
CM20214/221
Now for something completely different

So now you have seen

• Procedural style programming: C and others
• Object Oriented style programming: Java and others
• No style: unstructured things like Basic and assembler

We now turn to the Functional style

1 / 77



CM20214/221
Now for something completely different

So now you have seen

• Procedural style programming: C and others

• Object Oriented style programming: Java and others
• No style: unstructured things like Basic and assembler

We now turn to the Functional style

2 / 77



CM20214/221
Now for something completely different

So now you have seen

• Procedural style programming: C and others
• Object Oriented style programming: Java and others

• No style: unstructured things like Basic and assembler

We now turn to the Functional style

3 / 77



CM20214/221
Now for something completely different

So now you have seen

• Procedural style programming: C and others
• Object Oriented style programming: Java and others
• No style: unstructured things like Basic and assembler

We now turn to the Functional style

4 / 77



CM20214/221
Now for something completely different

So now you have seen

• Procedural style programming: C and others
• Object Oriented style programming: Java and others
• No style: unstructured things like Basic and assembler

We now turn to the Functional style

5 / 77



Books

For Lisp and functional programming I like

• “The Little Lisper” Friedman and Felleisen
• “The Little Schemer” Friedman and Felleisen
• “Structure and Interpretation of Computer Programs”

Abelson and Sussman. Probably ought to be read by all
Computer Scientists whether they are interested in Lisp or
not.

• “Object-Oriented Programming: The CLOS Approach”
Paepcke

• “The Art of the Metaobject Protocol” Kiczales et al

6 / 77



Functional Style

The functional style is quite different from OO and procedural

Some people have problems with the functional style

But quite often, the functional style is closer to the way we think
than other styles

We’ve been corrupted by the other styles so much that we can
find it harder to get a natural solution to a problem

Learning the Functional style means warping your brain

Actually, unwarping your brain. . .

7 / 77



Functional Style

The functional style is quite different from OO and procedural

Some people have problems with the functional style

But quite often, the functional style is closer to the way we think
than other styles

We’ve been corrupted by the other styles so much that we can
find it harder to get a natural solution to a problem

Learning the Functional style means warping your brain

Actually, unwarping your brain. . .

8 / 77



Functional Style

The functional style is quite different from OO and procedural

Some people have problems with the functional style

But quite often, the functional style is closer to the way we think
than other styles

We’ve been corrupted by the other styles so much that we can
find it harder to get a natural solution to a problem

Learning the Functional style means warping your brain

Actually, unwarping your brain. . .

9 / 77



Functional Style

The functional style is quite different from OO and procedural

Some people have problems with the functional style

But quite often, the functional style is closer to the way we think
than other styles

We’ve been corrupted by the other styles so much that we can
find it harder to get a natural solution to a problem

Learning the Functional style means warping your brain

Actually, unwarping your brain. . .

10 / 77



Functional Style

The functional style is quite different from OO and procedural

Some people have problems with the functional style

But quite often, the functional style is closer to the way we think
than other styles

We’ve been corrupted by the other styles so much that we can
find it harder to get a natural solution to a problem

Learning the Functional style means warping your brain

Actually, unwarping your brain. . .

11 / 77



Functional Style

The functional style is quite different from OO and procedural

Some people have problems with the functional style

But quite often, the functional style is closer to the way we think
than other styles

We’ve been corrupted by the other styles so much that we can
find it harder to get a natural solution to a problem

Learning the Functional style means warping your brain

Actually, unwarping your brain. . .

12 / 77



Functional Style

A problem: add together a list of numbers

We think: “take the numbers and add them”

We don’t think: “Well, I need a loop variable to iterate over this
list and a variable to accumulate the sum and . . . ”

We don’t think: “We need to get the add method for integers
and . . . ”

The functional solution is “take the numbers and add them”

“Apply ‘plus’ down this list of numbers”

“apply(+, [1,2,3])”

13 / 77



Functional Style

A problem: add together a list of numbers

We think: “take the numbers and add them”

We don’t think: “Well, I need a loop variable to iterate over this
list and a variable to accumulate the sum and . . . ”

We don’t think: “We need to get the add method for integers
and . . . ”

The functional solution is “take the numbers and add them”

“Apply ‘plus’ down this list of numbers”

“apply(+, [1,2,3])”

14 / 77



Functional Style

A problem: add together a list of numbers

We think: “take the numbers and add them”

We don’t think: “Well, I need a loop variable to iterate over this
list and a variable to accumulate the sum and . . . ”

We don’t think: “We need to get the add method for integers
and . . . ”

The functional solution is “take the numbers and add them”

“Apply ‘plus’ down this list of numbers”

“apply(+, [1,2,3])”

15 / 77



Functional Style

A problem: add together a list of numbers

We think: “take the numbers and add them”

We don’t think: “Well, I need a loop variable to iterate over this
list and a variable to accumulate the sum and . . . ”

We don’t think: “We need to get the add method for integers
and . . . ”

The functional solution is “take the numbers and add them”

“Apply ‘plus’ down this list of numbers”

“apply(+, [1,2,3])”

16 / 77



Functional Style

A problem: add together a list of numbers

We think: “take the numbers and add them”

We don’t think: “Well, I need a loop variable to iterate over this
list and a variable to accumulate the sum and . . . ”

We don’t think: “We need to get the add method for integers
and . . . ”

The functional solution is “take the numbers and add them”

“Apply ‘plus’ down this list of numbers”

“apply(+, [1,2,3])”

17 / 77



Functional Style

A problem: add together a list of numbers

We think: “take the numbers and add them”

We don’t think: “Well, I need a loop variable to iterate over this
list and a variable to accumulate the sum and . . . ”

We don’t think: “We need to get the add method for integers
and . . . ”

The functional solution is “take the numbers and add them”

“Apply ‘plus’ down this list of numbers”

“apply(+, [1,2,3])”

18 / 77



Functional Style

A problem: add together a list of numbers

We think: “take the numbers and add them”

We don’t think: “Well, I need a loop variable to iterate over this
list and a variable to accumulate the sum and . . . ”

We don’t think: “We need to get the add method for integers
and . . . ”

The functional solution is “take the numbers and add them”

“Apply ‘plus’ down this list of numbers”

“apply(+, [1,2,3])”

19 / 77



Functional Style

Then multiplying a list of numbers is the same

“apply(*, [1,2,3])”

Not a new separate for loop with multiplies instead of adds

You have a much higher view of what you are trying to achieve
rather than language-level details of how to implement it

20 / 77



Functional Style

Then multiplying a list of numbers is the same

“apply(*, [1,2,3])”

Not a new separate for loop with multiplies instead of adds

You have a much higher view of what you are trying to achieve
rather than language-level details of how to implement it

21 / 77



Functional Style

Then multiplying a list of numbers is the same

“apply(*, [1,2,3])”

Not a new separate for loop with multiplies instead of adds

You have a much higher view of what you are trying to achieve
rather than language-level details of how to implement it

22 / 77



Functional Style

Then multiplying a list of numbers is the same

“apply(*, [1,2,3])”

Not a new separate for loop with multiplies instead of adds

You have a much higher view of what you are trying to achieve
rather than language-level details of how to implement it

23 / 77



Functional Style

To some extent, you need to forget put aside the stuff you
learned in C and Java and start again

One big error for someone new to the functional style is to try to
program a functional language in a procedural style

It doesn’t work

For example, some versions of Lisp (a functional language)
don’t have iterative (‘for’) loops in the way C and Java do

If you find yourself having problems programming in a
functional style: stop, step back and reappraise the situation

You are most likely trying to force a procedural (or other) style

24 / 77



Functional Style

To some extent, you need to forget put aside the stuff you
learned in C and Java and start again

One big error for someone new to the functional style is to try to
program a functional language in a procedural style

It doesn’t work

For example, some versions of Lisp (a functional language)
don’t have iterative (‘for’) loops in the way C and Java do

If you find yourself having problems programming in a
functional style: stop, step back and reappraise the situation

You are most likely trying to force a procedural (or other) style

25 / 77



Functional Style

To some extent, you need to forget put aside the stuff you
learned in C and Java and start again

One big error for someone new to the functional style is to try to
program a functional language in a procedural style

It doesn’t work

For example, some versions of Lisp (a functional language)
don’t have iterative (‘for’) loops in the way C and Java do

If you find yourself having problems programming in a
functional style: stop, step back and reappraise the situation

You are most likely trying to force a procedural (or other) style

26 / 77



Functional Style

To some extent, you need to forget put aside the stuff you
learned in C and Java and start again

One big error for someone new to the functional style is to try to
program a functional language in a procedural style

It doesn’t work

For example, some versions of Lisp (a functional language)
don’t have iterative (‘for’) loops in the way C and Java do

If you find yourself having problems programming in a
functional style: stop, step back and reappraise the situation

You are most likely trying to force a procedural (or other) style

27 / 77



Functional Style

To some extent, you need to forget put aside the stuff you
learned in C and Java and start again

One big error for someone new to the functional style is to try to
program a functional language in a procedural style

It doesn’t work

For example, some versions of Lisp (a functional language)
don’t have iterative (‘for’) loops in the way C and Java do

If you find yourself having problems programming in a
functional style: stop, step back and reappraise the situation

You are most likely trying to force a procedural (or other) style

28 / 77



Functional Style

To some extent, you need to forget put aside the stuff you
learned in C and Java and start again

One big error for someone new to the functional style is to try to
program a functional language in a procedural style

It doesn’t work

For example, some versions of Lisp (a functional language)
don’t have iterative (‘for’) loops in the way C and Java do

If you find yourself having problems programming in a
functional style: stop, step back and reappraise the situation

You are most likely trying to force a procedural (or other) style

29 / 77



Functional Style

But, in the other direction, the things we learn from the
functional style are often applicable to other languages

The “map-reduce” operation that Google relies on for its
massive scalability is a functional idea re-implemented in C

Exercise. Look up Hadoop

30 / 77



Functional Style

But, in the other direction, the things we learn from the
functional style are often applicable to other languages

The “map-reduce” operation that Google relies on for its
massive scalability is a functional idea re-implemented in C

Exercise. Look up Hadoop

31 / 77



Functional Style

But, in the other direction, the things we learn from the
functional style are often applicable to other languages

The “map-reduce” operation that Google relies on for its
massive scalability is a functional idea re-implemented in C

Exercise. Look up Hadoop

32 / 77



Functional Style

The functional style is based on

• the evaluation of functions.

So far no difference

• avoiding global state.

Just like OO

• avoid changes of state.

Eh?

33 / 77



Functional Style

The functional style is based on

• the evaluation of functions.

So far no difference
• avoiding global state.

Just like OO

• avoid changes of state.

Eh?

34 / 77



Functional Style

The functional style is based on

• the evaluation of functions. So far no difference

• avoiding global state.

Just like OO

• avoid changes of state.

Eh?

35 / 77



Functional Style

The functional style is based on

• the evaluation of functions. So far no difference
• avoiding global state.

Just like OO
• avoid changes of state.

Eh?

36 / 77



Functional Style

The functional style is based on

• the evaluation of functions. So far no difference
• avoiding global state. Just like OO

• avoid changes of state.

Eh?

37 / 77



Functional Style

The functional style is based on

• the evaluation of functions. So far no difference
• avoiding global state. Just like OO
• avoid changes of state.

Eh?

38 / 77



Functional Style

The functional style is based on

• the evaluation of functions. So far no difference
• avoiding global state. Just like OO
• avoid changes of state. Eh?

39 / 77



Functional Style
State

State is essentially the value of the variables

Global state is bad as different parts of the program can
interfere with the state causing unexpected results

Particularly when we come to large systems with many
programmers; and parallel programming

So OO captures state within objects and only allows controlled
access via methods

Functional programs capture state within functions and only
allow access via function evaluation

40 / 77



Functional Style
State

State is essentially the value of the variables

Global state is bad as different parts of the program can
interfere with the state causing unexpected results

Particularly when we come to large systems with many
programmers; and parallel programming

So OO captures state within objects and only allows controlled
access via methods

Functional programs capture state within functions and only
allow access via function evaluation

41 / 77



Functional Style
State

State is essentially the value of the variables

Global state is bad as different parts of the program can
interfere with the state causing unexpected results

Particularly when we come to large systems with many
programmers; and parallel programming

So OO captures state within objects and only allows controlled
access via methods

Functional programs capture state within functions and only
allow access via function evaluation

42 / 77



Functional Style
State

State is essentially the value of the variables

Global state is bad as different parts of the program can
interfere with the state causing unexpected results

Particularly when we come to large systems with many
programmers; and parallel programming

So OO captures state within objects and only allows controlled
access via methods

Functional programs capture state within functions and only
allow access via function evaluation

43 / 77



Functional Style
State

State is essentially the value of the variables

Global state is bad as different parts of the program can
interfere with the state causing unexpected results

Particularly when we come to large systems with many
programmers; and parallel programming

So OO captures state within objects and only allows controlled
access via methods

Functional programs capture state within functions and only
allow access via function evaluation

44 / 77



Functional Style
State

A big problem is when we try to analyse a program for
correctness

The issue is that variables vary

In mathematics an x here is the same as the x there

We can make deductions and proofs and so on

In a program x might have changed while we were not looking

x = 7;

wibble(y);

// what is the value of x here?

45 / 77



Functional Style
State

A big problem is when we try to analyse a program for
correctness

The issue is that variables vary

In mathematics an x here is the same as the x there

We can make deductions and proofs and so on

In a program x might have changed while we were not looking

x = 7;

wibble(y);

// what is the value of x here?

46 / 77



Functional Style
State

A big problem is when we try to analyse a program for
correctness

The issue is that variables vary

In mathematics an x here is the same as the x there

We can make deductions and proofs and so on

In a program x might have changed while we were not looking

x = 7;

wibble(y);

// what is the value of x here?

47 / 77



Functional Style
State

A big problem is when we try to analyse a program for
correctness

The issue is that variables vary

In mathematics an x here is the same as the x there

We can make deductions and proofs and so on

In a program x might have changed while we were not looking

x = 7;

wibble(y);

// what is the value of x here?

48 / 77



Functional Style
State

A big problem is when we try to analyse a program for
correctness

The issue is that variables vary

In mathematics an x here is the same as the x there

We can make deductions and proofs and so on

In a program x might have changed while we were not looking

x = 7;

wibble(y);

// what is the value of x here?

49 / 77



Functional Style
State

A big problem is when we try to analyse a program for
correctness

The issue is that variables vary

In mathematics an x here is the same as the x there

We can make deductions and proofs and so on

In a program x might have changed while we were not looking

x = 7;

wibble(y);

// what is the value of x here?

50 / 77



Functional Style
State

In the functional style we mimic the mathematical idea by never
updating a variable

So the x here has the same value as the x there (within a block)

We can then do a mathematical style analysis to prove things,
e.g., correctness, about our program

It also gives us referential transparency

51 / 77



Functional Style
State

In the functional style we mimic the mathematical idea by never
updating a variable

So the x here has the same value as the x there (within a block)

We can then do a mathematical style analysis to prove things,
e.g., correctness, about our program

It also gives us referential transparency

52 / 77



Functional Style
State

In the functional style we mimic the mathematical idea by never
updating a variable

So the x here has the same value as the x there (within a block)

We can then do a mathematical style analysis to prove things,
e.g., correctness, about our program

It also gives us referential transparency

53 / 77



Functional Style
State

In the functional style we mimic the mathematical idea by never
updating a variable

So the x here has the same value as the x there (within a block)

We can then do a mathematical style analysis to prove things,
e.g., correctness, about our program

It also gives us referential transparency

54 / 77



Functional Style
Referential Transparency

A chunk of code is referentially transparent if it is not
dependent on its environment : this is the values of the
variables outside of the chunk

So it can’t read any variable from its environment

And it can’t update any variable from its environment

55 / 77



Functional Style
Referential Transparency

A chunk of code is referentially transparent if it is not
dependent on its environment : this is the values of the
variables outside of the chunk

So it can’t read any variable from its environment

And it can’t update any variable from its environment

56 / 77



Functional Style
Referential Transparency

A chunk of code is referentially transparent if it is not
dependent on its environment : this is the values of the
variables outside of the chunk

So it can’t read any variable from its environment

And it can’t update any variable from its environment

57 / 77



Functional Style
Referential Transparency

As a referentially transparent chunk of code does not depend
on its environment we can pick it up and use it somewhere else

And it will work correctly!

This is software reuse

58 / 77



Functional Style
Referential Transparency

As a referentially transparent chunk of code does not depend
on its environment we can pick it up and use it somewhere else

And it will work correctly!

This is software reuse

59 / 77



Functional Style
Referential Transparency

As a referentially transparent chunk of code does not depend
on its environment we can pick it up and use it somewhere else

And it will work correctly!

This is software reuse

60 / 77



Functional Style
Referential Transparency

A function is called purely functional if it has no side effects

That is it doesn’t interfere with the environment/global state

So a purely functional function is referentially transparent

Many functions, e.g., sin, sqrt, are naturally purely functional

Which is why we can use them anywhere

And get the same result for the same argument every time

And using them does not affect any other part of the system

61 / 77



Functional Style
Referential Transparency

A function is called purely functional if it has no side effects

That is it doesn’t interfere with the environment/global state

So a purely functional function is referentially transparent

Many functions, e.g., sin, sqrt, are naturally purely functional

Which is why we can use them anywhere

And get the same result for the same argument every time

And using them does not affect any other part of the system

62 / 77



Functional Style
Referential Transparency

A function is called purely functional if it has no side effects

That is it doesn’t interfere with the environment/global state

So a purely functional function is referentially transparent

Many functions, e.g., sin, sqrt, are naturally purely functional

Which is why we can use them anywhere

And get the same result for the same argument every time

And using them does not affect any other part of the system

63 / 77



Functional Style
Referential Transparency

A function is called purely functional if it has no side effects

That is it doesn’t interfere with the environment/global state

So a purely functional function is referentially transparent

Many functions, e.g., sin, sqrt, are naturally purely functional

Which is why we can use them anywhere

And get the same result for the same argument every time

And using them does not affect any other part of the system

64 / 77



Functional Style
Referential Transparency

A function is called purely functional if it has no side effects

That is it doesn’t interfere with the environment/global state

So a purely functional function is referentially transparent

Many functions, e.g., sin, sqrt, are naturally purely functional

Which is why we can use them anywhere

And get the same result for the same argument every time

And using them does not affect any other part of the system

65 / 77



Functional Style
Referential Transparency

A function is called purely functional if it has no side effects

That is it doesn’t interfere with the environment/global state

So a purely functional function is referentially transparent

Many functions, e.g., sin, sqrt, are naturally purely functional

Which is why we can use them anywhere

And get the same result for the same argument every time

And using them does not affect any other part of the system

66 / 77



Functional Style
Referential Transparency

A function is called purely functional if it has no side effects

That is it doesn’t interfere with the environment/global state

So a purely functional function is referentially transparent

Many functions, e.g., sin, sqrt, are naturally purely functional

Which is why we can use them anywhere

And get the same result for the same argument every time

And using them does not affect any other part of the system

67 / 77



Functional Style
Referential Transparency

Schulz

68 / 77



Functional Style
Referential Transparency

Code like

int f(int x) {

count++;

return x+1;

}

which counts the number of times f has been called is not
purely functional

It modifies a non-local variable count from its environment, but
which variable named count it modifies depends on where the
function definition happens to be placed

69 / 77



Functional Style
Referential Transparency

Code like

int f(int x) {

count++;

return x+1;

}

which counts the number of times f has been called is not
purely functional

It modifies a non-local variable count from its environment, but
which variable named count it modifies depends on where the
function definition happens to be placed

70 / 77



Functional Style

one.c: two.c:

#include <stdio.h> #include <stdio.h>

static int count = 1; static int count = 2;

extern void otherfoo(void);

static void foo(void) static void foo(void)

{ {

printf("foo %d\n", count); printf("foo %d\n", count);

} }

int main(void) void otherfoo(void)

{ {

foo(); foo();

otherfoo(); }

return 0;

}

71 / 77



Functional Style
Referential Transparency

So the behaviour of this code depends on where it is: it is not
referentially transparent

These are trivial examples but the idea expands to all code

72 / 77



Functional Style
Referential Transparency

So the behaviour of this code depends on where it is: it is not
referentially transparent

These are trivial examples but the idea expands to all code

73 / 77



Functional Style
Referential Transparency

OO tries to be referentially transparent by hiding state within an
object to prevent unexpected interactions between parts of
state; but then has global objects, so we’ve just pushed the
problem up a bit

It happens to be straightforward to implement OO inside a
functional language

As it originally was. Functional is much older than OO

74 / 77



Functional Style
Referential Transparency

OO tries to be referentially transparent by hiding state within an
object to prevent unexpected interactions between parts of
state; but then has global objects, so we’ve just pushed the
problem up a bit

It happens to be straightforward to implement OO inside a
functional language

As it originally was. Functional is much older than OO

75 / 77



Functional Style
Referential Transparency

OO tries to be referentially transparent by hiding state within an
object to prevent unexpected interactions between parts of
state; but then has global objects, so we’ve just pushed the
problem up a bit

It happens to be straightforward to implement OO inside a
functional language

As it originally was. Functional is much older than OO

76 / 77



Functional Style
Referential Transparency

Question to think on

If we can’t interact with the global environment, how can we do
input and output?

77 / 77



Functional Style
Referential Transparency

Question to think on

If we can’t interact with the global environment, how can we do
input and output?

78 / 77


