, a);

Look up the function strlen. Reimplement it yourself

34 / 100

Strings and Pointers

Exercise. What about

char a[] = "hello", b[5];

strcpy(b, a);

Look up the function strlen. Reimplement it yourself

35 / 100

Strings and Pointers

A good example of the use of strings as pointers is in the way C
treats program arguments

When we run a program we often want to pass some values to
that program: ./summit 23 42

The arguments passed to the program are presented to the
main function

36 / 100

Strings and Pointers

A good example of the use of strings as pointers is in the way C
treats program arguments

When we run a program we often want to pass some values to
that program: ./summit 23 42

The arguments passed to the program are presented to the
main function

37 / 100

Strings and Pointers

A good example of the use of strings as pointers is in the way C
treats program arguments

When we run a program we often want to pass some values to
that program: ./summit 23 42

The arguments passed to the program are presented to the
main function

38 / 100

Strings and Pointers
#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

int n, m;

if (argc < 3) {

printf("Not enough arguments!\n");

return 1;

}

n = atoi(argv[1]);

m = atoi(argv[2]);

printf("sum is %d\n", n + m);

return 0;

}

39 / 100

Strings and Pointers
Lots of things here:

• There is another #include. We shall discuss these later,
but these declare types of functions, atoi in this case

• main can take two arguments, conventionally called argc
and argv (or void arguments if we don’t want to pass
values into the program)

• argc is the number of arguments, including the program
name. The program name ("summit") will be argument 0;
"23" will be argument 1; "42" will be argument 2

• argv has type array of pointer to char; namely an array of
strings: read this as char (*argv)[], i.e., an array of
char *

• The length of this array is argc, of course
• Some people declare argv as char **argv and play

tricks with changing the (now non-constant) variable argv

40 / 100

Strings and Pointers
Lots of things here:

• There is another #include. We shall discuss these later,
but these declare types of functions, atoi in this case

• main can take two arguments, conventionally called argc
and argv (or void arguments if we don’t want to pass
values into the program)

• argc is the number of arguments, including the program
name. The program name ("summit") will be argument 0;
"23" will be argument 1; "42" will be argument 2

• argv has type array of pointer to char; namely an array of
strings: read this as char (*argv)[], i.e., an array of
char *

• The length of this array is argc, of course
• Some people declare argv as char **argv and play

tricks with changing the (now non-constant) variable argv

41 / 100

Strings and Pointers
Lots of things here:

• There is another #include. We shall discuss these later,
but these declare types of functions, atoi in this case

• main can take two arguments, conventionally called argc
and argv (or void arguments if we don’t want to pass
values into the program)

• argc is the number of arguments, including the program
name. The program name ("summit") will be argument 0;
"23" will be argument 1; "42" will be argument 2

• argv has type array of pointer to char; namely an array of
strings: read this as char (*argv)[], i.e., an array of
char *

• The length of this array is argc, of course
• Some people declare argv as char **argv and play

tricks with changing the (now non-constant) variable argv

42 / 100

Strings and Pointers
Lots of things here:

• There is another #include. We shall discuss these later,
but these declare types of functions, atoi in this case

• main can take two arguments, conventionally called argc
and argv (or void arguments if we don’t want to pass
values into the program)

• argc is the number of arguments, including the program
name. The program name ("summit") will be argument 0;
"23" will be argument 1; "42" will be argument 2

• argv has type array of pointer to char; namely an array of
strings: read this as char (*argv)[], i.e., an array of
char *

• The length of this array is argc, of course
• Some people declare argv as char **argv and play

tricks with changing the (now non-constant) variable argv

43 / 100

Strings and Pointers
Lots of things here:

• There is another #include. We shall discuss these later,
but these declare types of functions, atoi in this case

• main can take two arguments, conventionally called argc
and argv (or void arguments if we don’t want to pass
values into the program)

• argc is the number of arguments, including the program
name. The program name ("summit") will be argument 0;
"23" will be argument 1; "42" will be argument 2

• argv has type array of pointer to char; namely an array of
strings: read this as char (*argv)[], i.e., an array of
char *

• The length of this array is argc, of course
• Some people declare argv as char **argv and play

tricks with changing the (now non-constant) variable argv

44 / 100

Strings and Pointers
Lots of things here:

• There is another #include. We shall discuss these later,
but these declare types of functions, atoi in this case

• main can take two arguments, conventionally called argc
and argv (or void arguments if we don’t want to pass
values into the program)

• argc is the number of arguments, including the program
name. The program name ("summit") will be argument 0;
"23" will be argument 1; "42" will be argument 2

• argv has type array of pointer to char; namely an array of
strings: read this as char (*argv)[], i.e., an array of
char *

• The length of this array is argc, of course

• Some people declare argv as char **argv and play
tricks with changing the (now non-constant) variable argv

45 / 100

Strings and Pointers
Lots of things here:

• There is another #include. We shall discuss these later,
but these declare types of functions, atoi in this case

• main can take two arguments, conventionally called argc
and argv (or void arguments if we don’t want to pass
values into the program)

• argc is the number of arguments, including the program
name. The program name ("summit") will be argument 0;
"23" will be argument 1; "42" will be argument 2

• argv has type array of pointer to char; namely an array of
strings: read this as char (*argv)[], i.e., an array of
char *

• The length of this array is argc, of course
• Some people declare argv as char **argv and play

tricks with changing the (now non-constant) variable argv

46 / 100

Strings and Pointers

Exercise. Compare the declarations

int One(char *one[]) ...

int Two(char *(two[])) ...

int Three(char **three) ...

47 / 100

Strings and Pointers

• The arguments to main are passed in as strings; we will
have to convert a string "23" to an integer 23

• if (argc < 3) ... remember the program name is
included in the count

• The function atoi converts a string containing an integer
to an integer. See man atoi

48 / 100

Strings and Pointers

• The arguments to main are passed in as strings; we will
have to convert a string "23" to an integer 23

• if (argc < 3) ... remember the program name is
included in the count

• The function atoi converts a string containing an integer
to an integer. See man atoi

49 / 100

Strings and Pointers

• The arguments to main are passed in as strings; we will
have to convert a string "23" to an integer 23

• if (argc < 3) ... remember the program name is
included in the count

• The function atoi converts a string containing an integer
to an integer. See man atoi

50 / 100

Strings and Pointers

C has a huge library of useful functions

Quite often something you thought you might have to write
yourself is already in a library

You will have to just explore!

51 / 100

Strings and Pointers

C has a huge library of useful functions

Quite often something you thought you might have to write
yourself is already in a library

You will have to just explore!

52 / 100

Strings and Pointers

C has a huge library of useful functions

Quite often something you thought you might have to write
yourself is already in a library

You will have to just explore!

53 / 100

Arrays and Pointers

Exercise. Look up strncpy (extra ’n’ in there)

Exercise. What about 3[a]? Or 0[a+3]? Or (a+3)[0]?

Exercise. For int a[4], *b; compare sizeof(a),
sizeof(*a), sizeof(b), sizeof(*b)

Exercise. Read the specification for atoi and implement it for
yourself (give your version a different name!)

54 / 100

Pointers

One more thing about pointers: the void pointer

You will see code with variables declared as void *, e.g.,

void *memcpy(void *dest, const void *src, size t
n);

Rather than meaning a pointer to nothing, it means a pointer to
something, but we don’t know what type of thing

This allows us to write functions that act on arbitrary pointers:
memcpy copies arbitrary blocks of objects, be it ints, doubles,
or struct whatevers

55 / 100

Pointers

One more thing about pointers: the void pointer

You will see code with variables declared as void *, e.g.,

void *memcpy(void *dest, const void *src, size t
n);

Rather than meaning a pointer to nothing, it means a pointer to
something, but we don’t know what type of thing

This allows us to write functions that act on arbitrary pointers:
memcpy copies arbitrary blocks of objects, be it ints, doubles,
or struct whatevers

56 / 100

Pointers

One more thing about pointers: the void pointer

You will see code with variables declared as void *, e.g.,

void *memcpy(void *dest, const void *src, size t
n);

Rather than meaning a pointer to nothing, it means a pointer to
something, but we don’t know what type of thing

This allows us to write functions that act on arbitrary pointers:
memcpy copies arbitrary blocks of objects, be it ints, doubles,
or struct whatevers

57 / 100

Pointers

One more thing about pointers: the void pointer

You will see code with variables declared as void *, e.g.,

void *memcpy(void *dest, const void *src, size t
n);

Rather than meaning a pointer to nothing, it means a pointer to
something, but we don’t know what type of thing

This allows us to write functions that act on arbitrary pointers:
memcpy copies arbitrary blocks of objects, be it ints, doubles,
or struct whatevers

58 / 100

Pointers

int a[10], b[10];

double x[5], y[5];

...

memcpy(b, a, 10*sizeof(int));

memcpy(y, x, 5*sizeof(double));

copies 10 integers-worth of bytes from where a points to where
b points; and 5 doubles-worth of bytes from x points to where y
points

59 / 100

Pointers

Exercise. What is the error here?

int a[5];

void *b;

...

b = a;

b[0] = b[1] + b[2];

60 / 100

Casting
C distinguishes between pointers of different types

Sometimes it is useful to convert a pointer to a different type

C allows us to cast many types of objects to other types, not
just pointers

There are the automatic coercions mentioned earlier (e.g.,
integer to floating point), but the programmer can explicitly cast
types, too

(Coerce: changing type, usually automatic. Cast: changing
type, usually programmatic)

The syntax is
(typename)expression
to convert the value of the expression to have type typename

61 / 100

Casting
C distinguishes between pointers of different types

Sometimes it is useful to convert a pointer to a different type

C allows us to cast many types of objects to other types, not
just pointers

There are the automatic coercions mentioned earlier (e.g.,
integer to floating point), but the programmer can explicitly cast
types, too

(Coerce: changing type, usually automatic. Cast: changing
type, usually programmatic)

The syntax is
(typename)expression
to convert the value of the expression to have type typename

62 / 100

Casting
C distinguishes between pointers of different types

Sometimes it is useful to convert a pointer to a different type

C allows us to cast many types of objects to other types, not
just pointers

There are the automatic coercions mentioned earlier (e.g.,
integer to floating point), but the programmer can explicitly cast
types, too

(Coerce: changing type, usually automatic. Cast: changing
type, usually programmatic)

The syntax is
(typename)expression
to convert the value of the expression to have type typename

63 / 100

Casting
C distinguishes between pointers of different types

Sometimes it is useful to convert a pointer to a different type

C allows us to cast many types of objects to other types, not
just pointers

There are the automatic coercions mentioned earlier (e.g.,
integer to floating point), but the programmer can explicitly cast
types, too

(Coerce: changing type, usually automatic. Cast: changing
type, usually programmatic)

The syntax is
(typename)expression
to convert the value of the expression to have type typename

64 / 100

Casting
C distinguishes between pointers of different types

Sometimes it is useful to convert a pointer to a different type

C allows us to cast many types of objects to other types, not
just pointers

There are the automatic coercions mentioned earlier (e.g.,
integer to floating point), but the programmer can explicitly cast
types, too

(Coerce: changing type, usually automatic. Cast: changing
type, usually programmatic)

The syntax is
(typename)expression
to convert the value of the expression to have type typename

65 / 100

Casting
C distinguishes between pointers of different types

Sometimes it is useful to convert a pointer to a different type

C allows us to cast many types of objects to other types, not
just pointers

There are the automatic coercions mentioned earlier (e.g.,
integer to floating point), but the programmer can explicitly cast
types, too

(Coerce: changing type, usually automatic. Cast: changing
type, usually programmatic)

The syntax is
(typename)expression
to convert the value of the expression to have type typename

66 / 100

Casting

So, for example, int *a = (int*)b; where b is some pointer

Now a points to the same address as b; the value of a is the
same as the value of b

As mentioned previously, it is merely the interpretation of the
bits at those addresses that may differ

67 / 100

Casting

So, for example, int *a = (int*)b; where b is some pointer

Now a points to the same address as b; the value of a is the
same as the value of b

As mentioned previously, it is merely the interpretation of the
bits at those addresses that may differ

68 / 100

Casting

So, for example, int *a = (int*)b; where b is some pointer

Now a points to the same address as b; the value of a is the
same as the value of b

As mentioned previously, it is merely the interpretation of the
bits at those addresses that may differ

69 / 100

Casting

Indeed, we can convert between integers and pointers:
int *a = (int*)42;
makes a point at address 42 and regard what happens to be
there as an integer

And long int n = (long int)p; where p is some pointer
casts from a pointer to an integer

So we can now do arithmetic on the integer n

For people who know what they are doing only!

Exercise. Compare n + 1 and p + 1

70 / 100

Casting

Indeed, we can convert between integers and pointers:
int *a = (int*)42;
makes a point at address 42 and regard what happens to be
there as an integer

And long int n = (long int)p; where p is some pointer
casts from a pointer to an integer

So we can now do arithmetic on the integer n

For people who know what they are doing only!

Exercise. Compare n + 1 and p + 1

71 / 100

Casting

Indeed, we can convert between integers and pointers:
int *a = (int*)42;
makes a point at address 42 and regard what happens to be
there as an integer

And long int n = (long int)p; where p is some pointer
casts from a pointer to an integer

So we can now do arithmetic on the integer n

For people who know what they are doing only!

Exercise. Compare n + 1 and p + 1

72 / 100

Casting

Indeed, we can convert between integers and pointers:
int *a = (int*)42;
makes a point at address 42 and regard what happens to be
there as an integer

And long int n = (long int)p; where p is some pointer
casts from a pointer to an integer

So we can now do arithmetic on the integer n

For people who know what they are doing only!

Exercise. Compare n + 1 and p + 1

73 / 100

Casting

Indeed, we can convert between integers and pointers:
int *a = (int*)42;
makes a point at address 42 and regard what happens to be
there as an integer

And long int n = (long int)p; where p is some pointer
casts from a pointer to an integer

So we can now do arithmetic on the integer n

For people who know what they are doing only!

Exercise. Compare n + 1 and p + 1

74 / 100

Casting

Of course, we can explicitly cast between integers and floating
point, over and above the usual automatic coercions

int a = (int)3.141; makes a have the value 3

double b = 1.0 + (double)(1 + 1); makes b have the
value 3.0

The latter cast (int to double) would happen automatically,
but it doesn’t hurt to make it explicit so we are very clear on
what is happening

Find out what happens with
int n = (int)1e100;

75 / 100

Casting

Of course, we can explicitly cast between integers and floating
point, over and above the usual automatic coercions

int a = (int)3.141; makes a have the value 3

double b = 1.0 + (double)(1 + 1); makes b have the
value 3.0

The latter cast (int to double) would happen automatically,
but it doesn’t hurt to make it explicit so we are very clear on
what is happening

Find out what happens with
int n = (int)1e100;

76 / 100

Casting

Of course, we can explicitly cast between integers and floating
point, over and above the usual automatic coercions

int a = (int)3.141; makes a have the value 3

double b = 1.0 + (double)(1 + 1); makes b have the
value 3.0

The latter cast (int to double) would happen automatically,
but it doesn’t hurt to make it explicit so we are very clear on
what is happening

Find out what happens with
int n = (int)1e100;

77 / 100

Casting

Of course, we can explicitly cast between integers and floating
point, over and above the usual automatic coercions

int a = (int)3.141; makes a have the value 3

double b = 1.0 + (double)(1 + 1); makes b have the
value 3.0

The latter cast (int to double) would happen automatically,
but it doesn’t hurt to make it explicit so we are very clear on
what is happening

Find out what happens with
int n = (int)1e100;

78 / 100

Casting

Of course, we can explicitly cast between integers and floating
point, over and above the usual automatic coercions

int a = (int)3.141; makes a have the value 3

double b = 1.0 + (double)(1 + 1); makes b have the
value 3.0

The latter cast (int to double) would happen automatically,
but it doesn’t hurt to make it explicit so we are very clear on
what is happening

Find out what happens with
int n = (int)1e100;

79 / 100

Casting

Recall that widening, the kind of type change that merely
extends a bit pattern, is quite different from converting integers
to floating point, which completely changes the bits

When we cast between pointer types, the casting actually does
nothing at all to the bits!

In

double *a;

...

int *b = (int*)a;

the value of b is identical to the value of a

It is entirely a message to the compiler to interpret the bits at
that address differently

80 / 100

Casting

Recall that widening, the kind of type change that merely
extends a bit pattern, is quite different from converting integers
to floating point, which completely changes the bits

When we cast between pointer types, the casting actually does
nothing at all to the bits!

In

double *a;

...

int *b = (int*)a;

the value of b is identical to the value of a

It is entirely a message to the compiler to interpret the bits at
that address differently

81 / 100

Casting

Recall that widening, the kind of type change that merely
extends a bit pattern, is quite different from converting integers
to floating point, which completely changes the bits

When we cast between pointer types, the casting actually does
nothing at all to the bits!

In

double *a;

...

int *b = (int*)a;

the value of b is identical to the value of a

It is entirely a message to the compiler to interpret the bits at
that address differently

82 / 100

Casting

Recall that widening, the kind of type change that merely
extends a bit pattern, is quite different from converting integers
to floating point, which completely changes the bits

When we cast between pointer types, the casting actually does
nothing at all to the bits!

In

double *a;

...

int *b = (int*)a;

the value of b is identical to the value of a

It is entirely a message to the compiler to interpret the bits at
that address differently

83 / 100

Casting

a says look at this address and regard the 8 bytes there as a
double

b says look at this address and regard the 4 bytes there as an
int

Not often a sensible thing to do!

But vital for some low-level machine operations!

Exercise. Read up on automatic pointer coercions, including
void*

84 / 100

Casting

a says look at this address and regard the 8 bytes there as a
double

b says look at this address and regard the 4 bytes there as an
int

Not often a sensible thing to do!

But vital for some low-level machine operations!

Exercise. Read up on automatic pointer coercions, including
void*

85 / 100

Casting

a says look at this address and regard the 8 bytes there as a
double

b says look at this address and regard the 4 bytes there as an
int

Not often a sensible thing to do!

But vital for some low-level machine operations!

Exercise. Read up on automatic pointer coercions, including
void*

86 / 100

Casting

a says look at this address and regard the 8 bytes there as a
double

b says look at this address and regard the 4 bytes there as an
int

Not often a sensible thing to do!

But vital for some low-level machine operations!

Exercise. Read up on automatic pointer coercions, including
void*

87 / 100

Structures and Pointers

Arrays are fixed-size structures in C

Once declared, their length cannot be altered

Some languages allow variably sized arrays: there is a hidden
cost to this, though, in speed of access to the elements of the
array

Modern programs need dynamic structures, like lists and trees,
that can grow and shrink

Lists and other dynamic datastructures are made easy in C by
the use of structures and pointers

88 / 100

Structures and Pointers

Arrays are fixed-size structures in C

Once declared, their length cannot be altered

Some languages allow variably sized arrays: there is a hidden
cost to this, though, in speed of access to the elements of the
array

Modern programs need dynamic structures, like lists and trees,
that can grow and shrink

Lists and other dynamic datastructures are made easy in C by
the use of structures and pointers

89 / 100

Structures and Pointers

Arrays are fixed-size structures in C

Once declared, their length cannot be altered

Some languages allow variably sized arrays: there is a hidden
cost to this, though, in speed of access to the elements of the
array

Modern programs need dynamic structures, like lists and trees,
that can grow and shrink

Lists and other dynamic datastructures are made easy in C by
the use of structures and pointers

90 / 100

Structures and Pointers

Arrays are fixed-size structures in C

Once declared, their length cannot be altered

Some languages allow variably sized arrays: there is a hidden
cost to this, though, in speed of access to the elements of the
array

Modern programs need dynamic structures, like lists and trees,
that can grow and shrink

Lists and other dynamic datastructures are made easy in C by
the use of structures and pointers

91 / 100

Structures and Pointers

Arrays are fixed-size structures in C

Once declared, their length cannot be altered

Some languages allow variably sized arrays: there is a hidden
cost to this, though, in speed of access to the elements of the
array

Modern programs need dynamic structures, like lists and trees,
that can grow and shrink

Lists and other dynamic datastructures are made easy in C by
the use of structures and pointers

92 / 100

Structures and Pointers

We can define

struct intlist {

int val;

struct intlist *next;

};

This structure contains an integer value and a pointer to the
next item in the list

93 / 100

Structures and Pointers

Exercise. Reflect for a moment why

struct intlist {

int val;

struct intlist next;

};

does not make sense

94 / 100

Structures and Pointers

We can define a few values

struct intlist a, b, c;

a.val = 12; a.next = &b;

b.val = 34; b.next = &c;

c.val = 56; c.next = 0;

N.B. this is not the right way to do this kind of thing

So a is the head of the list; b is next; then c

We conventionally terminate the list with a 0 pointer as this
turns out to be useful later (think about Boolean values)

95 / 100

Structures and Pointers

We can define a few values

struct intlist a, b, c;

a.val = 12; a.next = &b;

b.val = 34; b.next = &c;

c.val = 56; c.next = 0;

N.B. this is not the right way to do this kind of thing

So a is the head of the list; b is next; then c

We conventionally terminate the list with a 0 pointer as this
turns out to be useful later (think about Boolean values)

96 / 100

Structures and Pointers

We can define a few values

struct intlist a, b, c;

a.val = 12; a.next = &b;

b.val = 34; b.next = &c;

c.val = 56; c.next = 0;

N.B. this is not the right way to do this kind of thing

So a is the head of the list; b is next; then c

We conventionally terminate the list with a 0 pointer as this
turns out to be useful later (think about Boolean values)

97 / 100

Structures and Pointers

In fact, C defines a symbol NULL that is the same as zero, but
visually indicates a null pointer, i.e., end of list:
c.next = NULL;

In fact, NULL is shorthand for (void*)0

98 / 100

Structures and Pointers

In fact, C defines a symbol NULL that is the same as zero, but
visually indicates a null pointer, i.e., end of list:
c.next = NULL;

In fact, NULL is shorthand for (void*)0

99 / 100

Structures and Pointers

In memory, each instance of the structure contains the value
and a pointer

100 200

300

200

300

a

b

c

12

34

56 NULL

Each instance can be anywhere in memory the system wants
to put them; they are not necessarily in the order they appear in
the code or the order they are created

100 / 100

Structures and Pointers

Note for geeks: there may well be alignment padding between
the int and the pointer

101 / 100

