
Debugging

Your program will have bugs in it

Some are algorithmic bugs: those are your problem

We shall look at the bugs caused by your implementation in C

As mentioned, valgrind is good at finding some (but not all!)
memory errors

But it’s not a mitigation for sloppy programming: you should at
least try to get it right yourself!

1 / 1

Debugging

Your program will have bugs in it

Some are algorithmic bugs: those are your problem

We shall look at the bugs caused by your implementation in C

As mentioned, valgrind is good at finding some (but not all!)
memory errors

But it’s not a mitigation for sloppy programming: you should at
least try to get it right yourself!

2 / 1

Debugging

Your program will have bugs in it

Some are algorithmic bugs: those are your problem

We shall look at the bugs caused by your implementation in C

As mentioned, valgrind is good at finding some (but not all!)
memory errors

But it’s not a mitigation for sloppy programming: you should at
least try to get it right yourself!

3 / 1

Debugging

Your program will have bugs in it

Some are algorithmic bugs: those are your problem

We shall look at the bugs caused by your implementation in C

As mentioned, valgrind is good at finding some (but not all!)
memory errors

But it’s not a mitigation for sloppy programming: you should at
least try to get it right yourself!

4 / 1

Debugging

Your program will have bugs in it

Some are algorithmic bugs: those are your problem

We shall look at the bugs caused by your implementation in C

As mentioned, valgrind is good at finding some (but not all!)
memory errors

But it’s not a mitigation for sloppy programming: you should at
least try to get it right yourself!

5 / 1

Debugging

The first kind of error you will come across is errors in the
compilation

By which we mean errors in your program the the compiler
spots

You should always take note of both errors and warnings
produced by the compiler

We shall look at a few example error messages

6 / 1

Debugging

The first kind of error you will come across is errors in the
compilation

By which we mean errors in your program the the compiler
spots

You should always take note of both errors and warnings
produced by the compiler

We shall look at a few example error messages

7 / 1

Debugging

The first kind of error you will come across is errors in the
compilation

By which we mean errors in your program the the compiler
spots

You should always take note of both errors and warnings
produced by the compiler

We shall look at a few example error messages

8 / 1

Debugging

The first kind of error you will come across is errors in the
compilation

By which we mean errors in your program the the compiler
spots

You should always take note of both errors and warnings
produced by the compiler

We shall look at a few example error messages

9 / 1

Debugging
heap2.c: In function ’add’:

heap2.c:9:40: error: ’b’ undeclared

A function used a variable b without declaring it

In this example we get

• the filename: heap2.c (we might be compiling several files
at once)

• the function: in question add

• the variable in question: b
• the line number in the file: 9
• which character in that line: 40

Though we don’t always get such fine detail

10 / 1

Debugging
heap2.c: In function ’add’:

heap2.c:9:40: error: ’b’ undeclared

A function used a variable b without declaring it

In this example we get

• the filename: heap2.c (we might be compiling several files
at once)

• the function: in question add

• the variable in question: b
• the line number in the file: 9
• which character in that line: 40

Though we don’t always get such fine detail

11 / 1

Debugging
heap2.c: In function ’add’:

heap2.c:9:40: error: ’b’ undeclared

A function used a variable b without declaring it

In this example we get

• the filename: heap2.c (we might be compiling several files
at once)

• the function: in question add

• the variable in question: b
• the line number in the file: 9
• which character in that line: 40

Though we don’t always get such fine detail

12 / 1

Debugging
heap2.c: In function ’add’:

heap2.c:9:40: error: ’b’ undeclared

A function used a variable b without declaring it

In this example we get

• the filename: heap2.c (we might be compiling several files
at once)

• the function: in question add

• the variable in question: b
• the line number in the file: 9
• which character in that line: 40

Though we don’t always get such fine detail

13 / 1

Debugging
heap2.c: In function ’add’:

heap2.c:9:40: error: ’b’ undeclared

A function used a variable b without declaring it

In this example we get

• the filename: heap2.c (we might be compiling several files
at once)

• the function: in question add

• the variable in question: b

• the line number in the file: 9
• which character in that line: 40

Though we don’t always get such fine detail

14 / 1

Debugging
heap2.c: In function ’add’:

heap2.c:9:40: error: ’b’ undeclared

A function used a variable b without declaring it

In this example we get

• the filename: heap2.c (we might be compiling several files
at once)

• the function: in question add

• the variable in question: b
• the line number in the file: 9

• which character in that line: 40

Though we don’t always get such fine detail

15 / 1

Debugging
heap2.c: In function ’add’:

heap2.c:9:40: error: ’b’ undeclared

A function used a variable b without declaring it

In this example we get

• the filename: heap2.c (we might be compiling several files
at once)

• the function: in question add

• the variable in question: b
• the line number in the file: 9
• which character in that line: 40

Though we don’t always get such fine detail

16 / 1

Debugging
heap2.c: In function ’add’:

heap2.c:9:40: error: ’b’ undeclared

A function used a variable b without declaring it

In this example we get

• the filename: heap2.c (we might be compiling several files
at once)

• the function: in question add

• the variable in question: b
• the line number in the file: 9
• which character in that line: 40

Though we don’t always get such fine detail

17 / 1

Debugging

As a contrast, Clang reports:

heap2.c:9:40: error: use of undeclared identifier ’b’

printf("b = %d\n", b);

^

18 / 1

Debugging

heap2.c:13:3: error: too many arguments to function ’add’

heap2.c:4:5: note: declared here

A call to add on line 13 had too many arguments; as a
reference to compare against, add was declared on line 4

19 / 1

Debugging

warn.c: In function ’bar’:

warn.c:5:3: warning: ’return’ with no value, in function

returning non-void

A warning that a function didn’t return a value when it was
declared to return a value

20 / 1

Debugging

And so on

There are very many more messages, of course

You will become experienced in reading these kinds of
messages!

21 / 1

Debugging

And so on

There are very many more messages, of course

You will become experienced in reading these kinds of
messages!

22 / 1

Debugging

And so on

There are very many more messages, of course

You will become experienced in reading these kinds of
messages!

23 / 1

Debugging

If you manage to get your program to compile without errors
and warnings there are still those errors where the program is
not doing what you thought it was

A basic form of debugging is to put printfs in your code to
print out the values of interesting variables as the program runs

printf("x is %d\n", x);

x = wibble(x);

printf("after wibble x is %d\n", x);

24 / 1

Debugging

If you manage to get your program to compile without errors
and warnings there are still those errors where the program is
not doing what you thought it was

A basic form of debugging is to put printfs in your code to
print out the values of interesting variables as the program runs

printf("x is %d\n", x);

x = wibble(x);

printf("after wibble x is %d\n", x);

25 / 1

Debugging

If you manage to get your program to compile without errors
and warnings there are still those errors where the program is
not doing what you thought it was

A basic form of debugging is to put printfs in your code to
print out the values of interesting variables as the program runs

printf("x is %d\n", x);

x = wibble(x);

printf("after wibble x is %d\n", x);

26 / 1

Debugging

Then you can narrow down where things are going awry

Don’t underestimate this as a way of debugging programs!

Exercise. Most library functions set an error message when
something goes wrong, e.g., “no permission to write to file”.
These are described in the “ERRORS” section of their man
page. Investigate the error reporting mechanism errno,
strerror() and perror()

27 / 1

Debugging

Then you can narrow down where things are going awry

Don’t underestimate this as a way of debugging programs!

Exercise. Most library functions set an error message when
something goes wrong, e.g., “no permission to write to file”.
These are described in the “ERRORS” section of their man
page. Investigate the error reporting mechanism errno,
strerror() and perror()

28 / 1

Debugging

Then you can narrow down where things are going awry

Don’t underestimate this as a way of debugging programs!

Exercise. Most library functions set an error message when
something goes wrong, e.g., “no permission to write to file”.
These are described in the “ERRORS” section of their man
page. Investigate the error reporting mechanism errno,
strerror() and perror()

29 / 1

Debugging

For more fine-grained inspection of the running program you
can use a debugger

Debuggers, like gdb and ddd are line oriented or graphical tools
that allow detailed control of the execution of a program

If you use an IDE, it will probably have an in-built debugger

30 / 1

Debugging

For more fine-grained inspection of the running program you
can use a debugger

Debuggers, like gdb and ddd are line oriented or graphical tools
that allow detailed control of the execution of a program

If you use an IDE, it will probably have an in-built debugger

31 / 1

Debugging

For more fine-grained inspection of the running program you
can use a debugger

Debuggers, like gdb and ddd are line oriented or graphical tools
that allow detailed control of the execution of a program

If you use an IDE, it will probably have an in-built debugger

32 / 1

Debugging

For example

#include <stdio.h>

int main(void)

{

int *a = 0;

// writing to unmapped memory

a[0] = 42;

return 0;

}

produces

% ./buggyprog

Segmentation fault

33 / 1

Debugging

If we compile with the -g option, the compiler puts in extra
context information that helps the debugger

% cc -Wall -g -o buggyprog buggyprog.c

We now run the program under the debugger (some messages
removed)

34 / 1

Debugging

If we compile with the -g option, the compiler puts in extra
context information that helps the debugger

% cc -Wall -g -o buggyprog buggyprog.c

We now run the program under the debugger (some messages
removed)

35 / 1

Debugging

% gdb ./buggyprog

GNU gdb (GDB) SUSE (7.1-3.12)

Copyright ...

Reading symbols from buggyprog

done.

(gdb)

This is the debugger prompt. We can now run the program

(gdb) run

36 / 1

Debugging

Starting program: buggyprog

...

Program received signal SIGSEGV, Segmentation fault.

0x00000000004004f4 in main () at buggyprog.c:9

9 a[0] = 42;

(gdb)

It broke at line 9

37 / 1

Debugging

We can inspect the values of variables

(gdb) print a

$1 = (int *) 0x0

This is of course the problem; a does not point anywhere
sensible

38 / 1

Debugging

Debuggers can do a lot more. We can

• look at general areas of memory
• inspect variables in other functions: e.g., a function foo

calls bar, which breaks; the debugger drops us into bar;
we can “move up” and look into foo

• insert values into memory
• continue the program from where it broke (not always a

good idea), possibly after patching up the values of some
variables or some memory

39 / 1

Debugging

Debuggers can do a lot more. We can

• look at general areas of memory

• inspect variables in other functions: e.g., a function foo
calls bar, which breaks; the debugger drops us into bar;
we can “move up” and look into foo

• insert values into memory
• continue the program from where it broke (not always a

good idea), possibly after patching up the values of some
variables or some memory

40 / 1

Debugging

Debuggers can do a lot more. We can

• look at general areas of memory
• inspect variables in other functions: e.g., a function foo

calls bar, which breaks; the debugger drops us into bar;
we can “move up” and look into foo

• insert values into memory
• continue the program from where it broke (not always a

good idea), possibly after patching up the values of some
variables or some memory

41 / 1

Debugging

Debuggers can do a lot more. We can

• look at general areas of memory
• inspect variables in other functions: e.g., a function foo

calls bar, which breaks; the debugger drops us into bar;
we can “move up” and look into foo

• insert values into memory

• continue the program from where it broke (not always a
good idea), possibly after patching up the values of some
variables or some memory

42 / 1

Debugging

Debuggers can do a lot more. We can

• look at general areas of memory
• inspect variables in other functions: e.g., a function foo

calls bar, which breaks; the debugger drops us into bar;
we can “move up” and look into foo

• insert values into memory
• continue the program from where it broke (not always a

good idea), possibly after patching up the values of some
variables or some memory

43 / 1

Debugging

• put in breakpoints: a marker in the program; the debugger
will run the program until it hits a breakpoint and then stops
to allow you to inspect things

• single step: run single lines of code one by one
• And so on

44 / 1

Debugging

• put in breakpoints: a marker in the program; the debugger
will run the program until it hits a breakpoint and then stops
to allow you to inspect things

• single step: run single lines of code one by one

• And so on

45 / 1

Debugging

• put in breakpoints: a marker in the program; the debugger
will run the program until it hits a breakpoint and then stops
to allow you to inspect things

• single step: run single lines of code one by one
• And so on

46 / 1

Debugging

Different debuggers have different ways of doing things, but it is
worthwhile getting familiar with at least one

Exercise. Experiment with a debugger and explore its
capabilities

47 / 1

Debugging

Different debuggers have different ways of doing things, but it is
worthwhile getting familiar with at least one

Exercise. Experiment with a debugger and explore its
capabilities

48 / 1

Libraries

A lot of code exists for you to use in your C programs

For example, we have extensively used printf, malloc and
free

We have mentioned atol and hinted at others, like cos

To use one of these functions we must

• declare the type of the function, so the compiler knows
how to to use it correctly: both the argument types and the
return type

• make the code (binary) available to our program so our
program can actually run it!

49 / 1

Libraries

A lot of code exists for you to use in your C programs

For example, we have extensively used printf, malloc and
free

We have mentioned atol and hinted at others, like cos

To use one of these functions we must

• declare the type of the function, so the compiler knows
how to to use it correctly: both the argument types and the
return type

• make the code (binary) available to our program so our
program can actually run it!

50 / 1

Libraries

A lot of code exists for you to use in your C programs

For example, we have extensively used printf, malloc and
free

We have mentioned atol and hinted at others, like cos

To use one of these functions we must

• declare the type of the function, so the compiler knows
how to to use it correctly: both the argument types and the
return type

• make the code (binary) available to our program so our
program can actually run it!

51 / 1

Libraries

A lot of code exists for you to use in your C programs

For example, we have extensively used printf, malloc and
free

We have mentioned atol and hinted at others, like cos

To use one of these functions we must

• declare the type of the function, so the compiler knows
how to to use it correctly: both the argument types and the
return type

• make the code (binary) available to our program so our
program can actually run it!

52 / 1

Libraries

A lot of code exists for you to use in your C programs

For example, we have extensively used printf, malloc and
free

We have mentioned atol and hinted at others, like cos

To use one of these functions we must

• declare the type of the function, so the compiler knows
how to to use it correctly: both the argument types and the
return type

• make the code (binary) available to our program so our
program can actually run it!

53 / 1

Libraries

A lot of code exists for you to use in your C programs

For example, we have extensively used printf, malloc and
free

We have mentioned atol and hinted at others, like cos

To use one of these functions we must

• declare the type of the function, so the compiler knows
how to to use it correctly: both the argument types and the
return type

• make the code (binary) available to our program so our
program can actually run it!

54 / 1

Libraries
For the first, we use #include

The printf function lives in the standard I/O library stdio

While malloc and free live in stdlib

And sqrt, cos etc. live in the math library

The directive #include <stdio.h> reads in a file from a
standard place (e.g., /usr/include/stdio.h) that contains
declarations of types of many things, particularly printf

It is as if the line #include is textually replaced by the contents
of the referenced file

#include will read in any file you like and can be placed
anywhere you like in your source. It is overwhelmingly used for
header files (.h files) at the start of C code

55 / 1

/usr/include/stdio.h

Libraries
For the first, we use #include

The printf function lives in the standard I/O library stdio

While malloc and free live in stdlib

And sqrt, cos etc. live in the math library

The directive #include <stdio.h> reads in a file from a
standard place (e.g., /usr/include/stdio.h) that contains
declarations of types of many things, particularly printf

It is as if the line #include is textually replaced by the contents
of the referenced file

#include will read in any file you like and can be placed
anywhere you like in your source. It is overwhelmingly used for
header files (.h files) at the start of C code

56 / 1

/usr/include/stdio.h

Libraries
For the first, we use #include

The printf function lives in the standard I/O library stdio

While malloc and free live in stdlib

And sqrt, cos etc. live in the math library

The directive #include <stdio.h> reads in a file from a
standard place (e.g., /usr/include/stdio.h) that contains
declarations of types of many things, particularly printf

It is as if the line #include is textually replaced by the contents
of the referenced file

#include will read in any file you like and can be placed
anywhere you like in your source. It is overwhelmingly used for
header files (.h files) at the start of C code

57 / 1

/usr/include/stdio.h

Libraries
For the first, we use #include

The printf function lives in the standard I/O library stdio

While malloc and free live in stdlib

And sqrt, cos etc. live in the math library

The directive #include <stdio.h> reads in a file from a
standard place (e.g., /usr/include/stdio.h) that contains
declarations of types of many things, particularly printf

It is as if the line #include is textually replaced by the contents
of the referenced file

#include will read in any file you like and can be placed
anywhere you like in your source. It is overwhelmingly used for
header files (.h files) at the start of C code

58 / 1

/usr/include/stdio.h

Libraries
For the first, we use #include

The printf function lives in the standard I/O library stdio

While malloc and free live in stdlib

And sqrt, cos etc. live in the math library

The directive #include <stdio.h> reads in a file from a
standard place (e.g., /usr/include/stdio.h) that contains
declarations of types of many things, particularly printf

It is as if the line #include is textually replaced by the contents
of the referenced file

#include will read in any file you like and can be placed
anywhere you like in your source. It is overwhelmingly used for
header files (.h files) at the start of C code

59 / 1

/usr/include/stdio.h

Libraries
For the first, we use #include

The printf function lives in the standard I/O library stdio

While malloc and free live in stdlib

And sqrt, cos etc. live in the math library

The directive #include <stdio.h> reads in a file from a
standard place (e.g., /usr/include/stdio.h) that contains
declarations of types of many things, particularly printf

It is as if the line #include is textually replaced by the contents
of the referenced file

#include will read in any file you like and can be placed
anywhere you like in your source. It is overwhelmingly used for
header files (.h files) at the start of C code

60 / 1

/usr/include/stdio.h

Libraries
For the first, we use #include

The printf function lives in the standard I/O library stdio

While malloc and free live in stdlib

And sqrt, cos etc. live in the math library

The directive #include <stdio.h> reads in a file from a
standard place (e.g., /usr/include/stdio.h) that contains
declarations of types of many things, particularly printf

It is as if the line #include is textually replaced by the contents
of the referenced file

#include will read in any file you like and can be placed
anywhere you like in your source. It is overwhelmingly used for
header files (.h files) at the start of C code

61 / 1

/usr/include/stdio.h

Libraries

stdio.h is one of many standard header files

If you look in that file you find something like
extern int printf(char *format, ...);
(simplified)

This declares printf to be a function that takes a string (the
format string) and a variable number of other arguments of
unspecifed types

The extern says the actual code of the function is somewhere
else, not right here: this is just a declaration of the type of the
function

62 / 1

Libraries

stdio.h is one of many standard header files

If you look in that file you find something like
extern int printf(char *format, ...);
(simplified)

This declares printf to be a function that takes a string (the
format string) and a variable number of other arguments of
unspecifed types

The extern says the actual code of the function is somewhere
else, not right here: this is just a declaration of the type of the
function

63 / 1

Libraries

stdio.h is one of many standard header files

If you look in that file you find something like
extern int printf(char *format, ...);
(simplified)

This declares printf to be a function that takes a string (the
format string) and a variable number of other arguments of
unspecifed types

The extern says the actual code of the function is somewhere
else, not right here: this is just a declaration of the type of the
function

64 / 1

Libraries

stdio.h is one of many standard header files

If you look in that file you find something like
extern int printf(char *format, ...);
(simplified)

This declares printf to be a function that takes a string (the
format string) and a variable number of other arguments of
unspecifed types

The extern says the actual code of the function is somewhere
else, not right here: this is just a declaration of the type of the
function

65 / 1

Libraries

The #include is a convenience for the programmer: they
could define all the types of all the standard functions they use
themselves in every program, but why bother. They are all in
this ready-written file. Just include them.

In <stdlib.h> we might find
extern void *malloc(long int size);
(simplified)

In <math.h> we might find
extern double cos(double x);
(simplified)

66 / 1

Libraries

The #include is a convenience for the programmer: they
could define all the types of all the standard functions they use
themselves in every program, but why bother. They are all in
this ready-written file. Just include them.

In <stdlib.h> we might find
extern void *malloc(long int size);
(simplified)

In <math.h> we might find
extern double cos(double x);
(simplified)

67 / 1

Libraries

The #include is a convenience for the programmer: they
could define all the types of all the standard functions they use
themselves in every program, but why bother. They are all in
this ready-written file. Just include them.

In <stdlib.h> we might find
extern void *malloc(long int size);
(simplified)

In <math.h> we might find
extern double cos(double x);
(simplified)

68 / 1

Libraries

How do we know while file to include for which function?

Use the manual pages: man cos

69 / 1

Libraries

How do we know while file to include for which function?

Use the manual pages: man cos

70 / 1

Libraries

COS(3P) POSIX Programmer’s Manual COS(3P)

NAME

cos, cosf, cosl - cosine function

SYNOPSIS

#include <math.h>

double cos(double x);

float cosf(float x);

long double cosl(long double x);

Link with -lm.

...

71 / 1

Libraries

That takes care of the declarations. Now where are the actual
implementations of these functions?

Again, in standard files, e.g., /usr/lib/libc.so contains the
binaries for many standard functions, including malloc and
printf

The compiler will, by default, always go to this standard library
and pick up the code as necessary

However, other functions, like cos are not automatically picked
up; it’s not in libc for a start

72 / 1

/usr/lib/libc.so

Libraries

That takes care of the declarations. Now where are the actual
implementations of these functions?

Again, in standard files, e.g., /usr/lib/libc.so contains the
binaries for many standard functions, including malloc and
printf

The compiler will, by default, always go to this standard library
and pick up the code as necessary

However, other functions, like cos are not automatically picked
up; it’s not in libc for a start

73 / 1

/usr/lib/libc.so

Libraries

That takes care of the declarations. Now where are the actual
implementations of these functions?

Again, in standard files, e.g., /usr/lib/libc.so contains the
binaries for many standard functions, including malloc and
printf

The compiler will, by default, always go to this standard library
and pick up the code as necessary

However, other functions, like cos are not automatically picked
up; it’s not in libc for a start

74 / 1

/usr/lib/libc.so

Libraries

That takes care of the declarations. Now where are the actual
implementations of these functions?

Again, in standard files, e.g., /usr/lib/libc.so contains the
binaries for many standard functions, including malloc and
printf

The compiler will, by default, always go to this standard library
and pick up the code as necessary

However, other functions, like cos are not automatically picked
up; it’s not in libc for a start

75 / 1

/usr/lib/libc.so

Libraries

If your code uses cosine you should

• #include <math.h> to get the type declaration
• compile with the -lm option to get the code:
cc -Wall ... -lm

The -llibname option tells the compiler to pick up code from
the standard library named libname

The maths library has the very short name “m”

76 / 1

Libraries

If your code uses cosine you should

• #include <math.h> to get the type declaration

• compile with the -lm option to get the code:
cc -Wall ... -lm

The -llibname option tells the compiler to pick up code from
the standard library named libname

The maths library has the very short name “m”

77 / 1

Libraries

If your code uses cosine you should

• #include <math.h> to get the type declaration
• compile with the -lm option to get the code:
cc -Wall ... -lm

The -llibname option tells the compiler to pick up code from
the standard library named libname

The maths library has the very short name “m”

78 / 1

Libraries

If your code uses cosine you should

• #include <math.h> to get the type declaration
• compile with the -lm option to get the code:
cc -Wall ... -lm

The -llibname option tells the compiler to pick up code from
the standard library named libname

The maths library has the very short name “m”

79 / 1

Libraries

If your code uses cosine you should

• #include <math.h> to get the type declaration
• compile with the -lm option to get the code:
cc -Wall ... -lm

The -llibname option tells the compiler to pick up code from
the standard library named libname

The maths library has the very short name “m”

80 / 1

Libraries

Libraries live in standard places, e.g., /usr/lib/libm.so

Again, see the manual pages for the right libraries to use

Multiple libraries are used in the obvious way:
cc ... -lm -lGL

81 / 1

/usr/lib/libm.so

Libraries

Libraries live in standard places, e.g., /usr/lib/libm.so

Again, see the manual pages for the right libraries to use

Multiple libraries are used in the obvious way:
cc ... -lm -lGL

82 / 1

/usr/lib/libm.so

Libraries

Libraries live in standard places, e.g., /usr/lib/libm.so

Again, see the manual pages for the right libraries to use

Multiple libraries are used in the obvious way:
cc ... -lm -lGL

83 / 1

/usr/lib/libm.so

Multi-file Programs

Libraries are code that you can use that were written and
compiled separately from your program

C allows us to write a program in several pieces, compile them
separately, then link them all together into the final running
program

For example, some programs sources are too big to fit sensibly
into one file

Or you need separate people to work on separate parts of the
program

84 / 1

Multi-file Programs

Libraries are code that you can use that were written and
compiled separately from your program

C allows us to write a program in several pieces, compile them
separately, then link them all together into the final running
program

For example, some programs sources are too big to fit sensibly
into one file

Or you need separate people to work on separate parts of the
program

85 / 1

Multi-file Programs

Libraries are code that you can use that were written and
compiled separately from your program

C allows us to write a program in several pieces, compile them
separately, then link them all together into the final running
program

For example, some programs sources are too big to fit sensibly
into one file

Or you need separate people to work on separate parts of the
program

86 / 1

Multi-file Programs

Libraries are code that you can use that were written and
compiled separately from your program

C allows us to write a program in several pieces, compile them
separately, then link them all together into the final running
program

For example, some programs sources are too big to fit sensibly
into one file

Or you need separate people to work on separate parts of the
program

87 / 1

Multi-file Programs

File prog1.c
#include <stdio.h>

extern int foo(int n, int m);

int g;

int main(void)

{

int m;

g = 23;

m = foo(7, 11);

printf("m = %d\n", m);

return 0;

}

88 / 1

Multi-file Programs

File prog2.c
// stdio not really necessary here

#include <stdio.h>

extern int g;

static int hidden = 99;

int foo(int p, int q)

{

return p*q + g + hidden;

}

89 / 1

Multi-file Programs

In prog1.c main refers to a function foo, defined elsewhere

The compiler need to know the type of foo to compile a call to
it correctly, so we must declare it

The declaration is just the start of the function without the body:
it contains all the information we need

When main calls foo, it know it should take two ints and
return an int

So it knows to compile code to set up the arguments correctly;
and code to receive the result

90 / 1

Multi-file Programs

In prog1.c main refers to a function foo, defined elsewhere

The compiler need to know the type of foo to compile a call to
it correctly, so we must declare it

The declaration is just the start of the function without the body:
it contains all the information we need

When main calls foo, it know it should take two ints and
return an int

So it knows to compile code to set up the arguments correctly;
and code to receive the result

91 / 1

Multi-file Programs

In prog1.c main refers to a function foo, defined elsewhere

The compiler need to know the type of foo to compile a call to
it correctly, so we must declare it

The declaration is just the start of the function without the body:
it contains all the information we need

When main calls foo, it know it should take two ints and
return an int

So it knows to compile code to set up the arguments correctly;
and code to receive the result

92 / 1

Multi-file Programs

In prog1.c main refers to a function foo, defined elsewhere

The compiler need to know the type of foo to compile a call to
it correctly, so we must declare it

The declaration is just the start of the function without the body:
it contains all the information we need

When main calls foo, it know it should take two ints and
return an int

So it knows to compile code to set up the arguments correctly;
and code to receive the result

93 / 1

Multi-file Programs

In prog1.c main refers to a function foo, defined elsewhere

The compiler need to know the type of foo to compile a call to
it correctly, so we must declare it

The declaration is just the start of the function without the body:
it contains all the information we need

When main calls foo, it know it should take two ints and
return an int

So it knows to compile code to set up the arguments correctly;
and code to receive the result

94 / 1

Multi-file Programs

The names given as parameters in the declaration are purely
for the benefit of the programmer and need not be the same as
the actual parameters in the function definition

C also allows declarations of functions without parameter
names:
extern int foo(int, int);
means the same thing

Further, on functions, the extern is optional:
int foo(int, int);

C can tell it is a declaration and not a definition by the lack of a
body

95 / 1

Multi-file Programs

The names given as parameters in the declaration are purely
for the benefit of the programmer and need not be the same as
the actual parameters in the function definition

C also allows declarations of functions without parameter
names:
extern int foo(int, int);
means the same thing

Further, on functions, the extern is optional:
int foo(int, int);

C can tell it is a declaration and not a definition by the lack of a
body

96 / 1

Multi-file Programs

The names given as parameters in the declaration are purely
for the benefit of the programmer and need not be the same as
the actual parameters in the function definition

C also allows declarations of functions without parameter
names:
extern int foo(int, int);
means the same thing

Further, on functions, the extern is optional:
int foo(int, int);

C can tell it is a declaration and not a definition by the lack of a
body

97 / 1

Multi-file Programs

prog1.c also defines a globally visible variable named g (this
is bad programming. . .)

prog2.c refers to g, and so needs to declare its type before it
is used

The extern says “here is the type of the thing, but it is actually
defined somewhere else”

98 / 1

Multi-file Programs

prog1.c also defines a globally visible variable named g (this
is bad programming. . .)

prog2.c refers to g, and so needs to declare its type before it
is used

The extern says “here is the type of the thing, but it is actually
defined somewhere else”

99 / 1

Multi-file Programs

prog1.c also defines a globally visible variable named g (this
is bad programming. . .)

prog2.c refers to g, and so needs to declare its type before it
is used

The extern says “here is the type of the thing, but it is actually
defined somewhere else”

100 / 1

Multi-file Programs

prog2.c also declares a static variable

This is visible only within the file prog2.c

It is not visible in prog1.c. In fact prog1.c could have its own
separate variable also named hidden

The static says “within this file only”, and is useful for hiding
things from other parts of the code in other files

C is not strong on modules/namespaces: this is the only hiding
mechanism it has

101 / 1

Multi-file Programs

prog2.c also declares a static variable

This is visible only within the file prog2.c

It is not visible in prog1.c. In fact prog1.c could have its own
separate variable also named hidden

The static says “within this file only”, and is useful for hiding
things from other parts of the code in other files

C is not strong on modules/namespaces: this is the only hiding
mechanism it has

102 / 1

Multi-file Programs

prog2.c also declares a static variable

This is visible only within the file prog2.c

It is not visible in prog1.c. In fact prog1.c could have its own
separate variable also named hidden

The static says “within this file only”, and is useful for hiding
things from other parts of the code in other files

C is not strong on modules/namespaces: this is the only hiding
mechanism it has

103 / 1

Multi-file Programs

prog2.c also declares a static variable

This is visible only within the file prog2.c

It is not visible in prog1.c. In fact prog1.c could have its own
separate variable also named hidden

The static says “within this file only”, and is useful for hiding
things from other parts of the code in other files

C is not strong on modules/namespaces: this is the only hiding
mechanism it has

104 / 1

Multi-file Programs

prog2.c also declares a static variable

This is visible only within the file prog2.c

It is not visible in prog1.c. In fact prog1.c could have its own
separate variable also named hidden

The static says “within this file only”, and is useful for hiding
things from other parts of the code in other files

C is not strong on modules/namespaces: this is the only hiding
mechanism it has

105 / 1

Multi-file Programs
We compile the source code using -c to make object files

% cc -Wall -c prog1.c

% cc -Wall -c prog2.c

This produces binary object files prog1.o and prog2.o

These are not runnable, but need to be combined to produce a
runnable binary: this is called linking

% cc -Wall -o prog prog1.o prog2.o
produces a binary prog

Linking resolves all the cross-file references: e.g., it determines
the g in prog2.c is the same as the g in prog1.c

% ./prog
m = 199

106 / 1

Multi-file Programs
We compile the source code using -c to make object files

% cc -Wall -c prog1.c

% cc -Wall -c prog2.c

This produces binary object files prog1.o and prog2.o

These are not runnable, but need to be combined to produce a
runnable binary: this is called linking

% cc -Wall -o prog prog1.o prog2.o
produces a binary prog

Linking resolves all the cross-file references: e.g., it determines
the g in prog2.c is the same as the g in prog1.c

% ./prog
m = 199

107 / 1

Multi-file Programs
We compile the source code using -c to make object files

% cc -Wall -c prog1.c

% cc -Wall -c prog2.c

This produces binary object files prog1.o and prog2.o

These are not runnable, but need to be combined to produce a
runnable binary: this is called linking

% cc -Wall -o prog prog1.o prog2.o
produces a binary prog

Linking resolves all the cross-file references: e.g., it determines
the g in prog2.c is the same as the g in prog1.c

% ./prog
m = 199

108 / 1

Multi-file Programs
We compile the source code using -c to make object files

% cc -Wall -c prog1.c

% cc -Wall -c prog2.c

This produces binary object files prog1.o and prog2.o

These are not runnable, but need to be combined to produce a
runnable binary: this is called linking

% cc -Wall -o prog prog1.o prog2.o
produces a binary prog

Linking resolves all the cross-file references: e.g., it determines
the g in prog2.c is the same as the g in prog1.c

% ./prog
m = 199

109 / 1

Multi-file Programs
We compile the source code using -c to make object files

% cc -Wall -c prog1.c

% cc -Wall -c prog2.c

This produces binary object files prog1.o and prog2.o

These are not runnable, but need to be combined to produce a
runnable binary: this is called linking

% cc -Wall -o prog prog1.o prog2.o
produces a binary prog

Linking resolves all the cross-file references: e.g., it determines
the g in prog2.c is the same as the g in prog1.c

% ./prog
m = 199

110 / 1

Multi-file Programs
We compile the source code using -c to make object files

% cc -Wall -c prog1.c

% cc -Wall -c prog2.c

This produces binary object files prog1.o and prog2.o

These are not runnable, but need to be combined to produce a
runnable binary: this is called linking

% cc -Wall -o prog prog1.o prog2.o
produces a binary prog

Linking resolves all the cross-file references: e.g., it determines
the g in prog2.c is the same as the g in prog1.c

% ./prog
m = 199

111 / 1

Multi-file Programs
The final binary must contain exactly one main

And exactly one definition of each global name (functions and
variables)

In the final linking step you would also name the various
libraries needed, e.g., -lm

Thus: use -c to compile only; without -c the compiler will
compile any .c files, and link in any .o files

Thus % cc -Wall -o prog prog1.c prog2.o will compile
prog1.c (without leaving a .o), then it will link in prog2.o to
produce a runnable binary (if all went well)

Better is to separate the compile and link steps as it separates
the errors each stage might report

112 / 1

Multi-file Programs
The final binary must contain exactly one main

And exactly one definition of each global name (functions and
variables)

In the final linking step you would also name the various
libraries needed, e.g., -lm

Thus: use -c to compile only; without -c the compiler will
compile any .c files, and link in any .o files

Thus % cc -Wall -o prog prog1.c prog2.o will compile
prog1.c (without leaving a .o), then it will link in prog2.o to
produce a runnable binary (if all went well)

Better is to separate the compile and link steps as it separates
the errors each stage might report

113 / 1

Multi-file Programs
The final binary must contain exactly one main

And exactly one definition of each global name (functions and
variables)

In the final linking step you would also name the various
libraries needed, e.g., -lm

Thus: use -c to compile only; without -c the compiler will
compile any .c files, and link in any .o files

Thus % cc -Wall -o prog prog1.c prog2.o will compile
prog1.c (without leaving a .o), then it will link in prog2.o to
produce a runnable binary (if all went well)

Better is to separate the compile and link steps as it separates
the errors each stage might report

114 / 1

Multi-file Programs
The final binary must contain exactly one main

And exactly one definition of each global name (functions and
variables)

In the final linking step you would also name the various
libraries needed, e.g., -lm

Thus: use -c to compile only; without -c the compiler will
compile any .c files, and link in any .o files

Thus % cc -Wall -o prog prog1.c prog2.o will compile
prog1.c (without leaving a .o), then it will link in prog2.o to
produce a runnable binary (if all went well)

Better is to separate the compile and link steps as it separates
the errors each stage might report

115 / 1

Multi-file Programs
The final binary must contain exactly one main

And exactly one definition of each global name (functions and
variables)

In the final linking step you would also name the various
libraries needed, e.g., -lm

Thus: use -c to compile only; without -c the compiler will
compile any .c files, and link in any .o files

Thus % cc -Wall -o prog prog1.c prog2.o will compile
prog1.c (without leaving a .o), then it will link in prog2.o to
produce a runnable binary (if all went well)

Better is to separate the compile and link steps as it separates
the errors each stage might report

116 / 1

Multi-file Programs
The final binary must contain exactly one main

And exactly one definition of each global name (functions and
variables)

In the final linking step you would also name the various
libraries needed, e.g., -lm

Thus: use -c to compile only; without -c the compiler will
compile any .c files, and link in any .o files

Thus % cc -Wall -o prog prog1.c prog2.o will compile
prog1.c (without leaving a .o), then it will link in prog2.o to
produce a runnable binary (if all went well)

Better is to separate the compile and link steps as it separates
the errors each stage might report

117 / 1

Multi-file Programs

In larger programs, it is convenient to gather together your
various type declarations into one or more of your own header
files and use #include to read them

This is easier to manage and enables you to keep the various
declarations in sync with each other

118 / 1

Multi-file Programs

In larger programs, it is convenient to gather together your
various type declarations into one or more of your own header
files and use #include to read them

This is easier to manage and enables you to keep the various
declarations in sync with each other

119 / 1

Multi-file Programs

#include <stdio.h>

#include "prog.h"

int g;

int main(void)

{

int m;

g = 23;

m = foo(7, 11);

printf("m = %d\n", m);

return 0;

}

120 / 1

Multi-file Programs

// stdio not really necessary here

#include <stdio.h>

#include "prog.h"

static int hidden = 99;

int foo(int p, int q)

{

return p*q + g + hidden;

}

121 / 1

Multi-file Programs

In prog.h

// Useful declarations

extern int foo(int n, int m);

extern int g;

122 / 1

Multi-file Programs

Points:

• We use quotes in the #include. The <> indicates a
standard system header, while "" indicates a specific file
name

• extern says “here is the type, the actual definition is
somewhere else”

• g is actually defined in the first file: it is a matter of taste or
code management where you actually define it, but it must
be defined somewhere

#include can be nested, i.e., an included file can include
another: it works

Just be careful not to create a loop. . .

123 / 1

Multi-file Programs

Points:

• We use quotes in the #include. The <> indicates a
standard system header, while "" indicates a specific file
name

• extern says “here is the type, the actual definition is
somewhere else”

• g is actually defined in the first file: it is a matter of taste or
code management where you actually define it, but it must
be defined somewhere

#include can be nested, i.e., an included file can include
another: it works

Just be careful not to create a loop. . .

124 / 1

Multi-file Programs

Points:

• We use quotes in the #include. The <> indicates a
standard system header, while "" indicates a specific file
name

• extern says “here is the type, the actual definition is
somewhere else”

• g is actually defined in the first file: it is a matter of taste or
code management where you actually define it, but it must
be defined somewhere

#include can be nested, i.e., an included file can include
another: it works

Just be careful not to create a loop. . .

125 / 1

Multi-file Programs

Points:

• We use quotes in the #include. The <> indicates a
standard system header, while "" indicates a specific file
name

• extern says “here is the type, the actual definition is
somewhere else”

• g is actually defined in the first file: it is a matter of taste or
code management where you actually define it, but it must
be defined somewhere

#include can be nested, i.e., an included file can include
another: it works

Just be careful not to create a loop. . .

126 / 1

Multi-file Programs

Points:

• We use quotes in the #include. The <> indicates a
standard system header, while "" indicates a specific file
name

• extern says “here is the type, the actual definition is
somewhere else”

• g is actually defined in the first file: it is a matter of taste or
code management where you actually define it, but it must
be defined somewhere

#include can be nested, i.e., an included file can include
another: it works

Just be careful not to create a loop. . .

127 / 1

Multi-file Programs

Points:

• We use quotes in the #include. The <> indicates a
standard system header, while "" indicates a specific file
name

• extern says “here is the type, the actual definition is
somewhere else”

• g is actually defined in the first file: it is a matter of taste or
code management where you actually define it, but it must
be defined somewhere

#include can be nested, i.e., an included file can include
another: it works

Just be careful not to create a loop. . .

128 / 1

Multi-file Programs

Exercise. Find out what would happen if we put the static
declaration into the header file or if we left out the definition of g

Exercise. Find out how to collect several .o files together in a
single library .a file; then look up the compiler -L option

Exercise. Find out how to make and use shared library .so files

Exercise. Look at make and Makefiles as a simple way of
managing multi-file programs

129 / 1

Declarations

Exercise. Sometimes functions need to refer to each other

int foo(int n)

{

... bar(n + 1) ...

}

int bar(int m)

{

... foo(m - 1) ...

}

The C compiler needs to know the type of bar before compiling
foo and the type of foo before compiling bar. What
declarations would keep the compiler happy?

130 / 1

Preprocessor

We finish with a brief look at C’s preprocessing language

Before the source code is compiled it is sent through the C
preprocessor, CPP

This is a program that textually manipulates the code

It does not understand the syntax of C terribly well, it merely
pushes parts of the text about

The result of this is then passed on to the C compiler proper

131 / 1

Preprocessor

We finish with a brief look at C’s preprocessing language

Before the source code is compiled it is sent through the C
preprocessor, CPP

This is a program that textually manipulates the code

It does not understand the syntax of C terribly well, it merely
pushes parts of the text about

The result of this is then passed on to the C compiler proper

132 / 1

Preprocessor

We finish with a brief look at C’s preprocessing language

Before the source code is compiled it is sent through the C
preprocessor, CPP

This is a program that textually manipulates the code

It does not understand the syntax of C terribly well, it merely
pushes parts of the text about

The result of this is then passed on to the C compiler proper

133 / 1

Preprocessor

We finish with a brief look at C’s preprocessing language

Before the source code is compiled it is sent through the C
preprocessor, CPP

This is a program that textually manipulates the code

It does not understand the syntax of C terribly well, it merely
pushes parts of the text about

The result of this is then passed on to the C compiler proper

134 / 1

Preprocessor

We finish with a brief look at C’s preprocessing language

Before the source code is compiled it is sent through the C
preprocessor, CPP

This is a program that textually manipulates the code

It does not understand the syntax of C terribly well, it merely
pushes parts of the text about

The result of this is then passed on to the C compiler proper

135 / 1

Preprocessor

One element of this we have seen many times already:
#include

When CPP sees this it reads the named file and places its
contents in the source at the indicated position

It doesn’t need to be a header file, and the directive doesn’t
need to be at the start of the C file

But, unless you are doing some devious tricks, this is your most
likely use

136 / 1

Preprocessor

One element of this we have seen many times already:
#include

When CPP sees this it reads the named file and places its
contents in the source at the indicated position

It doesn’t need to be a header file, and the directive doesn’t
need to be at the start of the C file

But, unless you are doing some devious tricks, this is your most
likely use

137 / 1

Preprocessor

One element of this we have seen many times already:
#include

When CPP sees this it reads the named file and places its
contents in the source at the indicated position

It doesn’t need to be a header file, and the directive doesn’t
need to be at the start of the C file

But, unless you are doing some devious tricks, this is your most
likely use

138 / 1

Preprocessor

One element of this we have seen many times already:
#include

When CPP sees this it reads the named file and places its
contents in the source at the indicated position

It doesn’t need to be a header file, and the directive doesn’t
need to be at the start of the C file

But, unless you are doing some devious tricks, this is your most
likely use

139 / 1

Preprocessor

So #include is mostly used so include standard bits of
program (usually declarations) that we don’t want to write
repeatedly in every program file

The #define directive defines a symbol, or macro, in CPP

For example
#define PI 3.141

Thereafter whenever CPP sees PI it textually replaces it with
3.141

x = 2.0*PI; becomes x = 2.0*3.141;

140 / 1

Preprocessor

So #include is mostly used so include standard bits of
program (usually declarations) that we don’t want to write
repeatedly in every program file

The #define directive defines a symbol, or macro, in CPP

For example
#define PI 3.141

Thereafter whenever CPP sees PI it textually replaces it with
3.141

x = 2.0*PI; becomes x = 2.0*3.141;

141 / 1

Preprocessor

So #include is mostly used so include standard bits of
program (usually declarations) that we don’t want to write
repeatedly in every program file

The #define directive defines a symbol, or macro, in CPP

For example
#define PI 3.141

Thereafter whenever CPP sees PI it textually replaces it with
3.141

x = 2.0*PI; becomes x = 2.0*3.141;

142 / 1

Preprocessor

So #include is mostly used so include standard bits of
program (usually declarations) that we don’t want to write
repeatedly in every program file

The #define directive defines a symbol, or macro, in CPP

For example
#define PI 3.141

Thereafter whenever CPP sees PI it textually replaces it with
3.141

x = 2.0*PI; becomes x = 2.0*3.141;

143 / 1

Preprocessor

So #include is mostly used so include standard bits of
program (usually declarations) that we don’t want to write
repeatedly in every program file

The #define directive defines a symbol, or macro, in CPP

For example
#define PI 3.141

Thereafter whenever CPP sees PI it textually replaces it with
3.141

x = 2.0*PI; becomes x = 2.0*3.141;

144 / 1

Preprocessor

The replacement text can be anything we like, including other
CPP symbols

If
#define P2 PI*PI
then
x = 1.0/P2;
becomes
x = 1.0/3.141*3.141;

Notice any problem?

145 / 1

Preprocessor

The replacement text can be anything we like, including other
CPP symbols

If
#define P2 PI*PI
then
x = 1.0/P2;
becomes
x = 1.0/3.141*3.141;

Notice any problem?

146 / 1

Preprocessor

Because CPP does textual processing, it doesn’t care about
the semantics of C programs

It doesn’t know that you probably meant
x = 1.0/(3.141*3.141);
and not
x = (1.0/3.141)*3.141;
which is C’s interpretation of the expression without
parentheses

So if you want the parentheses, you’ll have to put them in
yourself in the definition

#define P2 (PI*PI)

We now get x = 1.0/P2; -> x = 1.0/(3.141*3.141);

147 / 1

Preprocessor

Because CPP does textual processing, it doesn’t care about
the semantics of C programs

It doesn’t know that you probably meant
x = 1.0/(3.141*3.141);
and not
x = (1.0/3.141)*3.141;
which is C’s interpretation of the expression without
parentheses

So if you want the parentheses, you’ll have to put them in
yourself in the definition

#define P2 (PI*PI)

We now get x = 1.0/P2; -> x = 1.0/(3.141*3.141);

148 / 1

Preprocessor

Because CPP does textual processing, it doesn’t care about
the semantics of C programs

It doesn’t know that you probably meant
x = 1.0/(3.141*3.141);
and not
x = (1.0/3.141)*3.141;
which is C’s interpretation of the expression without
parentheses

So if you want the parentheses, you’ll have to put them in
yourself in the definition

#define P2 (PI*PI)

We now get x = 1.0/P2; -> x = 1.0/(3.141*3.141);

149 / 1

Preprocessor

Because CPP does textual processing, it doesn’t care about
the semantics of C programs

It doesn’t know that you probably meant
x = 1.0/(3.141*3.141);
and not
x = (1.0/3.141)*3.141;
which is C’s interpretation of the expression without
parentheses

So if you want the parentheses, you’ll have to put them in
yourself in the definition

#define P2 (PI*PI)

We now get x = 1.0/P2; -> x = 1.0/(3.141*3.141);

150 / 1

Preprocessor

Because CPP does textual processing, it doesn’t care about
the semantics of C programs

It doesn’t know that you probably meant
x = 1.0/(3.141*3.141);
and not
x = (1.0/3.141)*3.141;
which is C’s interpretation of the expression without
parentheses

So if you want the parentheses, you’ll have to put them in
yourself in the definition

#define P2 (PI*PI)

We now get x = 1.0/P2; -> x = 1.0/(3.141*3.141);

151 / 1

Preprocessor

Macros can take arguments
#define mul(a, b) a*b

Now mul(1+2,3+4) -> 1+2*3+4

So put in the parentheses
#define mul(a, b) (a)*(b)
mul(1+2,3+4) -> (1+2)*(3+4)

What of 1/mul(1+2,3+4)?

This will be 1/(1+2)*(3+4)

152 / 1

Preprocessor

Macros can take arguments
#define mul(a, b) a*b

Now mul(1+2,3+4) -> 1+2*3+4

So put in the parentheses
#define mul(a, b) (a)*(b)
mul(1+2,3+4) -> (1+2)*(3+4)

What of 1/mul(1+2,3+4)?

This will be 1/(1+2)*(3+4)

153 / 1

Preprocessor

Macros can take arguments
#define mul(a, b) a*b

Now mul(1+2,3+4) -> 1+2*3+4

So put in the parentheses
#define mul(a, b) (a)*(b)
mul(1+2,3+4) -> (1+2)*(3+4)

What of 1/mul(1+2,3+4)?

This will be 1/(1+2)*(3+4)

154 / 1

Preprocessor

Macros can take arguments
#define mul(a, b) a*b

Now mul(1+2,3+4) -> 1+2*3+4

So put in the parentheses
#define mul(a, b) (a)*(b)
mul(1+2,3+4) -> (1+2)*(3+4)

What of 1/mul(1+2,3+4)?

This will be 1/(1+2)*(3+4)

155 / 1

Preprocessor

Macros can take arguments
#define mul(a, b) a*b

Now mul(1+2,3+4) -> 1+2*3+4

So put in the parentheses
#define mul(a, b) (a)*(b)
mul(1+2,3+4) -> (1+2)*(3+4)

What of 1/mul(1+2,3+4)?

This will be 1/(1+2)*(3+4)

156 / 1

Preprocessor

So, to be safe, put parentheses everywhere

#define mul(a, b) ((a)*(b))

Now 1/mul(1+2,3+4) -> 1/((1+2)*(3+4))

157 / 1

Preprocessor

So, to be safe, put parentheses everywhere

#define mul(a, b) ((a)*(b))

Now 1/mul(1+2,3+4) -> 1/((1+2)*(3+4))

158 / 1

Preprocessor

So, to be safe, put parentheses everywhere

#define mul(a, b) ((a)*(b))

Now 1/mul(1+2,3+4) -> 1/((1+2)*(3+4))

159 / 1

Preprocessor

These are just small examples to show the problems that can
arise

In real programs macros are useful tools for naming things and
making code easier to read

Or harder to read. . .

160 / 1

Preprocessor

These are just small examples to show the problems that can
arise

In real programs macros are useful tools for naming things and
making code easier to read

Or harder to read. . .

161 / 1

Preprocessor

These are just small examples to show the problems that can
arise

In real programs macros are useful tools for naming things and
making code easier to read

Or harder to read. . .

162 / 1

Preprocessor

Many standard headers define useful symbols

For example, math.h defines several symbols starting M (to
avoid name clashes with user-defined symbols)

• M PI

• M E

• M PI 2 for π/2
• M SQRT2

• and more, all often needed in programs

Exercise. Find out what symbols are defined in math.h and
other common header files

163 / 1

Preprocessor

Many standard headers define useful symbols

For example, math.h defines several symbols starting M (to
avoid name clashes with user-defined symbols)

• M PI

• M E

• M PI 2 for π/2
• M SQRT2

• and more, all often needed in programs

Exercise. Find out what symbols are defined in math.h and
other common header files

164 / 1

Preprocessor

Many standard headers define useful symbols

For example, math.h defines several symbols starting M (to
avoid name clashes with user-defined symbols)

• M PI

• M E

• M PI 2 for π/2
• M SQRT2

• and more, all often needed in programs

Exercise. Find out what symbols are defined in math.h and
other common header files

165 / 1

Preprocessor

The CPP also has conditional compilation

y = 2.0;

#ifdef FAST

x = y - y*y*y/6;

#else

x = sin(y);

#endif

z = x + x;

CPP symbols are conventionally all upper-case

166 / 1

Preprocessor

If the symbol FAST is #defined the x = y - y*y*y/6; part
of the text is kept and the x = sin(y); is discarded

The code effectively becomes

y = 2.0;

x = y - y*y*y/6;

z = x + x;

167 / 1

Preprocessor

If the symbol FAST is #defined the x = y - y*y*y/6; part
of the text is kept and the x = sin(y); is discarded

The code effectively becomes

y = 2.0;

x = y - y*y*y/6;

z = x + x;

168 / 1

Preprocessor

If FAST is not defined, we get

y = 2.0;

x = sin(y);

z = x + x;

169 / 1

Preprocessor

The symbol FAST need not have any particular value, we can
even do
#define FAST
to make it defined with an empty value

This kind of thing is very useful when you need minor variants
on a basic program, but don’t want to have to rewrite the whole
program for each variant

#ifdef...#else...#endif nests as you might expect

Another good source of unreadable code when taken too far

170 / 1

Preprocessor

The symbol FAST need not have any particular value, we can
even do
#define FAST
to make it defined with an empty value

This kind of thing is very useful when you need minor variants
on a basic program, but don’t want to have to rewrite the whole
program for each variant

#ifdef...#else...#endif nests as you might expect

Another good source of unreadable code when taken too far

171 / 1

Preprocessor

The symbol FAST need not have any particular value, we can
even do
#define FAST
to make it defined with an empty value

This kind of thing is very useful when you need minor variants
on a basic program, but don’t want to have to rewrite the whole
program for each variant

#ifdef...#else...#endif nests as you might expect

Another good source of unreadable code when taken too far

172 / 1

Preprocessor

The symbol FAST need not have any particular value, we can
even do
#define FAST
to make it defined with an empty value

This kind of thing is very useful when you need minor variants
on a basic program, but don’t want to have to rewrite the whole
program for each variant

#ifdef...#else...#endif nests as you might expect

Another good source of unreadable code when taken too far

173 / 1

Preprocessor

To find out what CPP is doing to your program
cc -E myprog.c
will run just the preprocessor and show the result

You will be surprised how much there is in the included files!

One final warning: watch out for strange semantics of
macroexpansion. They are well-defined, but probably not what
you think

It is only a problem if you start doing tricks with CPP

See the Obfuscated C Competition

174 / 1

Preprocessor

To find out what CPP is doing to your program
cc -E myprog.c
will run just the preprocessor and show the result

You will be surprised how much there is in the included files!

One final warning: watch out for strange semantics of
macroexpansion. They are well-defined, but probably not what
you think

It is only a problem if you start doing tricks with CPP

See the Obfuscated C Competition

175 / 1

Preprocessor

To find out what CPP is doing to your program
cc -E myprog.c
will run just the preprocessor and show the result

You will be surprised how much there is in the included files!

One final warning: watch out for strange semantics of
macroexpansion. They are well-defined, but probably not what
you think

It is only a problem if you start doing tricks with CPP

See the Obfuscated C Competition

176 / 1

Preprocessor

To find out what CPP is doing to your program
cc -E myprog.c
will run just the preprocessor and show the result

You will be surprised how much there is in the included files!

One final warning: watch out for strange semantics of
macroexpansion. They are well-defined, but probably not what
you think

It is only a problem if you start doing tricks with CPP

See the Obfuscated C Competition

177 / 1

Preprocessor

To find out what CPP is doing to your program
cc -E myprog.c
will run just the preprocessor and show the result

You will be surprised how much there is in the included files!

One final warning: watch out for strange semantics of
macroexpansion. They are well-defined, but probably not what
you think

It is only a problem if you start doing tricks with CPP

See the Obfuscated C Competition

178 / 1

Preprocessor

Exercise. Look up #if

Exercise. Look up stringification and token pasting

Exercise. What does
#define x y

#define y x
x++;
do (or not do)?

Exercise. Browse the Obfuscated C Competition
http://www.no.ioccc.org/years.html

179 / 1

http://www.no.ioccc.org/years.html

NULL

Exercise. Learn about switch, break, enum, const, restrict
and other C keywords

Exercise. Learn about defining and using functions that take a
variable number of arguments (e.g., printf): varargs

Exercise. Read up on C variants, e.g., C++, Objective C,
CUDA, Unified Parallel C, etc.

180 / 1

NULL

Exercise. Write lots of C programs

Exercise. Learn C

181 / 1

