
Malloc and Free

Consider the bad code

a = (int*)malloc(n*sizeof(int));

a[7] = 42;

a = (int*)malloc(m*sizeof(int));

Each malloc allocates a new chunk of memory

The first chunk is still allocated, but is no longer accessible by
the program as it no longer knows where it is

We have overwritten the address of the memory: it could have
been anywhere, we don’t know anymore

That area of memory is now garbage. It takes up space but the
program can’t get at it

1 / 99

Malloc and Free

Consider the bad code

a = (int*)malloc(n*sizeof(int));

a[7] = 42;

a = (int*)malloc(m*sizeof(int));

Each malloc allocates a new chunk of memory

The first chunk is still allocated, but is no longer accessible by
the program as it no longer knows where it is

We have overwritten the address of the memory: it could have
been anywhere, we don’t know anymore

That area of memory is now garbage. It takes up space but the
program can’t get at it

2 / 99

Malloc and Free

Consider the bad code

a = (int*)malloc(n*sizeof(int));

a[7] = 42;

a = (int*)malloc(m*sizeof(int));

Each malloc allocates a new chunk of memory

The first chunk is still allocated, but is no longer accessible by
the program as it no longer knows where it is

We have overwritten the address of the memory: it could have
been anywhere, we don’t know anymore

That area of memory is now garbage. It takes up space but the
program can’t get at it

3 / 99

Malloc and Free

Consider the bad code

a = (int*)malloc(n*sizeof(int));

a[7] = 42;

a = (int*)malloc(m*sizeof(int));

Each malloc allocates a new chunk of memory

The first chunk is still allocated, but is no longer accessible by
the program as it no longer knows where it is

We have overwritten the address of the memory: it could have
been anywhere, we don’t know anymore

That area of memory is now garbage. It takes up space but the
program can’t get at it

4 / 99

Malloc and Free

Consider the bad code

a = (int*)malloc(n*sizeof(int));

a[7] = 42;

a = (int*)malloc(m*sizeof(int));

Each malloc allocates a new chunk of memory

The first chunk is still allocated, but is no longer accessible by
the program as it no longer knows where it is

We have overwritten the address of the memory: it could have
been anywhere, we don’t know anymore

That area of memory is now garbage. It takes up space but the
program can’t get at it

5 / 99

Malloc and Free

If we do this too much, then memory will fill up with inaccessible
garbage, and we will probably run out

Of course, the correct thing is to call free on a before we
overwrite it

Or make a copy of the value of a somewhere else first

The important thing is to ensure a pointer to every allocated
chunk is somehow accessible (directly or indirectly) by the
program and can be accessed or freed if necessary

6 / 99

Malloc and Free

If we do this too much, then memory will fill up with inaccessible
garbage, and we will probably run out

Of course, the correct thing is to call free on a before we
overwrite it

Or make a copy of the value of a somewhere else first

The important thing is to ensure a pointer to every allocated
chunk is somehow accessible (directly or indirectly) by the
program and can be accessed or freed if necessary

7 / 99

Malloc and Free

If we do this too much, then memory will fill up with inaccessible
garbage, and we will probably run out

Of course, the correct thing is to call free on a before we
overwrite it

Or make a copy of the value of a somewhere else first

The important thing is to ensure a pointer to every allocated
chunk is somehow accessible (directly or indirectly) by the
program and can be accessed or freed if necessary

8 / 99

Malloc and Free

If we do this too much, then memory will fill up with inaccessible
garbage, and we will probably run out

Of course, the correct thing is to call free on a before we
overwrite it

Or make a copy of the value of a somewhere else first

The important thing is to ensure a pointer to every allocated
chunk is somehow accessible (directly or indirectly) by the
program and can be accessed or freed if necessary

9 / 99

Malloc and Free

Programs that create inaccessible areas of memory this (and
there are many) are said to have a memory leak

Memory leaks often go unnoticed as programmers often test
their programs on small examples: small enough that the
amount of garbage is still small and malloc always succeeds

They only discover the error when their code goes into
production on big examples and then starts failing

10 / 99

Malloc and Free

Programs that create inaccessible areas of memory this (and
there are many) are said to have a memory leak

Memory leaks often go unnoticed as programmers often test
their programs on small examples: small enough that the
amount of garbage is still small and malloc always succeeds

They only discover the error when their code goes into
production on big examples and then starts failing

11 / 99

Malloc and Free

Programs that create inaccessible areas of memory this (and
there are many) are said to have a memory leak

Memory leaks often go unnoticed as programmers often test
their programs on small examples: small enough that the
amount of garbage is still small and malloc always succeeds

They only discover the error when their code goes into
production on big examples and then starts failing

12 / 99

Malloc and Free

Aside. Current operating systems clean up after you when your
program exits, returning all malloced memory. Some early
operating systems didn’t, meaning poorly written programs
could jam up the entire computer, eventually requiring a reboot

Tools like valgrind will tell you how much memory you have
malloced and not freed

13 / 99

Malloc and Free

Aside. Current operating systems clean up after you when your
program exits, returning all malloced memory. Some early
operating systems didn’t, meaning poorly written programs
could jam up the entire computer, eventually requiring a reboot

Tools like valgrind will tell you how much memory you have
malloced and not freed

14 / 99

Malloc and Free

malloc and free are a major source of bugs in C programs

• Using memory you have not malloced
• freeing memory more than once
• Using memory already freed
• Accessing beyond the ends of the allocated space
• Overwriting pointers, creating garbage
• And so on

15 / 99

Malloc and Free

malloc and free are a major source of bugs in C programs

• Using memory you have not malloced

• freeing memory more than once
• Using memory already freed
• Accessing beyond the ends of the allocated space
• Overwriting pointers, creating garbage
• And so on

16 / 99

Malloc and Free

malloc and free are a major source of bugs in C programs

• Using memory you have not malloced
• freeing memory more than once

• Using memory already freed
• Accessing beyond the ends of the allocated space
• Overwriting pointers, creating garbage
• And so on

17 / 99

Malloc and Free

malloc and free are a major source of bugs in C programs

• Using memory you have not malloced
• freeing memory more than once
• Using memory already freed

• Accessing beyond the ends of the allocated space
• Overwriting pointers, creating garbage
• And so on

18 / 99

Malloc and Free

malloc and free are a major source of bugs in C programs

• Using memory you have not malloced
• freeing memory more than once
• Using memory already freed
• Accessing beyond the ends of the allocated space

• Overwriting pointers, creating garbage
• And so on

19 / 99

Malloc and Free

malloc and free are a major source of bugs in C programs

• Using memory you have not malloced
• freeing memory more than once
• Using memory already freed
• Accessing beyond the ends of the allocated space
• Overwriting pointers, creating garbage

• And so on

20 / 99

Malloc and Free

malloc and free are a major source of bugs in C programs

• Using memory you have not malloced
• freeing memory more than once
• Using memory already freed
• Accessing beyond the ends of the allocated space
• Overwriting pointers, creating garbage
• And so on

21 / 99

Malloc and Free

On the other hand, malloc and free are extremely useful in
the right hands

• the programmer has precise control on the allocation of
memory

• they concentrate the programmer’s attention towards the
efficient use of memory

• they are reasonably fast
• the programmer can tune their use to the problem in hand

22 / 99

Malloc and Free

On the other hand, malloc and free are extremely useful in
the right hands

• the programmer has precise control on the allocation of
memory

• they concentrate the programmer’s attention towards the
efficient use of memory

• they are reasonably fast
• the programmer can tune their use to the problem in hand

23 / 99

Malloc and Free

On the other hand, malloc and free are extremely useful in
the right hands

• the programmer has precise control on the allocation of
memory

• they concentrate the programmer’s attention towards the
efficient use of memory

• they are reasonably fast
• the programmer can tune their use to the problem in hand

24 / 99

Malloc and Free

On the other hand, malloc and free are extremely useful in
the right hands

• the programmer has precise control on the allocation of
memory

• they concentrate the programmer’s attention towards the
efficient use of memory

• they are reasonably fast

• the programmer can tune their use to the problem in hand

25 / 99

Malloc and Free

On the other hand, malloc and free are extremely useful in
the right hands

• the programmer has precise control on the allocation of
memory

• they concentrate the programmer’s attention towards the
efficient use of memory

• they are reasonably fast
• the programmer can tune their use to the problem in hand

26 / 99

Malloc and Free

Exercise. What is the bug here?

int a[10];

...

free(a);

Exercise. malloc and free are fast, but not free: they take
some time (and some overhead space) to manage memory.
Find out how much of an overhead they incur on your computer

Exercise. Compare this with Java’s memory management

Exercise. Look up alloca and dynamic stack allocation

27 / 99

Malloc and Free

Exercise. Deliberately write bad code that does these kinds of
things. Run it and see what goes wrong. Use valgrind on
your code

Exercise. Deliberately write good code that avoids these kinds
of things

28 / 99

Malloc and Free

Exercise. Think about the symmetry:

int *a = malloc(...);

free(a);

giving a pointer that points at a non-object; and

int *a = malloc(...);

a = malloc(...);

giving an object that no pointer pointing to it

29 / 99

Malloc and Free

Having malloc and free is simultaneously one of the great
strengths of C and one of its great weaknesses

Some languages, for example, Java, have automatic memory
management

This is when the system manages the memory for the
programmer so they don’t have to allocate and free objects
themselves

Java’s new is like malloc. There is no analogue to free

Java programs generate garbage at a prodigious rate

30 / 99

Malloc and Free

Having malloc and free is simultaneously one of the great
strengths of C and one of its great weaknesses

Some languages, for example, Java, have automatic memory
management

This is when the system manages the memory for the
programmer so they don’t have to allocate and free objects
themselves

Java’s new is like malloc. There is no analogue to free

Java programs generate garbage at a prodigious rate

31 / 99

Malloc and Free

Having malloc and free is simultaneously one of the great
strengths of C and one of its great weaknesses

Some languages, for example, Java, have automatic memory
management

This is when the system manages the memory for the
programmer so they don’t have to allocate and free objects
themselves

Java’s new is like malloc. There is no analogue to free

Java programs generate garbage at a prodigious rate

32 / 99

Malloc and Free

Having malloc and free is simultaneously one of the great
strengths of C and one of its great weaknesses

Some languages, for example, Java, have automatic memory
management

This is when the system manages the memory for the
programmer so they don’t have to allocate and free objects
themselves

Java’s new is like malloc. There is no analogue to free

Java programs generate garbage at a prodigious rate

33 / 99

Malloc and Free

Having malloc and free is simultaneously one of the great
strengths of C and one of its great weaknesses

Some languages, for example, Java, have automatic memory
management

This is when the system manages the memory for the
programmer so they don’t have to allocate and free objects
themselves

Java’s new is like malloc. There is no analogue to free

Java programs generate garbage at a prodigious rate

34 / 99

Malloc and Free

So the Java system has to clear up the garbage itself, else it
too would run out of memory

So Java includes (as part of the Java system) a garbage
collector that periodically trawls through memory looking for
inaccessible garbage: chunks of memory that can never be
accessed in the program as the program has overwritten/lost
the pointers to those chunks

It collects the areas of garbage memory together and then can
allocate those bytes in subsequent calls

Note it is safe to reallocate those bytes as by definition garbage
is inaccessible to the program, thus reusing them can have no
effect on the program

35 / 99

Malloc and Free

So the Java system has to clear up the garbage itself, else it
too would run out of memory

So Java includes (as part of the Java system) a garbage
collector that periodically trawls through memory looking for
inaccessible garbage: chunks of memory that can never be
accessed in the program as the program has overwritten/lost
the pointers to those chunks

It collects the areas of garbage memory together and then can
allocate those bytes in subsequent calls

Note it is safe to reallocate those bytes as by definition garbage
is inaccessible to the program, thus reusing them can have no
effect on the program

36 / 99

Malloc and Free

So the Java system has to clear up the garbage itself, else it
too would run out of memory

So Java includes (as part of the Java system) a garbage
collector that periodically trawls through memory looking for
inaccessible garbage: chunks of memory that can never be
accessed in the program as the program has overwritten/lost
the pointers to those chunks

It collects the areas of garbage memory together and then can
allocate those bytes in subsequent calls

Note it is safe to reallocate those bytes as by definition garbage
is inaccessible to the program, thus reusing them can have no
effect on the program

37 / 99

Malloc and Free

So the Java system has to clear up the garbage itself, else it
too would run out of memory

So Java includes (as part of the Java system) a garbage
collector that periodically trawls through memory looking for
inaccessible garbage: chunks of memory that can never be
accessed in the program as the program has overwritten/lost
the pointers to those chunks

It collects the areas of garbage memory together and then can
allocate those bytes in subsequent calls

Note it is safe to reallocate those bytes as by definition garbage
is inaccessible to the program, thus reusing them can have no
effect on the program

38 / 99

Malloc and Free

This seems wonderful, so why does C use these problematic
malloc and free?

It a choice of trade-offs

Automatic memory management:

• Releases the programmer from having to worry about
memory

• Should never go wrong
• Encourages sloppy programming
• Has a significant time and space overhead in management

and garbage collection

39 / 99

Malloc and Free

This seems wonderful, so why does C use these problematic
malloc and free?

It a choice of trade-offs

Automatic memory management:

• Releases the programmer from having to worry about
memory

• Should never go wrong
• Encourages sloppy programming
• Has a significant time and space overhead in management

and garbage collection

40 / 99

Malloc and Free

This seems wonderful, so why does C use these problematic
malloc and free?

It a choice of trade-offs

Automatic memory management:

• Releases the programmer from having to worry about
memory

• Should never go wrong
• Encourages sloppy programming
• Has a significant time and space overhead in management

and garbage collection

41 / 99

Malloc and Free

This seems wonderful, so why does C use these problematic
malloc and free?

It a choice of trade-offs

Automatic memory management:

• Releases the programmer from having to worry about
memory

• Should never go wrong
• Encourages sloppy programming
• Has a significant time and space overhead in management

and garbage collection

42 / 99

Malloc and Free

This seems wonderful, so why does C use these problematic
malloc and free?

It a choice of trade-offs

Automatic memory management:

• Releases the programmer from having to worry about
memory

• Should never go wrong

• Encourages sloppy programming
• Has a significant time and space overhead in management

and garbage collection

43 / 99

Malloc and Free

This seems wonderful, so why does C use these problematic
malloc and free?

It a choice of trade-offs

Automatic memory management:

• Releases the programmer from having to worry about
memory

• Should never go wrong
• Encourages sloppy programming

• Has a significant time and space overhead in management
and garbage collection

44 / 99

Malloc and Free

This seems wonderful, so why does C use these problematic
malloc and free?

It a choice of trade-offs

Automatic memory management:

• Releases the programmer from having to worry about
memory

• Should never go wrong
• Encourages sloppy programming
• Has a significant time and space overhead in management

and garbage collection

45 / 99

Malloc and Free

Manual memory management:

• Requires the programmer to think carefully about memory
usage

• Encourages careful use of memory
• Can be tuned for a specific application
• Is a frequent source of errors

46 / 99

Malloc and Free

Manual memory management:

• Requires the programmer to think carefully about memory
usage

• Encourages careful use of memory
• Can be tuned for a specific application
• Is a frequent source of errors

47 / 99

Malloc and Free

Manual memory management:

• Requires the programmer to think carefully about memory
usage

• Encourages careful use of memory

• Can be tuned for a specific application
• Is a frequent source of errors

48 / 99

Malloc and Free

Manual memory management:

• Requires the programmer to think carefully about memory
usage

• Encourages careful use of memory
• Can be tuned for a specific application

• Is a frequent source of errors

49 / 99

Malloc and Free

Manual memory management:

• Requires the programmer to think carefully about memory
usage

• Encourages careful use of memory
• Can be tuned for a specific application
• Is a frequent source of errors

50 / 99

Malloc and Free

It’s your choice and should be taken into account when you are
choosing a programming language to implement a project

C does have bolt-on garbage collectors, if you really want them

51 / 99

Malloc and Free

It’s your choice and should be taken into account when you are
choosing a programming language to implement a project

C does have bolt-on garbage collectors, if you really want them

52 / 99

Malloc and Free

What do mean when we say malloc “allocates some bytes”?

It means a reservation is made on a chunk of bytes from the
program’s memory

The reservation exists until we do a free

53 / 99

Malloc and Free

What do mean when we say malloc “allocates some bytes”?

It means a reservation is made on a chunk of bytes from the
program’s memory

The reservation exists until we do a free

54 / 99

Malloc and Free

What do mean when we say malloc “allocates some bytes”?

It means a reservation is made on a chunk of bytes from the
program’s memory

The reservation exists until we do a free

55 / 99

Malloc and Free

This means this kind of code is OK (and very common):

struct intlist *make(int v)

{

struct intlist *newl;

...

newl = (struct intlist *)malloc(sizeof(struct intlist));

...

return newl;

}

as the reservation persists beyond the end of the function call
make, so the returned pointer remains valid outside of the
function call

56 / 99

Malloc and Free

However, this is bad:

struct intlist *make(int v)

{

struct intlist newl;

...

return &newl;

}

as the structure newl will only exist for the duration of the
function call

By “exist” we mean “is valid”. It’s still there in memory!

57 / 99

Malloc and Free

However, this is bad:

struct intlist *make(int v)

{

struct intlist newl;

...

return &newl;

}

as the structure newl will only exist for the duration of the
function call

By “exist” we mean “is valid”. It’s still there in memory!

58 / 99

Malloc and Free

Because the pointer returned is still a pointer to somewhere in
memory, the code might even work for a while

Until you have another function call that extends the stack
again to cover that place where your structure lives. And then
overwrites it with whatever locals and arguments that function
requires

59 / 99

Malloc and Free

Because the pointer returned is still a pointer to somewhere in
memory, the code might even work for a while

Until you have another function call that extends the stack
again to cover that place where your structure lives. And then
overwrites it with whatever locals and arguments that function
requires

60 / 99

Malloc and Free

Moral: don’t return pointers to things on the stack

More precisely: it is OK to use pointers to things on the stack
while that frame is still active. Thus using such a pointer within
the current function is fine; as is passing the pointer down to
“deeper” functions. But you must never return the pointer up to
a place where the frame has gone

Exercise. Investigate to see what happens when you return
pointers to things on the stack

61 / 99

Malloc and Free

Moral: don’t return pointers to things on the stack

More precisely: it is OK to use pointers to things on the stack
while that frame is still active. Thus using such a pointer within
the current function is fine; as is passing the pointer down to
“deeper” functions. But you must never return the pointer up to
a place where the frame has gone

Exercise. Investigate to see what happens when you return
pointers to things on the stack

62 / 99

Malloc and Free

Moral: don’t return pointers to things on the stack

More precisely: it is OK to use pointers to things on the stack
while that frame is still active. Thus using such a pointer within
the current function is fine; as is passing the pointer down to
“deeper” functions. But you must never return the pointer up to
a place where the frame has gone

Exercise. Investigate to see what happens when you return
pointers to things on the stack

63 / 99

Malloc and Free

Exercise. What about

struct intlist make(int v)

{

struct intlist newl;

...

return newl;

}

64 / 99

Files

You will need to manipulate files: read and write data

C provides two principal kinds of access to files:

• unbuffered
• buffered

We shall look at buffered I/O: it’s the one you will use the most

If you need unbuffered I/O, you will easily be able to pick it up
for yourself

65 / 99

Files

You will need to manipulate files: read and write data

C provides two principal kinds of access to files:

• unbuffered
• buffered

We shall look at buffered I/O: it’s the one you will use the most

If you need unbuffered I/O, you will easily be able to pick it up
for yourself

66 / 99

Files

You will need to manipulate files: read and write data

C provides two principal kinds of access to files:

• unbuffered
• buffered

We shall look at buffered I/O: it’s the one you will use the most

If you need unbuffered I/O, you will easily be able to pick it up
for yourself

67 / 99

Files

You will need to manipulate files: read and write data

C provides two principal kinds of access to files:

• unbuffered
• buffered

We shall look at buffered I/O: it’s the one you will use the most

If you need unbuffered I/O, you will easily be able to pick it up
for yourself

68 / 99

Files

The major operations on files are

• open, close (functions fopen, fclose)
• read, write (functions fread, fwrite, fprintf)

69 / 99

Files

Buffered I/O in C uses a pre-defined structure, a FILE

The internal details of this structure are unimportant, and it will
all be pre-declared for you as long as you #include
<stdio.h>

In fact, you will always be using a pointer to a FILE, a FILE*

70 / 99

Files

Buffered I/O in C uses a pre-defined structure, a FILE

The internal details of this structure are unimportant, and it will
all be pre-declared for you as long as you #include
<stdio.h>

In fact, you will always be using a pointer to a FILE, a FILE*

71 / 99

Files

Buffered I/O in C uses a pre-defined structure, a FILE

The internal details of this structure are unimportant, and it will
all be pre-declared for you as long as you #include
<stdio.h>

In fact, you will always be using a pointer to a FILE, a FILE*

72 / 99

#include <stdio.h>

int main(int argc, char *argv[])

{

FILE *in, *out;

char buf[1024]; // chunk of bytes

int nread;

in = fopen(argv[1], "r"); // ought to check

out = fopen(argv[2], "w"); // for success

do {

nread = fread(buf, 1, 1024, in);

fwrite(buf, 1, nread, out);

} while (nread > 0);

fclose(in);

fclose(out);

return 0;

}

73 / 99

Files

• We declare variables in and out of type FILE*

• fopen opens a file for reading or writing or both; the
argument "r" or "w" tells it which (also: r+ for read+write,
a for append and several others)

• fopen returns a pointer to a FILE object that we shall use
to refer to the files (and it does some mallocing behind the
scenes to allocate that structure)

• We should check for success of both fopens. They will
return NULL if they failed. For example, trying to read a file
that does not exist or we do not have permission to read

74 / 99

Files

• We declare variables in and out of type FILE*

• fopen opens a file for reading or writing or both; the
argument "r" or "w" tells it which (also: r+ for read+write,
a for append and several others)

• fopen returns a pointer to a FILE object that we shall use
to refer to the files (and it does some mallocing behind the
scenes to allocate that structure)

• We should check for success of both fopens. They will
return NULL if they failed. For example, trying to read a file
that does not exist or we do not have permission to read

75 / 99

Files

• We declare variables in and out of type FILE*

• fopen opens a file for reading or writing or both; the
argument "r" or "w" tells it which (also: r+ for read+write,
a for append and several others)

• fopen returns a pointer to a FILE object that we shall use
to refer to the files (and it does some mallocing behind the
scenes to allocate that structure)

• We should check for success of both fopens. They will
return NULL if they failed. For example, trying to read a file
that does not exist or we do not have permission to read

76 / 99

Files

• We declare variables in and out of type FILE*

• fopen opens a file for reading or writing or both; the
argument "r" or "w" tells it which (also: r+ for read+write,
a for append and several others)

• fopen returns a pointer to a FILE object that we shall use
to refer to the files (and it does some mallocing behind the
scenes to allocate that structure)

• We should check for success of both fopens. They will
return NULL if they failed. For example, trying to read a file
that does not exist or we do not have permission to read

77 / 99

Files

nread = fread(buf, 1, 1024, in);

fwrite(buf, 1, nread, out);

• We repeatedly read bytes from in. We shall try to read
1024 items of size 1 byte each into the buffer buf

• In comparison, to read n integers we could have written
fread(intbuf, sizeof(int), n, in);
where intbuf is a pointer to an area of memory (array) big
enough to hold n integers.

• fread returns the number of items actually read, the
number of bytes in our example; the number of ints in the
above

• We write that number of bytes to out

• We repeat until there are no more bytes to read

78 / 99

Files

nread = fread(buf, 1, 1024, in);

fwrite(buf, 1, nread, out);

• We repeatedly read bytes from in. We shall try to read
1024 items of size 1 byte each into the buffer buf

• In comparison, to read n integers we could have written
fread(intbuf, sizeof(int), n, in);
where intbuf is a pointer to an area of memory (array) big
enough to hold n integers.

• fread returns the number of items actually read, the
number of bytes in our example; the number of ints in the
above

• We write that number of bytes to out

• We repeat until there are no more bytes to read

79 / 99

Files

nread = fread(buf, 1, 1024, in);

fwrite(buf, 1, nread, out);

• We repeatedly read bytes from in. We shall try to read
1024 items of size 1 byte each into the buffer buf

• In comparison, to read n integers we could have written
fread(intbuf, sizeof(int), n, in);
where intbuf is a pointer to an area of memory (array) big
enough to hold n integers.

• fread returns the number of items actually read, the
number of bytes in our example; the number of ints in the
above

• We write that number of bytes to out

• We repeat until there are no more bytes to read

80 / 99

Files

nread = fread(buf, 1, 1024, in);

fwrite(buf, 1, nread, out);

• We repeatedly read bytes from in. We shall try to read
1024 items of size 1 byte each into the buffer buf

• In comparison, to read n integers we could have written
fread(intbuf, sizeof(int), n, in);
where intbuf is a pointer to an area of memory (array) big
enough to hold n integers.

• fread returns the number of items actually read, the
number of bytes in our example; the number of ints in the
above

• We write that number of bytes to out

• We repeat until there are no more bytes to read

81 / 99

Files

nread = fread(buf, 1, 1024, in);

fwrite(buf, 1, nread, out);

• We repeatedly read bytes from in. We shall try to read
1024 items of size 1 byte each into the buffer buf

• In comparison, to read n integers we could have written
fread(intbuf, sizeof(int), n, in);
where intbuf is a pointer to an area of memory (array) big
enough to hold n integers.

• fread returns the number of items actually read, the
number of bytes in our example; the number of ints in the
above

• We write that number of bytes to out

• We repeat until there are no more bytes to read

82 / 99

Files

• A careful programmer would check the return from fwrite
to ensure all the data was successfully written (e.g., disk
full)

• We then close in and out

• It is important to close files, particularly when writing, to
ensure all the data is safely written to disk before the
program ends

• Also, fclose does a free of the relevant datastructures
that fopen made behind the scenes

83 / 99

Files

• A careful programmer would check the return from fwrite
to ensure all the data was successfully written (e.g., disk
full)

• We then close in and out

• It is important to close files, particularly when writing, to
ensure all the data is safely written to disk before the
program ends

• Also, fclose does a free of the relevant datastructures
that fopen made behind the scenes

84 / 99

Files

• A careful programmer would check the return from fwrite
to ensure all the data was successfully written (e.g., disk
full)

• We then close in and out

• It is important to close files, particularly when writing, to
ensure all the data is safely written to disk before the
program ends

• Also, fclose does a free of the relevant datastructures
that fopen made behind the scenes

85 / 99

Files

• A careful programmer would check the return from fwrite
to ensure all the data was successfully written (e.g., disk
full)

• We then close in and out

• It is important to close files, particularly when writing, to
ensure all the data is safely written to disk before the
program ends

• Also, fclose does a free of the relevant datastructures
that fopen made behind the scenes

86 / 99

Files

When your program starts, the system supplies three
pre-opened FILE*s for your convenience

• stdin opened to read from the keyboard
• stdout opened to write to the screen
• stderr opened to write to the screen

It is useful to have two ways of standard output: one for normal
output and one for error output

Using command-line shells we can redirect the two kinds of
output to different places

87 / 99

Files

When your program starts, the system supplies three
pre-opened FILE*s for your convenience

• stdin opened to read from the keyboard

• stdout opened to write to the screen
• stderr opened to write to the screen

It is useful to have two ways of standard output: one for normal
output and one for error output

Using command-line shells we can redirect the two kinds of
output to different places

88 / 99

Files

When your program starts, the system supplies three
pre-opened FILE*s for your convenience

• stdin opened to read from the keyboard
• stdout opened to write to the screen

• stderr opened to write to the screen

It is useful to have two ways of standard output: one for normal
output and one for error output

Using command-line shells we can redirect the two kinds of
output to different places

89 / 99

Files

When your program starts, the system supplies three
pre-opened FILE*s for your convenience

• stdin opened to read from the keyboard
• stdout opened to write to the screen
• stderr opened to write to the screen

It is useful to have two ways of standard output: one for normal
output and one for error output

Using command-line shells we can redirect the two kinds of
output to different places

90 / 99

Files

When your program starts, the system supplies three
pre-opened FILE*s for your convenience

• stdin opened to read from the keyboard
• stdout opened to write to the screen
• stderr opened to write to the screen

It is useful to have two ways of standard output: one for normal
output and one for error output

Using command-line shells we can redirect the two kinds of
output to different places

91 / 99

Files

When your program starts, the system supplies three
pre-opened FILE*s for your convenience

• stdin opened to read from the keyboard
• stdout opened to write to the screen
• stderr opened to write to the screen

It is useful to have two ways of standard output: one for normal
output and one for error output

Using command-line shells we can redirect the two kinds of
output to different places

92 / 99

Files

fwrite(str, 1, 12, stdout);
is an unlikely way of writing a string to the screen

Exercise. Look at the man pages for these file functions,
particularly fopen

93 / 99

Files

fwrite(str, 1, 12, stdout);
is an unlikely way of writing a string to the screen

Exercise. Look at the man pages for these file functions,
particularly fopen

94 / 99

Files

Another useful function is fprintf

This is just like printf, but outputs to a FILE* rather than the
screen

In fact, printf is the same as fprintf(stdout, ...)

And fprintf(stderr, ...) is the way you usually report
errors to the user

95 / 99

Files

Another useful function is fprintf

This is just like printf, but outputs to a FILE* rather than the
screen

In fact, printf is the same as fprintf(stdout, ...)

And fprintf(stderr, ...) is the way you usually report
errors to the user

96 / 99

Files

Another useful function is fprintf

This is just like printf, but outputs to a FILE* rather than the
screen

In fact, printf is the same as fprintf(stdout, ...)

And fprintf(stderr, ...) is the way you usually report
errors to the user

97 / 99

Files

Another useful function is fprintf

This is just like printf, but outputs to a FILE* rather than the
screen

In fact, printf is the same as fprintf(stdout, ...)

And fprintf(stderr, ...) is the way you usually report
errors to the user

98 / 99

Files

Exercise. Look at fscanf (and scanf), the “opposite” to
printf that reads text formatted input

Exercise. Make sure you understand the distinction between
using fread to read a (4 byte, say) integer and using fscanf to
read a (character string) integer

Exercise. Look up feof, fflush and ferror

Exercise. Read man stdio

99 / 99

