
Structures and Pointers

Now the address values are distracting, not realistic and will
vary depending on the compiler, runtime, and other factors.

So the convention is to use box and pointer pictures. There are
no particular values for the addresses, instead arrows indicate
the relationships between the boxes

a c

b

12

34

56 /

The actual locations of the structures in memory are not
relevant here: but the relationships between the structures are

1 / 102

Structures and Pointers

Now the address values are distracting, not realistic and will
vary depending on the compiler, runtime, and other factors.

So the convention is to use box and pointer pictures. There are
no particular values for the addresses, instead arrows indicate
the relationships between the boxes

a c

b

12

34

56 /

The actual locations of the structures in memory are not
relevant here: but the relationships between the structures are

2 / 102

Structures and Pointers

Now the address values are distracting, not realistic and will
vary depending on the compiler, runtime, and other factors.

So the convention is to use box and pointer pictures. There are
no particular values for the addresses, instead arrows indicate
the relationships between the boxes

a c

b

12

34

56 /

The actual locations of the structures in memory are not
relevant here: but the relationships between the structures are

3 / 102

Structures and Pointers

Even

a c

b

12

34

56 /

if we get less representational and more relational

4 / 102

Structures and Pointers

Suppose we are given the head of the list, a

Getting the value in a is easy: just a.val

How to get the next value in the list?

a.next is a pointer to b, so we need *(a.next) to follow the
pointer to get at the struct b; then (*(a.next)).val for the
value in b

This is ugly, but is such a common usage C provides the arrow
-> operator, to prettify code. So expr->name is the same as
(*expr).name

5 / 102

Structures and Pointers

Suppose we are given the head of the list, a

Getting the value in a is easy: just a.val

How to get the next value in the list?

a.next is a pointer to b, so we need *(a.next) to follow the
pointer to get at the struct b; then (*(a.next)).val for the
value in b

This is ugly, but is such a common usage C provides the arrow
-> operator, to prettify code. So expr->name is the same as
(*expr).name

6 / 102

Structures and Pointers

Suppose we are given the head of the list, a

Getting the value in a is easy: just a.val

How to get the next value in the list?

a.next is a pointer to b, so we need *(a.next) to follow the
pointer to get at the struct b; then (*(a.next)).val for the
value in b

This is ugly, but is such a common usage C provides the arrow
-> operator, to prettify code. So expr->name is the same as
(*expr).name

7 / 102

Structures and Pointers

Suppose we are given the head of the list, a

Getting the value in a is easy: just a.val

How to get the next value in the list?

a.next is a pointer to b, so we need *(a.next) to follow the
pointer to get at the struct b; then (*(a.next)).val for the
value in b

This is ugly, but is such a common usage C provides the arrow
-> operator, to prettify code. So expr->name is the same as
(*expr).name

8 / 102

Structures and Pointers

Suppose we are given the head of the list, a

Getting the value in a is easy: just a.val

How to get the next value in the list?

a.next is a pointer to b, so we need *(a.next) to follow the
pointer to get at the struct b; then (*(a.next)).val for the
value in b

This is ugly, but is such a common usage C provides the arrow
-> operator, to prettify code. So expr->name is the same as
(*expr).name

9 / 102

Structures and Pointers

expr->name is the same as (*expr).name

Thus a.next->val same as (*(a.next)).val, but easier to
read

Further, a.next->next->val is the value in c

The first accessor is a dot, as a is a struct; the others are
arrows as they follow pointers to structs

If we were perverse, we could write
(&a)->next->next->val

10 / 102

Structures and Pointers

expr->name is the same as (*expr).name

Thus a.next->val same as (*(a.next)).val, but easier to
read

Further, a.next->next->val is the value in c

The first accessor is a dot, as a is a struct; the others are
arrows as they follow pointers to structs

If we were perverse, we could write
(&a)->next->next->val

11 / 102

Structures and Pointers

expr->name is the same as (*expr).name

Thus a.next->val same as (*(a.next)).val, but easier to
read

Further, a.next->next->val is the value in c

The first accessor is a dot, as a is a struct; the others are
arrows as they follow pointers to structs

If we were perverse, we could write
(&a)->next->next->val

12 / 102

Structures and Pointers

expr->name is the same as (*expr).name

Thus a.next->val same as (*(a.next)).val, but easier to
read

Further, a.next->next->val is the value in c

The first accessor is a dot, as a is a struct; the others are
arrows as they follow pointers to structs

If we were perverse, we could write
(&a)->next->next->val

13 / 102

Structures and Pointers

expr->name is the same as (*expr).name

Thus a.next->val same as (*(a.next)).val, but easier to
read

Further, a.next->next->val is the value in c

The first accessor is a dot, as a is a struct; the others are
arrows as they follow pointers to structs

If we were perverse, we could write
(&a)->next->next->val

14 / 102

Structures and Pointers

Warning! Java and some other languages use just obj.val
everywhere, while C uses obj.val and pobj->val for the
different cases of things and pointers to things

This is because in C quite different things are happening in the
access of val in the two cases

The languages differ here

You will get this wrong!

Fortunately, the compiler will pick up the problem and give you
loads of error messages

Read those error messages!

15 / 102

Structures and Pointers

Warning! Java and some other languages use just obj.val
everywhere, while C uses obj.val and pobj->val for the
different cases of things and pointers to things

This is because in C quite different things are happening in the
access of val in the two cases

The languages differ here

You will get this wrong!

Fortunately, the compiler will pick up the problem and give you
loads of error messages

Read those error messages!

16 / 102

Structures and Pointers

Warning! Java and some other languages use just obj.val
everywhere, while C uses obj.val and pobj->val for the
different cases of things and pointers to things

This is because in C quite different things are happening in the
access of val in the two cases

The languages differ here

You will get this wrong!

Fortunately, the compiler will pick up the problem and give you
loads of error messages

Read those error messages!

17 / 102

Structures and Pointers

Warning! Java and some other languages use just obj.val
everywhere, while C uses obj.val and pobj->val for the
different cases of things and pointers to things

This is because in C quite different things are happening in the
access of val in the two cases

The languages differ here

You will get this wrong!

Fortunately, the compiler will pick up the problem and give you
loads of error messages

Read those error messages!

18 / 102

Structures and Pointers

Warning! Java and some other languages use just obj.val
everywhere, while C uses obj.val and pobj->val for the
different cases of things and pointers to things

This is because in C quite different things are happening in the
access of val in the two cases

The languages differ here

You will get this wrong!

Fortunately, the compiler will pick up the problem and give you
loads of error messages

Read those error messages!

19 / 102

Structures and Pointers

Warning! Java and some other languages use just obj.val
everywhere, while C uses obj.val and pobj->val for the
different cases of things and pointers to things

This is because in C quite different things are happening in the
access of val in the two cases

The languages differ here

You will get this wrong!

Fortunately, the compiler will pick up the problem and give you
loads of error messages

Read those error messages!

20 / 102

Structures and Pointers

Use dot . to get at a slot in a struct

Use arrow -> to get at a slot in a pointer to a struct (follow the
arrow!)

21 / 102

Structures and Pointers

void printlist(struct intlist *l)

{

struct intlist *ptr;

for (ptr = l; ptr != NULL; ptr = ptr->next) {

printf("%d\n", ptr->val);

}

}

...

struct intlist l;

l.val = ...

...

printlist(&l);

22 / 102

Structures and Pointers

• We pass a pointer to the structure into printlist

• The pointer variable ptr will iterate down the items in the
list

• for loops are not just restricted to integer iteration:
for (do something; test something; do something)

• The test for termination of loop is “ptr != NULL” as ptr is
NULL at the end of the list

• The ptr is updated at each iteration to point to the next
item in the list

23 / 102

Structures and Pointers

• We pass a pointer to the structure into printlist

• The pointer variable ptr will iterate down the items in the
list

• for loops are not just restricted to integer iteration:
for (do something; test something; do something)

• The test for termination of loop is “ptr != NULL” as ptr is
NULL at the end of the list

• The ptr is updated at each iteration to point to the next
item in the list

24 / 102

Structures and Pointers

• We pass a pointer to the structure into printlist

• The pointer variable ptr will iterate down the items in the
list

• for loops are not just restricted to integer iteration:
for (do something; test something; do something)

• The test for termination of loop is “ptr != NULL” as ptr is
NULL at the end of the list

• The ptr is updated at each iteration to point to the next
item in the list

25 / 102

Structures and Pointers

• We pass a pointer to the structure into printlist

• The pointer variable ptr will iterate down the items in the
list

• for loops are not just restricted to integer iteration:
for (do something; test something; do something)

• The test for termination of loop is “ptr != NULL” as ptr is
NULL at the end of the list

• The ptr is updated at each iteration to point to the next
item in the list

26 / 102

Structures and Pointers

• We pass a pointer to the structure into printlist

• The pointer variable ptr will iterate down the items in the
list

• for loops are not just restricted to integer iteration:
for (do something; test something; do something)

• The test for termination of loop is “ptr != NULL” as ptr is
NULL at the end of the list

• The ptr is updated at each iteration to point to the next
item in the list

27 / 102

Structures and Pointers

Slightly more idiomatic is to do this:

...

for (ptr = l; ptr; ptr = ptr->next) {

printf("%d\n", ptr->val);

}

...

With a simpler termination condition

28 / 102

Structures and Pointers

Recall that 0 is treated as false in C and any non-zero value is
true

The loop will continue while there is a non-zero, i.e., non-NULL
pointer next

This kind of trick is common in C and you will have to get used
to seeing it

29 / 102

Structures and Pointers

Recall that 0 is treated as false in C and any non-zero value is
true

The loop will continue while there is a non-zero, i.e., non-NULL
pointer next

This kind of trick is common in C and you will have to get used
to seeing it

30 / 102

Structures and Pointers

Recall that 0 is treated as false in C and any non-zero value is
true

The loop will continue while there is a non-zero, i.e., non-NULL
pointer next

This kind of trick is common in C and you will have to get used
to seeing it

31 / 102

Structures and Pointers

Exercise. Think through the following:

void printlistrec(struct intlist *l)

{

if (l) {

printf("%d\n", l->val);

printlistrec(l->next);

}

}

...

struct intlist l;

l.val = ...

...

printlistrec(&l);

32 / 102

Structures and Pointers

We know that structures are like other types in C and can be
passed to functions and returned as a result

struct rational {

int num, den;

};

void printrat(struct rational a)

{

printf("%d/%d\n", a.num, a.den);

}

...

printrat(r);

This works, but is more heavyweight than you probably want

33 / 102

Structures and Pointers
When we have

void printint(int n) {

... n ...

}

...

printint(m);

the value of m is copied into the function and assigned to the
local variable n

Technically: C is a call by value language. When calling a
function the values of the arguments are copied into the
parameters of the function

And the value of the result is copied out from the function to its
destination

34 / 102

Structures and Pointers
When we have

void printint(int n) {

... n ...

}

...

printint(m);

the value of m is copied into the function and assigned to the
local variable n

Technically: C is a call by value language. When calling a
function the values of the arguments are copied into the
parameters of the function

And the value of the result is copied out from the function to its
destination

35 / 102

Structures and Pointers
When we have

void printint(int n) {

... n ...

}

...

printint(m);

the value of m is copied into the function and assigned to the
local variable n

Technically: C is a call by value language. When calling a
function the values of the arguments are copied into the
parameters of the function

And the value of the result is copied out from the function to its
destination

36 / 102

Structures and Pointers

In just the same way a rational will be copied into printrat

Namely a structure comprising two integers

Not too bad here, but structures are generally much larger than
this example

Copying large structures back and forth between functions will
be very expensive (slow)

37 / 102

Structures and Pointers

In just the same way a rational will be copied into printrat

Namely a structure comprising two integers

Not too bad here, but structures are generally much larger than
this example

Copying large structures back and forth between functions will
be very expensive (slow)

38 / 102

Structures and Pointers

In just the same way a rational will be copied into printrat

Namely a structure comprising two integers

Not too bad here, but structures are generally much larger than
this example

Copying large structures back and forth between functions will
be very expensive (slow)

39 / 102

Structures and Pointers

In just the same way a rational will be copied into printrat

Namely a structure comprising two integers

Not too bad here, but structures are generally much larger than
this example

Copying large structures back and forth between functions will
be very expensive (slow)

40 / 102

Structures and Pointers

So we typically pass the address of a structure to a function
rather than (a copy of) the structure

void printrat(struct rational *a)

{

printf("%d/%d\n", a->num, a->den);

}

...

printrat(&r);

This is much more efficient, particularly as machine hardware is
tuned to handle pointer-sized things

If I want to tell someone where you live, it is much easier to
copy your address than to copy your house!

41 / 102

Structures and Pointers

So we typically pass the address of a structure to a function
rather than (a copy of) the structure

void printrat(struct rational *a)

{

printf("%d/%d\n", a->num, a->den);

}

...

printrat(&r);

This is much more efficient, particularly as machine hardware is
tuned to handle pointer-sized things

If I want to tell someone where you live, it is much easier to
copy your address than to copy your house!

42 / 102

Structures and Pointers

Exercise. Implement an inttree structure that contains an
integer value and a left and right subtree

Exercise. Write code that prints out an inttree

Exercise. Explain why, when and if obj.val in Java
corresponds to obj->val or to obj.val in C

43 / 102

Structures and Pointers

Exercise.

void add1(int *arr, int len)

{

int i;

for (i = 0; i < len; i++) {

arr[i]++;

}

}

...

int vals[] = { 1, 2, 3 };

add1(vals, 3);

printf("%d %d %d\n", val[0], val[1], val[2]);

produces 2 3 4. But C is a call by value language, so surely
add1 can’t affect the array vals? What is happening here?

44 / 102

Malloc and Free

The code

struct intlist a, b, c;

a.next = &b;

b.next = &c;

c.next = 0;

is a bit clunky, and certainly not suitable for dynamically
growing lists where you don’t know how many elements it’s
going to have in advance

Similarly, we might need an array of a size that we don’t know
in advance

Thus we need some kind of dynamic allocation of structures
and arrays

45 / 102

Malloc and Free

The code

struct intlist a, b, c;

a.next = &b;

b.next = &c;

c.next = 0;

is a bit clunky, and certainly not suitable for dynamically
growing lists where you don’t know how many elements it’s
going to have in advance

Similarly, we might need an array of a size that we don’t know
in advance

Thus we need some kind of dynamic allocation of structures
and arrays

46 / 102

Malloc and Free

The code

struct intlist a, b, c;

a.next = &b;

b.next = &c;

c.next = 0;

is a bit clunky, and certainly not suitable for dynamically
growing lists where you don’t know how many elements it’s
going to have in advance

Similarly, we might need an array of a size that we don’t know
in advance

Thus we need some kind of dynamic allocation of structures
and arrays

47 / 102

Malloc and Free

Thinking in terms of memory an array is simply a chunk of bytes

As is a structure

Once we have a pointer to the structure or the address of the
start of the array we are happy and can use that structure or
array using the normal [] or ->

We need something like
int *a = allocate some bytes(...);

a[7] = 42;

struct rational *r = allocate some bytes(...);
r->num = 7;

48 / 102

Malloc and Free

Thinking in terms of memory an array is simply a chunk of bytes

As is a structure

Once we have a pointer to the structure or the address of the
start of the array we are happy and can use that structure or
array using the normal [] or ->

We need something like
int *a = allocate some bytes(...);

a[7] = 42;

struct rational *r = allocate some bytes(...);
r->num = 7;

49 / 102

Malloc and Free

Thinking in terms of memory an array is simply a chunk of bytes

As is a structure

Once we have a pointer to the structure or the address of the
start of the array we are happy and can use that structure or
array using the normal [] or ->

We need something like
int *a = allocate some bytes(...);

a[7] = 42;

struct rational *r = allocate some bytes(...);
r->num = 7;

50 / 102

Malloc and Free

Thinking in terms of memory an array is simply a chunk of bytes

As is a structure

Once we have a pointer to the structure or the address of the
start of the array we are happy and can use that structure or
array using the normal [] or ->

We need something like
int *a = allocate some bytes(...);

a[7] = 42;

struct rational *r = allocate some bytes(...);
r->num = 7;

51 / 102

Malloc and Free

Exercise. This would not be correct:
int a[] = allocate some bytes(...);
Why?

Exercise. This would not be correct:
struct rational r = allocate some bytes(...);
Why?

52 / 102

Malloc and Free

Here is some (poor) code

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int *a;

// allocate space for 10 integers

a = (int*)malloc(40);

a[7] = 42;

return 0;

}

53 / 102

Malloc and Free

• We include stdlib.h to declare the type of the malloc
function

(How do we know we should use stdlib.h? We read the
documentation for malloc)

• The function malloc allocates a number of bytes from
memory and returns a pointer to the start of the area
allocated

• Where that area is in memory is up to the system and may
well vary between runs of your program

• The bytes allocated will not be initialised to any particular
value

• The argument 40 can of course be any computed value

54 / 102

Malloc and Free

• We include stdlib.h to declare the type of the malloc
function
(How do we know we should use stdlib.h? We read the
documentation for malloc)

• The function malloc allocates a number of bytes from
memory and returns a pointer to the start of the area
allocated

• Where that area is in memory is up to the system and may
well vary between runs of your program

• The bytes allocated will not be initialised to any particular
value

• The argument 40 can of course be any computed value

55 / 102

Malloc and Free

• We include stdlib.h to declare the type of the malloc
function
(How do we know we should use stdlib.h? We read the
documentation for malloc)

• The function malloc allocates a number of bytes from
memory and returns a pointer to the start of the area
allocated

• Where that area is in memory is up to the system and may
well vary between runs of your program

• The bytes allocated will not be initialised to any particular
value

• The argument 40 can of course be any computed value

56 / 102

Malloc and Free

• We include stdlib.h to declare the type of the malloc
function
(How do we know we should use stdlib.h? We read the
documentation for malloc)

• The function malloc allocates a number of bytes from
memory and returns a pointer to the start of the area
allocated

• Where that area is in memory is up to the system and may
well vary between runs of your program

• The bytes allocated will not be initialised to any particular
value

• The argument 40 can of course be any computed value

57 / 102

Malloc and Free

• We include stdlib.h to declare the type of the malloc
function
(How do we know we should use stdlib.h? We read the
documentation for malloc)

• The function malloc allocates a number of bytes from
memory and returns a pointer to the start of the area
allocated

• Where that area is in memory is up to the system and may
well vary between runs of your program

• The bytes allocated will not be initialised to any particular
value

• The argument 40 can of course be any computed value

58 / 102

Malloc and Free

• We include stdlib.h to declare the type of the malloc
function
(How do we know we should use stdlib.h? We read the
documentation for malloc)

• The function malloc allocates a number of bytes from
memory and returns a pointer to the start of the area
allocated

• Where that area is in memory is up to the system and may
well vary between runs of your program

• The bytes allocated will not be initialised to any particular
value

• The argument 40 can of course be any computed value

59 / 102

Malloc and Free

• malloc returns a void* pointer

• This makes it more useful: a pointer to memory with no
particular type

• So we have a type cast “(int*)” to change it to a int*
pointer

60 / 102

Malloc and Free

• malloc returns a void* pointer
• This makes it more useful: a pointer to memory with no

particular type

• So we have a type cast “(int*)” to change it to a int*
pointer

61 / 102

Malloc and Free

• malloc returns a void* pointer
• This makes it more useful: a pointer to memory with no

particular type
• So we have a type cast “(int*)” to change it to a int*

pointer

62 / 102

Malloc and Free

a = (int*)malloc(40);

This is poor code as we are assuming we know the size of an
integer, 4 bytes in this case

Much better is to let the compiler tell us how big its integers are

a = (int*)malloc(10*sizeof(int));

The sizeof operator returns the size of a type in bytes

So this will allocate enough bytes for 10 ints, however big they
may be

63 / 102

Malloc and Free

a = (int*)malloc(40);

This is poor code as we are assuming we know the size of an
integer, 4 bytes in this case

Much better is to let the compiler tell us how big its integers are

a = (int*)malloc(10*sizeof(int));

The sizeof operator returns the size of a type in bytes

So this will allocate enough bytes for 10 ints, however big they
may be

64 / 102

Malloc and Free

a = (int*)malloc(40);

This is poor code as we are assuming we know the size of an
integer, 4 bytes in this case

Much better is to let the compiler tell us how big its integers are

a = (int*)malloc(10*sizeof(int));

The sizeof operator returns the size of a type in bytes

So this will allocate enough bytes for 10 ints, however big they
may be

65 / 102

Malloc and Free

a = (int*)malloc(40);

This is poor code as we are assuming we know the size of an
integer, 4 bytes in this case

Much better is to let the compiler tell us how big its integers are

a = (int*)malloc(10*sizeof(int));

The sizeof operator returns the size of a type in bytes

So this will allocate enough bytes for 10 ints, however big they
may be

66 / 102

Malloc and Free

a = (int*)malloc(40);

This is poor code as we are assuming we know the size of an
integer, 4 bytes in this case

Much better is to let the compiler tell us how big its integers are

a = (int*)malloc(10*sizeof(int));

The sizeof operator returns the size of a type in bytes

So this will allocate enough bytes for 10 ints, however big they
may be

67 / 102

Malloc and Free

Reason 2 for being poor code: we do not check the value
returned from malloc

Even though computers have masses of memory these days,
we have huge amounts of data and it is simple to request more
bytes than the machine can allocate

So malloc might fail. In this case it will return a NULL pointer
(0)

Well-written code always checks to see if malloc succeeded

68 / 102

Malloc and Free

Reason 2 for being poor code: we do not check the value
returned from malloc

Even though computers have masses of memory these days,
we have huge amounts of data and it is simple to request more
bytes than the machine can allocate

So malloc might fail. In this case it will return a NULL pointer
(0)

Well-written code always checks to see if malloc succeeded

69 / 102

Malloc and Free

Reason 2 for being poor code: we do not check the value
returned from malloc

Even though computers have masses of memory these days,
we have huge amounts of data and it is simple to request more
bytes than the machine can allocate

So malloc might fail. In this case it will return a NULL pointer
(0)

Well-written code always checks to see if malloc succeeded

70 / 102

Malloc and Free

Reason 2 for being poor code: we do not check the value
returned from malloc

Even though computers have masses of memory these days,
we have huge amounts of data and it is simple to request more
bytes than the machine can allocate

So malloc might fail. In this case it will return a NULL pointer
(0)

Well-written code always checks to see if malloc succeeded

71 / 102

Malloc and Free

a = (int*)malloc(n*sizeof(int));
if (a == NULL) { // failed ...

Exercise. See how much memory you can allocate on your
machine. Compare this with the actual amount of memory in
your machine

Exercise. See what happens with
int *a = malloc(5*sizeof(int));
i.e., no type cast

72 / 102

Malloc and Free

a = (int*)malloc(n*sizeof(int));
if (a == NULL) { // failed ...

Exercise. See how much memory you can allocate on your
machine. Compare this with the actual amount of memory in
your machine

Exercise. See what happens with
int *a = malloc(5*sizeof(int));
i.e., no type cast

73 / 102

Malloc and Free

a = (int*)malloc(n*sizeof(int));
if (a == NULL) { // failed ...

Exercise. See how much memory you can allocate on your
machine. Compare this with the actual amount of memory in
your machine

Exercise. See what happens with
int *a = malloc(5*sizeof(int));
i.e., no type cast

74 / 102

Malloc and Free

malloc is particularly good when it comes to dynamic
structures like lists and trees

75 / 102

Malloc and Free
struct intlist {

int val;

struct intlist *next;

};

struct intlist *make(int v)

{

struct intlist *newl;

// should check result...

newl = (struct intlist *)malloc(sizeof(struct intlist));

newl->val = v;

newl->next = NULL; // good practice to initialise

return newl;

}

...

struct intlist *l;

l = make(0);

l->next = make(1);

l->next->next = make(2);

76 / 102

Malloc and Free

We can now dynamically create a list of any length we want

If we need another node in the list, just call make (i.e., just use
malloc) to get an allocation of memory for it

77 / 102

Malloc and Free

We can now dynamically create a list of any length we want

If we need another node in the list, just call make (i.e., just use
malloc) to get an allocation of memory for it

78 / 102

Malloc and Free

Exercise. Lists can be grown from their start, as well as their
end:

struct intlist *l, *new;

l = make(0);

new = make(1);

new->next = l;

l = new;

new = make(2);

new->next = l;

l = new;

Explain why (and when) this might be better than the previous
way

79 / 102

Malloc and Free

Exercise. Implement code for binary trees

80 / 102

Malloc and Free

Every time we call malloc it allocates more bytes

If we carry on allocating regardless, eventually the system will
run out of free memory to allocate

So we ought to release space back to the system when we are
done with it

That memory is then free to be used in other ways, maybe even
given back to us in a later malloc

81 / 102

Malloc and Free

Every time we call malloc it allocates more bytes

If we carry on allocating regardless, eventually the system will
run out of free memory to allocate

So we ought to release space back to the system when we are
done with it

That memory is then free to be used in other ways, maybe even
given back to us in a later malloc

82 / 102

Malloc and Free

Every time we call malloc it allocates more bytes

If we carry on allocating regardless, eventually the system will
run out of free memory to allocate

So we ought to release space back to the system when we are
done with it

That memory is then free to be used in other ways, maybe even
given back to us in a later malloc

83 / 102

Malloc and Free

Every time we call malloc it allocates more bytes

If we carry on allocating regardless, eventually the system will
run out of free memory to allocate

So we ought to release space back to the system when we are
done with it

That memory is then free to be used in other ways, maybe even
given back to us in a later malloc

84 / 102

Malloc and Free

// allocate space for n integers

a = (int*)malloc(n*sizeof(int));

...

// done with a

free(a); // a is automatically coerced to void*

// don’t use a or the memory it refers to from here on!

85 / 102

Malloc and Free

The function free tells the system that the given chunk of
memory is no longer needed by the program and is free to be
reallocated to something else

• The function has type void free(void *ptr);

• The pointer handed to free must be one given by malloc

• Don’t call free more than once on a given pointer:
confusion will ensue

• a = (type*)malloc(...); ... free(a); ... ;
a = (type*)malloc(...); ... free(a); ...
using a after another malloc is OK

• malloc and free should always come in pairs

86 / 102

Malloc and Free

The function free tells the system that the given chunk of
memory is no longer needed by the program and is free to be
reallocated to something else

• The function has type void free(void *ptr);

• The pointer handed to free must be one given by malloc

• Don’t call free more than once on a given pointer:
confusion will ensue

• a = (type*)malloc(...); ... free(a); ... ;
a = (type*)malloc(...); ... free(a); ...
using a after another malloc is OK

• malloc and free should always come in pairs

87 / 102

Malloc and Free

The function free tells the system that the given chunk of
memory is no longer needed by the program and is free to be
reallocated to something else

• The function has type void free(void *ptr);

• The pointer handed to free must be one given by malloc

• Don’t call free more than once on a given pointer:
confusion will ensue

• a = (type*)malloc(...); ... free(a); ... ;
a = (type*)malloc(...); ... free(a); ...
using a after another malloc is OK

• malloc and free should always come in pairs

88 / 102

Malloc and Free

The function free tells the system that the given chunk of
memory is no longer needed by the program and is free to be
reallocated to something else

• The function has type void free(void *ptr);

• The pointer handed to free must be one given by malloc

• Don’t call free more than once on a given pointer:
confusion will ensue

• a = (type*)malloc(...); ... free(a); ... ;
a = (type*)malloc(...); ... free(a); ...
using a after another malloc is OK

• malloc and free should always come in pairs

89 / 102

Malloc and Free

The function free tells the system that the given chunk of
memory is no longer needed by the program and is free to be
reallocated to something else

• The function has type void free(void *ptr);

• The pointer handed to free must be one given by malloc

• Don’t call free more than once on a given pointer:
confusion will ensue

• a = (type*)malloc(...); ... free(a); ... ;
a = (type*)malloc(...); ... free(a); ...
using a after another malloc is OK

• malloc and free should always come in pairs

90 / 102

Malloc and Free

The function free tells the system that the given chunk of
memory is no longer needed by the program and is free to be
reallocated to something else

• The function has type void free(void *ptr);

• The pointer handed to free must be one given by malloc

• Don’t call free more than once on a given pointer:
confusion will ensue

• a = (type*)malloc(...); ... free(a); ... ;
a = (type*)malloc(...); ... free(a); ...
using a after another malloc is OK

• malloc and free should always come in pairs

91 / 102

Malloc and Free

• free(a); does not alter the value of a: it still points to the
same area of memory but the memory is no longer
“owned” by a. You should not use a until you have
malloced it again. Some people recommend always going
free(a); a = NULL;
explicitly making sure a no longer points to that area of
memory

• free(a); likely does not clear or otherwise modify the
values in the block of memory (speed, again)

• free does not “delete memory” or “remove memory”. It’s
still there: just no longer allocated to our program

92 / 102

Malloc and Free

• free(a); does not alter the value of a: it still points to the
same area of memory but the memory is no longer
“owned” by a. You should not use a until you have
malloced it again. Some people recommend always going
free(a); a = NULL;
explicitly making sure a no longer points to that area of
memory

• free(a); likely does not clear or otherwise modify the
values in the block of memory (speed, again)

• free does not “delete memory” or “remove memory”. It’s
still there: just no longer allocated to our program

93 / 102

Malloc and Free

• free(a); does not alter the value of a: it still points to the
same area of memory but the memory is no longer
“owned” by a. You should not use a until you have
malloced it again. Some people recommend always going
free(a); a = NULL;
explicitly making sure a no longer points to that area of
memory

• free(a); likely does not clear or otherwise modify the
values in the block of memory (speed, again)

• free does not “delete memory” or “remove memory”. It’s
still there: just no longer allocated to our program

94 / 102

Malloc and Free

The point being that malloc reserves a chunk of bytes for us
to use in our program

Then free indicates the end of that reservation

The system may then do anything it like with that chunk of bytes

The system may do nothing at all

If you give up your reserved seat on a train, you should not be
surprised to find someone else sitting there!

95 / 102

Malloc and Free

The point being that malloc reserves a chunk of bytes for us
to use in our program

Then free indicates the end of that reservation

The system may then do anything it like with that chunk of bytes

The system may do nothing at all

If you give up your reserved seat on a train, you should not be
surprised to find someone else sitting there!

96 / 102

Malloc and Free

The point being that malloc reserves a chunk of bytes for us
to use in our program

Then free indicates the end of that reservation

The system may then do anything it like with that chunk of bytes

The system may do nothing at all

If you give up your reserved seat on a train, you should not be
surprised to find someone else sitting there!

97 / 102

Malloc and Free

The point being that malloc reserves a chunk of bytes for us
to use in our program

Then free indicates the end of that reservation

The system may then do anything it like with that chunk of bytes

The system may do nothing at all

If you give up your reserved seat on a train, you should not be
surprised to find someone else sitting there!

98 / 102

Malloc and Free

The point being that malloc reserves a chunk of bytes for us
to use in our program

Then free indicates the end of that reservation

The system may then do anything it like with that chunk of bytes

The system may do nothing at all

If you give up your reserved seat on a train, you should not be
surprised to find someone else sitting there!

99 / 102

Malloc and Free

a = (int*)malloc(4*sizeof(int));

...

free(a);

...

a[0] = 1;

printf("value = %d\n", a[2]);

Bad!

The assignment accesses the same chunk of memory: it’s still
there, but potentially has been allocated to some other purpose.
The program may produce correct results, or not, or crash etc.

Use valgrind or a similar tool to check for this

100 / 102

Malloc and Free

a = (int*)malloc(4*sizeof(int));

...

free(a);

...

a[0] = 1;

printf("value = %d\n", a[2]);

Bad!
The assignment accesses the same chunk of memory: it’s still
there, but potentially has been allocated to some other purpose.
The program may produce correct results, or not, or crash etc.

Use valgrind or a similar tool to check for this

101 / 102

Malloc and Free

a = (int*)malloc(4*sizeof(int));

...

free(a);

...

a[0] = 1;

printf("value = %d\n", a[2]);

Bad!
The assignment accesses the same chunk of memory: it’s still
there, but potentially has been allocated to some other purpose.
The program may produce correct results, or not, or crash etc.

Use valgrind or a similar tool to check for this

102 / 102

