
Functional Style

Does not updating state mean no updating variables?

Correct!

What about things like
for (i = 0; i < 10; i++) ...

i is of essence varying, updated every time around the loop

So we can’t do loops like this

But we have to have repetition to have useful programs

1 / 119



Functional Style

Does not updating state mean no updating variables?

Correct!

What about things like
for (i = 0; i < 10; i++) ...

i is of essence varying, updated every time around the loop

So we can’t do loops like this

But we have to have repetition to have useful programs

2 / 119



Functional Style

Does not updating state mean no updating variables?

Correct!

What about things like
for (i = 0; i < 10; i++) ...

i is of essence varying, updated every time around the loop

So we can’t do loops like this

But we have to have repetition to have useful programs

3 / 119



Functional Style

Does not updating state mean no updating variables?

Correct!

What about things like
for (i = 0; i < 10; i++) ...

i is of essence varying, updated every time around the loop

So we can’t do loops like this

But we have to have repetition to have useful programs

4 / 119



Functional Style

Does not updating state mean no updating variables?

Correct!

What about things like
for (i = 0; i < 10; i++) ...

i is of essence varying, updated every time around the loop

So we can’t do loops like this

But we have to have repetition to have useful programs

5 / 119



Functional Style

Does not updating state mean no updating variables?

Correct!

What about things like
for (i = 0; i < 10; i++) ...

i is of essence varying, updated every time around the loop

So we can’t do loops like this

But we have to have repetition to have useful programs

6 / 119



Functional Style
Recursion

So we use recursion

Functional style programs use recursion as a fundamental tool

This has consequences, as we shall see

One is that it leads naturally to having functions as first class
objects

7 / 119



Functional Style
Recursion

So we use recursion

Functional style programs use recursion as a fundamental tool

This has consequences, as we shall see

One is that it leads naturally to having functions as first class
objects

8 / 119



Functional Style
Recursion

So we use recursion

Functional style programs use recursion as a fundamental tool

This has consequences, as we shall see

One is that it leads naturally to having functions as first class
objects

9 / 119



Functional Style
Recursion

So we use recursion

Functional style programs use recursion as a fundamental tool

This has consequences, as we shall see

One is that it leads naturally to having functions as first class
objects

10 / 119



Functional Style
Recursion

A first class object is an object (not in the OO sense, just some
thing) that is treated equally with all others

In particular it can be

• created and destroyed at runtime
• passed into a function as an argument
• returned from a function as a result

11 / 119



Functional Style
Recursion

A first class object is an object (not in the OO sense, just some
thing) that is treated equally with all others

In particular it can be

• created and destroyed at runtime
• passed into a function as an argument
• returned from a function as a result

12 / 119



Functional Style
Recursion

A first class object is an object (not in the OO sense, just some
thing) that is treated equally with all others

In particular it can be

• created and destroyed at runtime

• passed into a function as an argument
• returned from a function as a result

13 / 119



Functional Style
Recursion

A first class object is an object (not in the OO sense, just some
thing) that is treated equally with all others

In particular it can be

• created and destroyed at runtime
• passed into a function as an argument

• returned from a function as a result

14 / 119



Functional Style
Recursion

A first class object is an object (not in the OO sense, just some
thing) that is treated equally with all others

In particular it can be

• created and destroyed at runtime
• passed into a function as an argument
• returned from a function as a result

15 / 119



Functional Style
Recursion

So we are going to need functions that manipulate functions:
these are called higher order functions

We typically can have expressions involving functions

(if x > 0.0 then sin else cos)(3.0)

Other languages might do
if x > 0.0 then sin(3.0) else cos(3.0)

Again, a trivial (and contrived) example of a much bigger idea

16 / 119



Functional Style
Recursion

So we are going to need functions that manipulate functions:
these are called higher order functions

We typically can have expressions involving functions

(if x > 0.0 then sin else cos)(3.0)

Other languages might do
if x > 0.0 then sin(3.0) else cos(3.0)

Again, a trivial (and contrived) example of a much bigger idea

17 / 119



Functional Style
Recursion

So we are going to need functions that manipulate functions:
these are called higher order functions

We typically can have expressions involving functions

(if x > 0.0 then sin else cos)(3.0)

Other languages might do
if x > 0.0 then sin(3.0) else cos(3.0)

Again, a trivial (and contrived) example of a much bigger idea

18 / 119



Functional Style
Recursion

So we are going to need functions that manipulate functions:
these are called higher order functions

We typically can have expressions involving functions

(if x > 0.0 then sin else cos)(3.0)

Other languages might do
if x > 0.0 then sin(3.0) else cos(3.0)

Again, a trivial (and contrived) example of a much bigger idea

19 / 119



Functional Style
Recursion

So we are going to need functions that manipulate functions:
these are called higher order functions

We typically can have expressions involving functions

(if x > 0.0 then sin else cos)(3.0)

Other languages might do
if x > 0.0 then sin(3.0) else cos(3.0)

Again, a trivial (and contrived) example of a much bigger idea

20 / 119



Functional Style
Recursion

Exercise. Investigate

double foo(double x) {

return (x > 0.0 ? sin : cos)(3.0);

}

in C

21 / 119



Functional Style
Recursion

Anything that can be done with iteration (“for loops”) can be
done with recursion

But try iterating over a binary tree with a for loop. . .

With recursion it’s trivial

List: do the current value; recurse on the rest of the list

Tree: do the current value; recurse on the left subtree; recurse
on the right subtree

We will find that the idea of separating the action of traversal of
a datastructure from the operation on the elements of the
datastructure is prominent in the functional style

22 / 119



Functional Style
Recursion

Anything that can be done with iteration (“for loops”) can be
done with recursion

But try iterating over a binary tree with a for loop. . .

With recursion it’s trivial

List: do the current value; recurse on the rest of the list

Tree: do the current value; recurse on the left subtree; recurse
on the right subtree

We will find that the idea of separating the action of traversal of
a datastructure from the operation on the elements of the
datastructure is prominent in the functional style

23 / 119



Functional Style
Recursion

Anything that can be done with iteration (“for loops”) can be
done with recursion

But try iterating over a binary tree with a for loop. . .

With recursion it’s trivial

List: do the current value; recurse on the rest of the list

Tree: do the current value; recurse on the left subtree; recurse
on the right subtree

We will find that the idea of separating the action of traversal of
a datastructure from the operation on the elements of the
datastructure is prominent in the functional style

24 / 119



Functional Style
Recursion

Anything that can be done with iteration (“for loops”) can be
done with recursion

But try iterating over a binary tree with a for loop. . .

With recursion it’s trivial

List: do the current value; recurse on the rest of the list

Tree: do the current value; recurse on the left subtree; recurse
on the right subtree

We will find that the idea of separating the action of traversal of
a datastructure from the operation on the elements of the
datastructure is prominent in the functional style

25 / 119



Functional Style
Recursion

Anything that can be done with iteration (“for loops”) can be
done with recursion

But try iterating over a binary tree with a for loop. . .

With recursion it’s trivial

List: do the current value; recurse on the rest of the list

Tree: do the current value; recurse on the left subtree; recurse
on the right subtree

We will find that the idea of separating the action of traversal of
a datastructure from the operation on the elements of the
datastructure is prominent in the functional style

26 / 119



Functional Style
Recursion

Anything that can be done with iteration (“for loops”) can be
done with recursion

But try iterating over a binary tree with a for loop. . .

With recursion it’s trivial

List: do the current value; recurse on the rest of the list

Tree: do the current value; recurse on the left subtree; recurse
on the right subtree

We will find that the idea of separating the action of traversal of
a datastructure from the operation on the elements of the
datastructure is prominent in the functional style

27 / 119



Functional Style

There are many functional style languages out there

Some encourage the functional style, but let you do OO or
procedural style, too

Others enforce the functional style, e.g., by not having
assignment (variable update)

Some started off as procedural and moved towards functional

Some were designed from scratch as functional

28 / 119



Functional Style

There are many functional style languages out there

Some encourage the functional style, but let you do OO or
procedural style, too

Others enforce the functional style, e.g., by not having
assignment (variable update)

Some started off as procedural and moved towards functional

Some were designed from scratch as functional

29 / 119



Functional Style

There are many functional style languages out there

Some encourage the functional style, but let you do OO or
procedural style, too

Others enforce the functional style, e.g., by not having
assignment (variable update)

Some started off as procedural and moved towards functional

Some were designed from scratch as functional

30 / 119



Functional Style

There are many functional style languages out there

Some encourage the functional style, but let you do OO or
procedural style, too

Others enforce the functional style, e.g., by not having
assignment (variable update)

Some started off as procedural and moved towards functional

Some were designed from scratch as functional

31 / 119



Functional Style

There are many functional style languages out there

Some encourage the functional style, but let you do OO or
procedural style, too

Others enforce the functional style, e.g., by not having
assignment (variable update)

Some started off as procedural and moved towards functional

Some were designed from scratch as functional

32 / 119



Functional Style
Just a few names

• Lisp/Scheme (1959)
• APL (1964) “A Programming Language”
• ISWIM (1966) “If you See What I Mean”
• SASL (1972) “St. Andrews Static Language”
• ML/SML (1973) “Meta Language”
• Hope (1980)
• KRC (1981) “Kent Recursive Calculator”
• Miranda (1985)
• Erlang (1987)
• Haskell (1990)
• OCaml (1996)

33 / 119



Functional Style

Elements of functional ideas can be found in many modern
languages (which would not usually be thought of as “functional
languages”)

E.g., Python, Scala, C#, JavaScript, Rust and many more

Java has just introduced first class functions (lambdas)

Though there have been many previous attempts to add
functional style to Java, e.g., Pizza

34 / 119



Functional Style

Elements of functional ideas can be found in many modern
languages (which would not usually be thought of as “functional
languages”)

E.g., Python, Scala, C#, JavaScript, Rust and many more

Java has just introduced first class functions (lambdas)

Though there have been many previous attempts to add
functional style to Java, e.g., Pizza

35 / 119



Functional Style

Elements of functional ideas can be found in many modern
languages (which would not usually be thought of as “functional
languages”)

E.g., Python, Scala, C#, JavaScript, Rust and many more

Java has just introduced first class functions (lambdas)

Though there have been many previous attempts to add
functional style to Java, e.g., Pizza

36 / 119



Functional Style

Elements of functional ideas can be found in many modern
languages (which would not usually be thought of as “functional
languages”)

E.g., Python, Scala, C#, JavaScript, Rust and many more

Java has just introduced first class functions (lambdas)

Though there have been many previous attempts to add
functional style to Java, e.g., Pizza

37 / 119



Functional Style

Note that Lisp, OCaml and Haskell have OO systems as well as
being functional

In fact, their OO is much more powerful and flexible than Java
or C++

OO ideas were first developed in Lisp, before being added to C
(giving C++ and Objective-C) or being part of the design of Java

Later we shall look at metaboject protocols where the
behaviour of a OO system can be altered within the program

If you don’t like the way methods are chosen, or the way slots
are accessed in an object, change it

38 / 119



Functional Style

Note that Lisp, OCaml and Haskell have OO systems as well as
being functional

In fact, their OO is much more powerful and flexible than Java
or C++

OO ideas were first developed in Lisp, before being added to C
(giving C++ and Objective-C) or being part of the design of Java

Later we shall look at metaboject protocols where the
behaviour of a OO system can be altered within the program

If you don’t like the way methods are chosen, or the way slots
are accessed in an object, change it

39 / 119



Functional Style

Note that Lisp, OCaml and Haskell have OO systems as well as
being functional

In fact, their OO is much more powerful and flexible than Java
or C++

OO ideas were first developed in Lisp, before being added to C
(giving C++ and Objective-C) or being part of the design of Java

Later we shall look at metaboject protocols where the
behaviour of a OO system can be altered within the program

If you don’t like the way methods are chosen, or the way slots
are accessed in an object, change it

40 / 119



Functional Style

Note that Lisp, OCaml and Haskell have OO systems as well as
being functional

In fact, their OO is much more powerful and flexible than Java
or C++

OO ideas were first developed in Lisp, before being added to C
(giving C++ and Objective-C) or being part of the design of Java

Later we shall look at metaboject protocols where the
behaviour of a OO system can be altered within the program

If you don’t like the way methods are chosen, or the way slots
are accessed in an object, change it

41 / 119



Functional Style

Note that Lisp, OCaml and Haskell have OO systems as well as
being functional

In fact, their OO is much more powerful and flexible than Java
or C++

OO ideas were first developed in Lisp, before being added to C
(giving C++ and Objective-C) or being part of the design of Java

Later we shall look at metaboject protocols where the
behaviour of a OO system can be altered within the program

If you don’t like the way methods are chosen, or the way slots
are accessed in an object, change it

42 / 119



Functional Style

We are going to look at two major examples of functional
languages

That is, languages that encourage or force the functional style

• Lisp
• Haskell

Two languages that look and feel very different, but both
embrace the functional idea

43 / 119



Functional Style

We are going to look at two major examples of functional
languages

That is, languages that encourage or force the functional style

• Lisp
• Haskell

Two languages that look and feel very different, but both
embrace the functional idea

44 / 119



Functional Style

We are going to look at two major examples of functional
languages

That is, languages that encourage or force the functional style

• Lisp

• Haskell

Two languages that look and feel very different, but both
embrace the functional idea

45 / 119



Functional Style

We are going to look at two major examples of functional
languages

That is, languages that encourage or force the functional style

• Lisp
• Haskell

Two languages that look and feel very different, but both
embrace the functional idea

46 / 119



Functional Style

We are going to look at two major examples of functional
languages

That is, languages that encourage or force the functional style

• Lisp
• Haskell

Two languages that look and feel very different, but both
embrace the functional idea

47 / 119



Lisp

• First appeared in 1959

• Has a deceptively simple but powerful syntax
• So looks weird to those unused to it
• Originally procedural, but later discovered it was naturally

functional
• Both OO and functional ideas first developed in Lisp
• Very flexible as a language, doesn’t force any style
• Really a family of languages

48 / 119



Lisp

• First appeared in 1959
• Has a deceptively simple but powerful syntax

• So looks weird to those unused to it
• Originally procedural, but later discovered it was naturally

functional
• Both OO and functional ideas first developed in Lisp
• Very flexible as a language, doesn’t force any style
• Really a family of languages

49 / 119



Lisp

• First appeared in 1959
• Has a deceptively simple but powerful syntax
• So looks weird to those unused to it

• Originally procedural, but later discovered it was naturally
functional

• Both OO and functional ideas first developed in Lisp
• Very flexible as a language, doesn’t force any style
• Really a family of languages

50 / 119



Lisp

• First appeared in 1959
• Has a deceptively simple but powerful syntax
• So looks weird to those unused to it
• Originally procedural, but later discovered it was naturally

functional

• Both OO and functional ideas first developed in Lisp
• Very flexible as a language, doesn’t force any style
• Really a family of languages

51 / 119



Lisp

• First appeared in 1959
• Has a deceptively simple but powerful syntax
• So looks weird to those unused to it
• Originally procedural, but later discovered it was naturally

functional
• Both OO and functional ideas first developed in Lisp

• Very flexible as a language, doesn’t force any style
• Really a family of languages

52 / 119



Lisp

• First appeared in 1959
• Has a deceptively simple but powerful syntax
• So looks weird to those unused to it
• Originally procedural, but later discovered it was naturally

functional
• Both OO and functional ideas first developed in Lisp
• Very flexible as a language, doesn’t force any style

• Really a family of languages

53 / 119



Lisp

• First appeared in 1959
• Has a deceptively simple but powerful syntax
• So looks weird to those unused to it
• Originally procedural, but later discovered it was naturally

functional
• Both OO and functional ideas first developed in Lisp
• Very flexible as a language, doesn’t force any style
• Really a family of languages

54 / 119



Haskell

• First appeared in 1990

• Has a deceptively familiar syntax
• So things don’t always do what you think
• Designed from scratch as functional: actually developed

from earlier functional languages like Miranda, ML and
SASL

• Has a powerful OO subsystem
• Forces the functional style
• Standardised as “Haskell 98”

55 / 119



Haskell

• First appeared in 1990
• Has a deceptively familiar syntax

• So things don’t always do what you think
• Designed from scratch as functional: actually developed

from earlier functional languages like Miranda, ML and
SASL

• Has a powerful OO subsystem
• Forces the functional style
• Standardised as “Haskell 98”

56 / 119



Haskell

• First appeared in 1990
• Has a deceptively familiar syntax
• So things don’t always do what you think

• Designed from scratch as functional: actually developed
from earlier functional languages like Miranda, ML and
SASL

• Has a powerful OO subsystem
• Forces the functional style
• Standardised as “Haskell 98”

57 / 119



Haskell

• First appeared in 1990
• Has a deceptively familiar syntax
• So things don’t always do what you think
• Designed from scratch as functional: actually developed

from earlier functional languages like Miranda, ML and
SASL

• Has a powerful OO subsystem
• Forces the functional style
• Standardised as “Haskell 98”

58 / 119



Haskell

• First appeared in 1990
• Has a deceptively familiar syntax
• So things don’t always do what you think
• Designed from scratch as functional: actually developed

from earlier functional languages like Miranda, ML and
SASL

• Has a powerful OO subsystem

• Forces the functional style
• Standardised as “Haskell 98”

59 / 119



Haskell

• First appeared in 1990
• Has a deceptively familiar syntax
• So things don’t always do what you think
• Designed from scratch as functional: actually developed

from earlier functional languages like Miranda, ML and
SASL

• Has a powerful OO subsystem
• Forces the functional style

• Standardised as “Haskell 98”

60 / 119



Haskell

• First appeared in 1990
• Has a deceptively familiar syntax
• So things don’t always do what you think
• Designed from scratch as functional: actually developed

from earlier functional languages like Miranda, ML and
SASL

• Has a powerful OO subsystem
• Forces the functional style
• Standardised as “Haskell 98”

61 / 119



Functional Languages

There are also other important differences that will become
clearer later

• Lisp is strict and eager
• Haskell is non-strict and lazy

Strict and eager is what you are used to from other languages

Non-strict and lazy are probably new to you

So Lisp will look strange but act as you might expect

And Haskell will look relatively normal but act quite weirdly

62 / 119



Functional Languages

There are also other important differences that will become
clearer later

• Lisp is strict and eager

• Haskell is non-strict and lazy

Strict and eager is what you are used to from other languages

Non-strict and lazy are probably new to you

So Lisp will look strange but act as you might expect

And Haskell will look relatively normal but act quite weirdly

63 / 119



Functional Languages

There are also other important differences that will become
clearer later

• Lisp is strict and eager
• Haskell is non-strict and lazy

Strict and eager is what you are used to from other languages

Non-strict and lazy are probably new to you

So Lisp will look strange but act as you might expect

And Haskell will look relatively normal but act quite weirdly

64 / 119



Functional Languages

There are also other important differences that will become
clearer later

• Lisp is strict and eager
• Haskell is non-strict and lazy

Strict and eager is what you are used to from other languages

Non-strict and lazy are probably new to you

So Lisp will look strange but act as you might expect

And Haskell will look relatively normal but act quite weirdly

65 / 119



Functional Languages

There are also other important differences that will become
clearer later

• Lisp is strict and eager
• Haskell is non-strict and lazy

Strict and eager is what you are used to from other languages

Non-strict and lazy are probably new to you

So Lisp will look strange but act as you might expect

And Haskell will look relatively normal but act quite weirdly

66 / 119



Functional Languages

There are also other important differences that will become
clearer later

• Lisp is strict and eager
• Haskell is non-strict and lazy

Strict and eager is what you are used to from other languages

Non-strict and lazy are probably new to you

So Lisp will look strange but act as you might expect

And Haskell will look relatively normal but act quite weirdly

67 / 119



Functional Languages

There are also other important differences that will become
clearer later

• Lisp is strict and eager
• Haskell is non-strict and lazy

Strict and eager is what you are used to from other languages

Non-strict and lazy are probably new to you

So Lisp will look strange but act as you might expect

And Haskell will look relatively normal but act quite weirdly

68 / 119



Lisp

We start with Lisp

“Lisp is worth learning for the profound enlightenment
experience you will have when you finally get it; that
experience will make you a better programmer for the
rest of your days, even if you never actually use Lisp
itself a lot.”

Eric Raymond, “How to Become a Hacker”

69 / 119



Lisp

We start with Lisp

“Lisp is worth learning for the profound enlightenment
experience you will have when you finally get it; that
experience will make you a better programmer for the
rest of your days, even if you never actually use Lisp
itself a lot.”

Eric Raymond, “How to Become a Hacker”

70 / 119



Lisp

Lisp is a good language to learn since

• it is the “simplest” functional language
• it has historical importance
• it looks very different from other languages you have learnt

We shall spend more time on Lisp than Haskell as they share
many ideas

By the time we get to Haskell we should be able to say “and
such-and-such is just like Lisp” and just concentrate on their
differences

71 / 119



Lisp

Lisp is a good language to learn since

• it is the “simplest” functional language

• it has historical importance
• it looks very different from other languages you have learnt

We shall spend more time on Lisp than Haskell as they share
many ideas

By the time we get to Haskell we should be able to say “and
such-and-such is just like Lisp” and just concentrate on their
differences

72 / 119



Lisp

Lisp is a good language to learn since

• it is the “simplest” functional language
• it has historical importance

• it looks very different from other languages you have learnt

We shall spend more time on Lisp than Haskell as they share
many ideas

By the time we get to Haskell we should be able to say “and
such-and-such is just like Lisp” and just concentrate on their
differences

73 / 119



Lisp

Lisp is a good language to learn since

• it is the “simplest” functional language
• it has historical importance
• it looks very different from other languages you have learnt

We shall spend more time on Lisp than Haskell as they share
many ideas

By the time we get to Haskell we should be able to say “and
such-and-such is just like Lisp” and just concentrate on their
differences

74 / 119



Lisp

Lisp is a good language to learn since

• it is the “simplest” functional language
• it has historical importance
• it looks very different from other languages you have learnt

We shall spend more time on Lisp than Haskell as they share
many ideas

By the time we get to Haskell we should be able to say “and
such-and-such is just like Lisp” and just concentrate on their
differences

75 / 119



Lisp

Lisp is a good language to learn since

• it is the “simplest” functional language
• it has historical importance
• it looks very different from other languages you have learnt

We shall spend more time on Lisp than Haskell as they share
many ideas

By the time we get to Haskell we should be able to say “and
such-and-such is just like Lisp” and just concentrate on their
differences

76 / 119



Lisp
History

Lisp is a list processing language

One of the oldest high level languages, developed in
1956-1958 by John McCarthy

Lisp 1.0 first appeared in 1959

Only Fortran and Algol 58 are older

It is symbolic processing oriented, not numerical

Not designed for numerical processing (Fortran did that), but
manipulation of symbols

77 / 119



Lisp
History

Lisp is a list processing language

One of the oldest high level languages, developed in
1956-1958 by John McCarthy

Lisp 1.0 first appeared in 1959

Only Fortran and Algol 58 are older

It is symbolic processing oriented, not numerical

Not designed for numerical processing (Fortran did that), but
manipulation of symbols

78 / 119



Lisp
History

Lisp is a list processing language

One of the oldest high level languages, developed in
1956-1958 by John McCarthy

Lisp 1.0 first appeared in 1959

Only Fortran and Algol 58 are older

It is symbolic processing oriented, not numerical

Not designed for numerical processing (Fortran did that), but
manipulation of symbols

79 / 119



Lisp
History

Lisp is a list processing language

One of the oldest high level languages, developed in
1956-1958 by John McCarthy

Lisp 1.0 first appeared in 1959

Only Fortran and Algol 58 are older

It is symbolic processing oriented, not numerical

Not designed for numerical processing (Fortran did that), but
manipulation of symbols

80 / 119



Lisp
History

Lisp is a list processing language

One of the oldest high level languages, developed in
1956-1958 by John McCarthy

Lisp 1.0 first appeared in 1959

Only Fortran and Algol 58 are older

It is symbolic processing oriented, not numerical

Not designed for numerical processing (Fortran did that), but
manipulation of symbols

81 / 119



Lisp
History

Lisp is a list processing language

One of the oldest high level languages, developed in
1956-1958 by John McCarthy

Lisp 1.0 first appeared in 1959

Only Fortran and Algol 58 are older

It is symbolic processing oriented, not numerical

Not designed for numerical processing (Fortran did that), but
manipulation of symbols

82 / 119



Lisp
History

It was supposed to be a computer realisation of the
mathematical theory of Lambda Calculus

The Lambda Calculus is a way of describing computation in
such a way you can prove things mathematically

In some sense, like Turing machines are a model of
computation, but very different looking

We could do an entire unit on it

83 / 119



Lisp
History

It was supposed to be a computer realisation of the
mathematical theory of Lambda Calculus

The Lambda Calculus is a way of describing computation in
such a way you can prove things mathematically

In some sense, like Turing machines are a model of
computation, but very different looking

We could do an entire unit on it

84 / 119



Lisp
History

It was supposed to be a computer realisation of the
mathematical theory of Lambda Calculus

The Lambda Calculus is a way of describing computation in
such a way you can prove things mathematically

In some sense, like Turing machines are a model of
computation, but very different looking

We could do an entire unit on it

85 / 119



Lisp
History

It was supposed to be a computer realisation of the
mathematical theory of Lambda Calculus

The Lambda Calculus is a way of describing computation in
such a way you can prove things mathematically

In some sense, like Turing machines are a model of
computation, but very different looking

We could do an entire unit on it

86 / 119



Lisp
History

http://xkcd.com/224/

87 / 119

http://xkcd.com/224/


Lisp

The basic datastructure is the list

Everything in Lisp is either

• a list
• or an atom

(1 x "hello") is a list of three atoms: a number, a symbol and
a string

Symbols look like variables in other languages, but are objects
in their own right

88 / 119



Lisp

The basic datastructure is the list

Everything in Lisp is either

• a list
• or an atom

(1 x "hello") is a list of three atoms: a number, a symbol and
a string

Symbols look like variables in other languages, but are objects
in their own right

89 / 119



Lisp

The basic datastructure is the list

Everything in Lisp is either

• a list
• or an atom

(1 x "hello") is a list of three atoms: a number, a symbol and
a string

Symbols look like variables in other languages, but are objects
in their own right

90 / 119



Lisp

The basic datastructure is the list

Everything in Lisp is either

• a list
• or an atom

(1 x "hello") is a list of three atoms: a number, a symbol and
a string

Symbols look like variables in other languages, but are objects
in their own right

91 / 119



Lisp

There’s not much you can do with symbols by default (in
comparison, you can, e.g., add numbers or concatenate
strings), they just are

The original intent of Lisp was to make manipulation of symbols
easy

That is, pushing symbols about, just like in mathematics

92 / 119



Lisp

There’s not much you can do with symbols by default (in
comparison, you can, e.g., add numbers or concatenate
strings), they just are

The original intent of Lisp was to make manipulation of symbols
easy

That is, pushing symbols about, just like in mathematics

93 / 119



Lisp

There’s not much you can do with symbols by default (in
comparison, you can, e.g., add numbers or concatenate
strings), they just are

The original intent of Lisp was to make manipulation of symbols
easy

That is, pushing symbols about, just like in mathematics

94 / 119



Lisp

() is the empty list

It is the only object that is both a list and an atom

(+ 1 2) is another three item list: a symbol and two numbers

((one 1) (two 2) (three 3) (four 4)) is a four item list,
each of which is a list itself

Lists can be nested arbitrarily

(((x 2) 3) ((x 1) 4) -1) could be a representation of the
polynomial 3x2 + 4x − 1

Thus Lisp can easily be used to represent non-numeric data

95 / 119



Lisp

() is the empty list

It is the only object that is both a list and an atom

(+ 1 2) is another three item list: a symbol and two numbers

((one 1) (two 2) (three 3) (four 4)) is a four item list,
each of which is a list itself

Lists can be nested arbitrarily

(((x 2) 3) ((x 1) 4) -1) could be a representation of the
polynomial 3x2 + 4x − 1

Thus Lisp can easily be used to represent non-numeric data

96 / 119



Lisp

() is the empty list

It is the only object that is both a list and an atom

(+ 1 2) is another three item list: a symbol and two numbers

((one 1) (two 2) (three 3) (four 4)) is a four item list,
each of which is a list itself

Lists can be nested arbitrarily

(((x 2) 3) ((x 1) 4) -1) could be a representation of the
polynomial 3x2 + 4x − 1

Thus Lisp can easily be used to represent non-numeric data

97 / 119



Lisp

() is the empty list

It is the only object that is both a list and an atom

(+ 1 2) is another three item list: a symbol and two numbers

((one 1) (two 2) (three 3) (four 4)) is a four item list,
each of which is a list itself

Lists can be nested arbitrarily

(((x 2) 3) ((x 1) 4) -1) could be a representation of the
polynomial 3x2 + 4x − 1

Thus Lisp can easily be used to represent non-numeric data

98 / 119



Lisp

() is the empty list

It is the only object that is both a list and an atom

(+ 1 2) is another three item list: a symbol and two numbers

((one 1) (two 2) (three 3) (four 4)) is a four item list,
each of which is a list itself

Lists can be nested arbitrarily

(((x 2) 3) ((x 1) 4) -1) could be a representation of the
polynomial 3x2 + 4x − 1

Thus Lisp can easily be used to represent non-numeric data

99 / 119



Lisp

() is the empty list

It is the only object that is both a list and an atom

(+ 1 2) is another three item list: a symbol and two numbers

((one 1) (two 2) (three 3) (four 4)) is a four item list,
each of which is a list itself

Lists can be nested arbitrarily

(((x 2) 3) ((x 1) 4) -1) could be a representation of the
polynomial 3x2 + 4x − 1

Thus Lisp can easily be used to represent non-numeric data

100 / 119



Lisp

() is the empty list

It is the only object that is both a list and an atom

(+ 1 2) is another three item list: a symbol and two numbers

((one 1) (two 2) (three 3) (four 4)) is a four item list,
each of which is a list itself

Lists can be nested arbitrarily

(((x 2) 3) ((x 1) 4) -1) could be a representation of the
polynomial 3x2 + 4x − 1

Thus Lisp can easily be used to represent non-numeric data

101 / 119



Lisp

Modern Lisps have all kinds of other data types (vectors,
characters, structures, general classes, etc.) but lists are the
main idea we want here

The big thing about lists is that they are dynamic

They can grow and shrink as you add and remove elements
from them

In the 50s and 60s this was a novel and revolutionary idea: with
Fortran you knew exactly how much memory a program would
need just by looking at it

With a Lisp program you can’t tell

102 / 119



Lisp

Modern Lisps have all kinds of other data types (vectors,
characters, structures, general classes, etc.) but lists are the
main idea we want here

The big thing about lists is that they are dynamic

They can grow and shrink as you add and remove elements
from them

In the 50s and 60s this was a novel and revolutionary idea: with
Fortran you knew exactly how much memory a program would
need just by looking at it

With a Lisp program you can’t tell

103 / 119



Lisp

Modern Lisps have all kinds of other data types (vectors,
characters, structures, general classes, etc.) but lists are the
main idea we want here

The big thing about lists is that they are dynamic

They can grow and shrink as you add and remove elements
from them

In the 50s and 60s this was a novel and revolutionary idea: with
Fortran you knew exactly how much memory a program would
need just by looking at it

With a Lisp program you can’t tell

104 / 119



Lisp

Modern Lisps have all kinds of other data types (vectors,
characters, structures, general classes, etc.) but lists are the
main idea we want here

The big thing about lists is that they are dynamic

They can grow and shrink as you add and remove elements
from them

In the 50s and 60s this was a novel and revolutionary idea: with
Fortran you knew exactly how much memory a program would
need just by looking at it

With a Lisp program you can’t tell

105 / 119



Lisp

Modern Lisps have all kinds of other data types (vectors,
characters, structures, general classes, etc.) but lists are the
main idea we want here

The big thing about lists is that they are dynamic

They can grow and shrink as you add and remove elements
from them

In the 50s and 60s this was a novel and revolutionary idea: with
Fortran you knew exactly how much memory a program would
need just by looking at it

With a Lisp program you can’t tell

106 / 119



Lisp
Syntax

Here is a bit of Lisp code that adds a pair of numbers

(+ 1 2)

The syntax of Lisp is very simple: in other languages you might
write f(x,y)

In Lisp you simplify this by dropping the comma and moving the
parenthesis out: (f x y)

All functions are like this, even things like + that are treated
specially by other languages

107 / 119



Lisp
Syntax

Here is a bit of Lisp code that adds a pair of numbers

(+ 1 2)

The syntax of Lisp is very simple: in other languages you might
write f(x,y)

In Lisp you simplify this by dropping the comma and moving the
parenthesis out: (f x y)

All functions are like this, even things like + that are treated
specially by other languages

108 / 119



Lisp
Syntax

Here is a bit of Lisp code that adds a pair of numbers

(+ 1 2)

The syntax of Lisp is very simple: in other languages you might
write f(x,y)

In Lisp you simplify this by dropping the comma and moving the
parenthesis out: (f x y)

All functions are like this, even things like + that are treated
specially by other languages

109 / 119



Lisp
Syntax

Here is a bit of Lisp code that adds a pair of numbers

(+ 1 2)

The syntax of Lisp is very simple: in other languages you might
write f(x,y)

In Lisp you simplify this by dropping the comma and moving the
parenthesis out: (f x y)

All functions are like this, even things like + that are treated
specially by other languages

110 / 119



Lisp
Syntax

Here is a bit of Lisp code that adds a pair of numbers

(+ 1 2)

The syntax of Lisp is very simple: in other languages you might
write f(x,y)

In Lisp you simplify this by dropping the comma and moving the
parenthesis out: (f x y)

All functions are like this, even things like + that are treated
specially by other languages

111 / 119



Lisp
Syntax

People complain about the syntax of Lisp saying it has too
many parentheses

Lisp = Lots of Irritating Silly Parentheses

But that’s just because they have become used to the syntaxes
of other languages: Lisp is actually simpler

And has exactly the right number of parentheses!

112 / 119



Lisp
Syntax

People complain about the syntax of Lisp saying it has too
many parentheses

Lisp = Lots of Irritating Silly Parentheses

But that’s just because they have become used to the syntaxes
of other languages: Lisp is actually simpler

And has exactly the right number of parentheses!

113 / 119



Lisp
Syntax

People complain about the syntax of Lisp saying it has too
many parentheses

Lisp = Lots of Irritating Silly Parentheses

But that’s just because they have become used to the syntaxes
of other languages: Lisp is actually simpler

And has exactly the right number of parentheses!

114 / 119



Lisp
Syntax

People complain about the syntax of Lisp saying it has too
many parentheses

Lisp = Lots of Irritating Silly Parentheses

But that’s just because they have become used to the syntaxes
of other languages: Lisp is actually simpler

And has exactly the right number of parentheses!

115 / 119



Lisp
Syntax

http://xkcd.com/297/

116 / 119

http://xkcd.com/297/


Lisp
Syntax

Like many things, it’s a matter of practice and what you are
used to

(+ (pow (sin x) 2) (pow (cos x) 2))

for sin2 x + cos2 x

The reason for this syntax is very important

117 / 119



Lisp
Syntax

Like many things, it’s a matter of practice and what you are
used to

(+ (pow (sin x) 2) (pow (cos x) 2))

for sin2 x + cos2 x

The reason for this syntax is very important

118 / 119



Lisp
Syntax

Like many things, it’s a matter of practice and what you are
used to

(+ (pow (sin x) 2) (pow (cos x) 2))

for sin2 x + cos2 x

The reason for this syntax is very important

119 / 119


