
Lisp
Syntax

So, is (+ 1 2) a list of three things or code to add two
numbers?

Both!

1 / 114

Lisp
Syntax

So, is (+ 1 2) a list of three things or code to add two
numbers?

Both!

2 / 114

Lisp

Program and data are identical in Lisp

3 / 114

Lisp
Syntax

This makes Lisp a particularly powerful language

Lisp programs can trivially manipulate other Lisp programs

. . . or even themselves

Lisp compilers and interpreters are usually written in Lisp

In fact, in many Lisps there is a function called eval that takes
some Lisp code (a list) and evaluates it

4 / 114

Lisp
Syntax

This makes Lisp a particularly powerful language

Lisp programs can trivially manipulate other Lisp programs

. . . or even themselves

Lisp compilers and interpreters are usually written in Lisp

In fact, in many Lisps there is a function called eval that takes
some Lisp code (a list) and evaluates it

5 / 114

Lisp
Syntax

This makes Lisp a particularly powerful language

Lisp programs can trivially manipulate other Lisp programs

. . . or even themselves

Lisp compilers and interpreters are usually written in Lisp

In fact, in many Lisps there is a function called eval that takes
some Lisp code (a list) and evaluates it

6 / 114

Lisp
Syntax

This makes Lisp a particularly powerful language

Lisp programs can trivially manipulate other Lisp programs

. . . or even themselves

Lisp compilers and interpreters are usually written in Lisp

In fact, in many Lisps there is a function called eval that takes
some Lisp code (a list) and evaluates it

7 / 114

Lisp
Syntax

This makes Lisp a particularly powerful language

Lisp programs can trivially manipulate other Lisp programs

. . . or even themselves

Lisp compilers and interpreters are usually written in Lisp

In fact, in many Lisps there is a function called eval that takes
some Lisp code (a list) and evaluates it

8 / 114

Lisp
Syntax

When you use a Lisp interpreter it is essentially running this:

(print (eval (read)))

in a loop

Namely, read an expression, evaluate it, then print the result:
often called a REP loop

Some Lisps do not allow user programs to run eval as there
are some interesting issues that surround the function

Not least you can change or provide an alternative definition of
eval

9 / 114

Lisp
Syntax

When you use a Lisp interpreter it is essentially running this:

(print (eval (read)))

in a loop

Namely, read an expression, evaluate it, then print the result:
often called a REP loop

Some Lisps do not allow user programs to run eval as there
are some interesting issues that surround the function

Not least you can change or provide an alternative definition of
eval

10 / 114

Lisp
Syntax

When you use a Lisp interpreter it is essentially running this:

(print (eval (read)))

in a loop

Namely, read an expression, evaluate it, then print the result:
often called a REP loop

Some Lisps do not allow user programs to run eval as there
are some interesting issues that surround the function

Not least you can change or provide an alternative definition of
eval

11 / 114

Lisp
Syntax

When you use a Lisp interpreter it is essentially running this:

(print (eval (read)))

in a loop

Namely, read an expression, evaluate it, then print the result:
often called a REP loop

Some Lisps do not allow user programs to run eval as there
are some interesting issues that surround the function

Not least you can change or provide an alternative definition of
eval

12 / 114

Lisp
Syntax

Think about this: Lisp is a language that allows you to change
the way it works

As it runs

But don’t! Most people have problems writing programs when
they think they understand what an expression means: if that
changes underfoot you have no chance

13 / 114

Lisp
Syntax

Think about this: Lisp is a language that allows you to change
the way it works

As it runs

But don’t! Most people have problems writing programs when
they think they understand what an expression means: if that
changes underfoot you have no chance

14 / 114

Lisp
Syntax

Think about this: Lisp is a language that allows you to change
the way it works

As it runs

But don’t! Most people have problems writing programs when
they think they understand what an expression means: if that
changes underfoot you have no chance

15 / 114

Lisp
Syntax

You could even redefine read to allow a different syntax to Lisp:
see Rlisp

Some languages, e.g., ML and Lua, are fundamentally Lisp
with an Algol syntax

The fact that most people don’t change Lisp is because the
parenthesis syntax is actually quite useful

People do change eval to allow, say, the introduction of an OO
system

Many ideas are first tried out in Lisp before being moved into a
newly designed language

16 / 114

Lisp
Syntax

You could even redefine read to allow a different syntax to Lisp:
see Rlisp

Some languages, e.g., ML and Lua, are fundamentally Lisp
with an Algol syntax

The fact that most people don’t change Lisp is because the
parenthesis syntax is actually quite useful

People do change eval to allow, say, the introduction of an OO
system

Many ideas are first tried out in Lisp before being moved into a
newly designed language

17 / 114

Lisp
Syntax

You could even redefine read to allow a different syntax to Lisp:
see Rlisp

Some languages, e.g., ML and Lua, are fundamentally Lisp
with an Algol syntax

The fact that most people don’t change Lisp is because the
parenthesis syntax is actually quite useful

People do change eval to allow, say, the introduction of an OO
system

Many ideas are first tried out in Lisp before being moved into a
newly designed language

18 / 114

Lisp
Syntax

You could even redefine read to allow a different syntax to Lisp:
see Rlisp

Some languages, e.g., ML and Lua, are fundamentally Lisp
with an Algol syntax

The fact that most people don’t change Lisp is because the
parenthesis syntax is actually quite useful

People do change eval to allow, say, the introduction of an OO
system

Many ideas are first tried out in Lisp before being moved into a
newly designed language

19 / 114

Lisp
Syntax

You could even redefine read to allow a different syntax to Lisp:
see Rlisp

Some languages, e.g., ML and Lua, are fundamentally Lisp
with an Algol syntax

The fact that most people don’t change Lisp is because the
parenthesis syntax is actually quite useful

People do change eval to allow, say, the introduction of an OO
system

Many ideas are first tried out in Lisp before being moved into a
newly designed language

20 / 114

Lisp
Syntax

So (+ 1 2) is a list of three objects, that when given to the
function eval it returns the value 3

It’s a matter of context: if you ask eval to evaluate it, it’s code;
else it’s a list

21 / 114

Lisp
Syntax

So (+ 1 2) is a list of three objects, that when given to the
function eval it returns the value 3

It’s a matter of context: if you ask eval to evaluate it, it’s code;
else it’s a list

22 / 114

Lisp
Syntax

Another consequence of the malleability of Lisp is that
everybody goes and makes their own version

There are a large number of languages out there that could be
called “Lisp”

Generally “Lisp” is thought of a family, rather than a single thing

With C and Java you know pretty well what you are getting:
there are standards definitions that implementations of these
languages are supposed to follow

With Lisp there’s all kinds of variation

23 / 114

Lisp
Syntax

Another consequence of the malleability of Lisp is that
everybody goes and makes their own version

There are a large number of languages out there that could be
called “Lisp”

Generally “Lisp” is thought of a family, rather than a single thing

With C and Java you know pretty well what you are getting:
there are standards definitions that implementations of these
languages are supposed to follow

With Lisp there’s all kinds of variation

24 / 114

Lisp
Syntax

Another consequence of the malleability of Lisp is that
everybody goes and makes their own version

There are a large number of languages out there that could be
called “Lisp”

Generally “Lisp” is thought of a family, rather than a single thing

With C and Java you know pretty well what you are getting:
there are standards definitions that implementations of these
languages are supposed to follow

With Lisp there’s all kinds of variation

25 / 114

Lisp
Syntax

Another consequence of the malleability of Lisp is that
everybody goes and makes their own version

There are a large number of languages out there that could be
called “Lisp”

Generally “Lisp” is thought of a family, rather than a single thing

With C and Java you know pretty well what you are getting:
there are standards definitions that implementations of these
languages are supposed to follow

With Lisp there’s all kinds of variation

26 / 114

Lisp
Syntax

Another consequence of the malleability of Lisp is that
everybody goes and makes their own version

There are a large number of languages out there that could be
called “Lisp”

Generally “Lisp” is thought of a family, rather than a single thing

With C and Java you know pretty well what you are getting:
there are standards definitions that implementations of these
languages are supposed to follow

With Lisp there’s all kinds of variation

27 / 114

ISLisp

1997

etc.

Oaklisp

AI

CSL

AllegroLucid KCL

Franz

Lambda Calculus

(D A R P A)

Church 1930s

Lisp 1

McCarthy 1959

Lisp 1.5 (1960)

Xerox

InterLisp

(closures)

InterLisp

MIT

MacLisp

MacLisp

BBN

BBN Lisp

Stanford Lisp

ZetaLisp SchemeNILSpice

(lex) new

implementation

of Lisp

Common Lisp

Book 1

(lex, closures)

CL, book 2, 1990

(lex, closures)

DEC10

UCI/Rutgers

IBM

Standard Lisp

1976

PSL

CPSL

(closures)

EuLisp 1990

(lex, closures)

VLisp

LeLisp

R Scheme
n

(lex, closures)

IBM

(semantic

purity)

Lisp 2

(disaster)

Lisp 1.8+0.3i

~1970

YKT Lisp

Lisp/VM
Standard Lisp

Cambridge Lisp

Cambridge Lisp

(Bath/Cambridge)

1968

Symbolic Algebra

(speed)

28 / 114

Lisp
Diaspora

Each Lisp does everything in its own special way

In Cambridge Lisp the function to add numbers is called plus;
in Common Lisp it is called +

(plus 1 2) vs. (+ 1 2)

These are superficial differences

29 / 114

Lisp
Diaspora

Each Lisp does everything in its own special way

In Cambridge Lisp the function to add numbers is called plus;
in Common Lisp it is called +

(plus 1 2) vs. (+ 1 2)

These are superficial differences

30 / 114

Lisp
Diaspora

Each Lisp does everything in its own special way

In Cambridge Lisp the function to add numbers is called plus;
in Common Lisp it is called +

(plus 1 2) vs. (+ 1 2)

These are superficial differences

31 / 114

Lisp
Diaspora

The “if” construct might have an optional “else” part:

(if (> x 1) (print "hello"))

Or it might require it

(if (> x 1) (print "hello") (print "bye"))

and provide an alternative, single clause “if”

(when (> x 1) (print "hello"))

And so on

32 / 114

Lisp
Diaspora

The “if” construct might have an optional “else” part:

(if (> x 1) (print "hello"))

Or it might require it

(if (> x 1) (print "hello") (print "bye"))

and provide an alternative, single clause “if”

(when (> x 1) (print "hello"))

And so on

33 / 114

Lisp
Diaspora

The “if” construct might have an optional “else” part:

(if (> x 1) (print "hello"))

Or it might require it

(if (> x 1) (print "hello") (print "bye"))

and provide an alternative, single clause “if”

(when (> x 1) (print "hello"))

And so on

34 / 114

Lisp
Diaspora

The semantics of everything is roughly the same, so generally
things do what you expect of them

Though they don’t have to. . .

This makes portability of programs an issue, but has helped
immensely in the development of new ideas

Lisp has been called a “ball of mud”, meaning you can throw
anything at it—and you just get a larger ball of mud

Lisps come in all kinds of shapes and sizes: but they are all
Lisps

35 / 114

Lisp
Diaspora

The semantics of everything is roughly the same, so generally
things do what you expect of them

Though they don’t have to. . .

This makes portability of programs an issue, but has helped
immensely in the development of new ideas

Lisp has been called a “ball of mud”, meaning you can throw
anything at it—and you just get a larger ball of mud

Lisps come in all kinds of shapes and sizes: but they are all
Lisps

36 / 114

Lisp
Diaspora

The semantics of everything is roughly the same, so generally
things do what you expect of them

Though they don’t have to. . .

This makes portability of programs an issue, but has helped
immensely in the development of new ideas

Lisp has been called a “ball of mud”, meaning you can throw
anything at it—and you just get a larger ball of mud

Lisps come in all kinds of shapes and sizes: but they are all
Lisps

37 / 114

Lisp
Diaspora

The semantics of everything is roughly the same, so generally
things do what you expect of them

Though they don’t have to. . .

This makes portability of programs an issue, but has helped
immensely in the development of new ideas

Lisp has been called a “ball of mud”, meaning you can throw
anything at it—and you just get a larger ball of mud

Lisps come in all kinds of shapes and sizes: but they are all
Lisps

38 / 114

Lisp
Diaspora

The semantics of everything is roughly the same, so generally
things do what you expect of them

Though they don’t have to. . .

This makes portability of programs an issue, but has helped
immensely in the development of new ideas

Lisp has been called a “ball of mud”, meaning you can throw
anything at it—and you just get a larger ball of mud

Lisps come in all kinds of shapes and sizes: but they are all
Lisps

39 / 114

Lisp
Standards

There are in fact more than a few standards for Lisp

The two widely used ones are

• Common Lisp
• Scheme

40 / 114

Lisp
Standards

There are in fact more than a few standards for Lisp

The two widely used ones are

• Common Lisp
• Scheme

41 / 114

Lisp
Standards

Common Lisp is a large standard describing a huge Lisp

It arose when the US defence research agency ARPA wanted a
single Lisp it could use

At the time there were many Lisps floating about and ARPA
wanted a single standard it could write programs for

Many Lisp implementors and vendors were called together to
create a standard

After a huge amount of wrangling, Common Lisp emerged

Roughly speaking, Common Lisp is the union of all the features
of all the Lisps: no vendor wanted their special features to be
left out

42 / 114

Lisp
Standards

Common Lisp is a large standard describing a huge Lisp

It arose when the US defence research agency ARPA wanted a
single Lisp it could use

At the time there were many Lisps floating about and ARPA
wanted a single standard it could write programs for

Many Lisp implementors and vendors were called together to
create a standard

After a huge amount of wrangling, Common Lisp emerged

Roughly speaking, Common Lisp is the union of all the features
of all the Lisps: no vendor wanted their special features to be
left out

43 / 114

Lisp
Standards

Common Lisp is a large standard describing a huge Lisp

It arose when the US defence research agency ARPA wanted a
single Lisp it could use

At the time there were many Lisps floating about and ARPA
wanted a single standard it could write programs for

Many Lisp implementors and vendors were called together to
create a standard

After a huge amount of wrangling, Common Lisp emerged

Roughly speaking, Common Lisp is the union of all the features
of all the Lisps: no vendor wanted their special features to be
left out

44 / 114

Lisp
Standards

Common Lisp is a large standard describing a huge Lisp

It arose when the US defence research agency ARPA wanted a
single Lisp it could use

At the time there were many Lisps floating about and ARPA
wanted a single standard it could write programs for

Many Lisp implementors and vendors were called together to
create a standard

After a huge amount of wrangling, Common Lisp emerged

Roughly speaking, Common Lisp is the union of all the features
of all the Lisps: no vendor wanted their special features to be
left out

45 / 114

Lisp
Standards

Common Lisp is a large standard describing a huge Lisp

It arose when the US defence research agency ARPA wanted a
single Lisp it could use

At the time there were many Lisps floating about and ARPA
wanted a single standard it could write programs for

Many Lisp implementors and vendors were called together to
create a standard

After a huge amount of wrangling, Common Lisp emerged

Roughly speaking, Common Lisp is the union of all the features
of all the Lisps: no vendor wanted their special features to be
left out

46 / 114

Lisp
Standards

Common Lisp is a large standard describing a huge Lisp

It arose when the US defence research agency ARPA wanted a
single Lisp it could use

At the time there were many Lisps floating about and ARPA
wanted a single standard it could write programs for

Many Lisp implementors and vendors were called together to
create a standard

After a huge amount of wrangling, Common Lisp emerged

Roughly speaking, Common Lisp is the union of all the features
of all the Lisps: no vendor wanted their special features to be
left out

47 / 114

Lisp
Standards

So, for example, there are two functions to remove an element
from a list: delete and remove

They do different things to the list: one updates the list to
remove the element; the other creates a new list that is a copy
without the element

So Common Lisp provides a rich array of functionality

This was version 1, as documented in the book “Common Lisp:
The Language” (CLtL1)

48 / 114

Lisp
Standards

So, for example, there are two functions to remove an element
from a list: delete and remove

They do different things to the list: one updates the list to
remove the element; the other creates a new list that is a copy
without the element

So Common Lisp provides a rich array of functionality

This was version 1, as documented in the book “Common Lisp:
The Language” (CLtL1)

49 / 114

Lisp
Standards

So, for example, there are two functions to remove an element
from a list: delete and remove

They do different things to the list: one updates the list to
remove the element; the other creates a new list that is a copy
without the element

So Common Lisp provides a rich array of functionality

This was version 1, as documented in the book “Common Lisp:
The Language” (CLtL1)

50 / 114

Lisp
Standards

So, for example, there are two functions to remove an element
from a list: delete and remove

They do different things to the list: one updates the list to
remove the element; the other creates a new list that is a copy
without the element

So Common Lisp provides a rich array of functionality

This was version 1, as documented in the book “Common Lisp:
The Language” (CLtL1)

51 / 114

Lisp
Standards

After more work, version 2 emerged, “Common Lisp: The
Language, Second Edition” (CLtL2)

This became an ANSI standard: X3.226-1994 (R1999)

This is reasonably decent as a standard, but is huge at over
1000 pages

A large chunk of this a list of functions and their required
behaviours (like delete and remove)

But there is important stuff in there, too, such as the
specification of the behaviour of functions over the Complex
numbers

The Java standard is now larger. . .

52 / 114

Lisp
Standards

After more work, version 2 emerged, “Common Lisp: The
Language, Second Edition” (CLtL2)

This became an ANSI standard: X3.226-1994 (R1999)

This is reasonably decent as a standard, but is huge at over
1000 pages

A large chunk of this a list of functions and their required
behaviours (like delete and remove)

But there is important stuff in there, too, such as the
specification of the behaviour of functions over the Complex
numbers

The Java standard is now larger. . .

53 / 114

Lisp
Standards

After more work, version 2 emerged, “Common Lisp: The
Language, Second Edition” (CLtL2)

This became an ANSI standard: X3.226-1994 (R1999)

This is reasonably decent as a standard, but is huge at over
1000 pages

A large chunk of this a list of functions and their required
behaviours (like delete and remove)

But there is important stuff in there, too, such as the
specification of the behaviour of functions over the Complex
numbers

The Java standard is now larger. . .

54 / 114

Lisp
Standards

After more work, version 2 emerged, “Common Lisp: The
Language, Second Edition” (CLtL2)

This became an ANSI standard: X3.226-1994 (R1999)

This is reasonably decent as a standard, but is huge at over
1000 pages

A large chunk of this a list of functions and their required
behaviours (like delete and remove)

But there is important stuff in there, too, such as the
specification of the behaviour of functions over the Complex
numbers

The Java standard is now larger. . .

55 / 114

Lisp
Standards

After more work, version 2 emerged, “Common Lisp: The
Language, Second Edition” (CLtL2)

This became an ANSI standard: X3.226-1994 (R1999)

This is reasonably decent as a standard, but is huge at over
1000 pages

A large chunk of this a list of functions and their required
behaviours (like delete and remove)

But there is important stuff in there, too, such as the
specification of the behaviour of functions over the Complex
numbers

The Java standard is now larger. . .

56 / 114

Lisp
Standards

After more work, version 2 emerged, “Common Lisp: The
Language, Second Edition” (CLtL2)

This became an ANSI standard: X3.226-1994 (R1999)

This is reasonably decent as a standard, but is huge at over
1000 pages

A large chunk of this a list of functions and their required
behaviours (like delete and remove)

But there is important stuff in there, too, such as the
specification of the behaviour of functions over the Complex
numbers

The Java standard is now larger. . .

57 / 114

Lisp
Standards

Meanwhile other people (mostly academics) were saying: this
is too big, what we need is simplicity

They defined Scheme in a document called “The Report on
Scheme”

Roughly, this was the intersection of all current Lisps

Schemers claim Scheme is not Lisp, but it is certainly of the
family

To be included in Scheme, a feature must be essential and not
implementable in terms of existing features

58 / 114

Lisp
Standards

Meanwhile other people (mostly academics) were saying: this
is too big, what we need is simplicity

They defined Scheme in a document called “The Report on
Scheme”

Roughly, this was the intersection of all current Lisps

Schemers claim Scheme is not Lisp, but it is certainly of the
family

To be included in Scheme, a feature must be essential and not
implementable in terms of existing features

59 / 114

Lisp
Standards

Meanwhile other people (mostly academics) were saying: this
is too big, what we need is simplicity

They defined Scheme in a document called “The Report on
Scheme”

Roughly, this was the intersection of all current Lisps

Schemers claim Scheme is not Lisp, but it is certainly of the
family

To be included in Scheme, a feature must be essential and not
implementable in terms of existing features

60 / 114

Lisp
Standards

Meanwhile other people (mostly academics) were saying: this
is too big, what we need is simplicity

They defined Scheme in a document called “The Report on
Scheme”

Roughly, this was the intersection of all current Lisps

Schemers claim Scheme is not Lisp, but it is certainly of the
family

To be included in Scheme, a feature must be essential and not
implementable in terms of existing features

61 / 114

Lisp
Standards

Meanwhile other people (mostly academics) were saying: this
is too big, what we need is simplicity

They defined Scheme in a document called “The Report on
Scheme”

Roughly, this was the intersection of all current Lisps

Schemers claim Scheme is not Lisp, but it is certainly of the
family

To be included in Scheme, a feature must be essential and not
implementable in terms of existing features

62 / 114

Lisp
Standards

The Scheme standard was revised: called “The Revised Report
on Scheme”

Then to “The Revised Revised Report on Scheme”, or R2RS

And so on

R5RS is just 50 pages long

R6RS includes (not to universal acclaim) specifications of
library functions, so is longer, but the basic language part is just
90 pages long

63 / 114

Lisp
Standards

The Scheme standard was revised: called “The Revised Report
on Scheme”

Then to “The Revised Revised Report on Scheme”, or R2RS

And so on

R5RS is just 50 pages long

R6RS includes (not to universal acclaim) specifications of
library functions, so is longer, but the basic language part is just
90 pages long

64 / 114

Lisp
Standards

The Scheme standard was revised: called “The Revised Report
on Scheme”

Then to “The Revised Revised Report on Scheme”, or R2RS

And so on

R5RS is just 50 pages long

R6RS includes (not to universal acclaim) specifications of
library functions, so is longer, but the basic language part is just
90 pages long

65 / 114

Lisp
Standards

The Scheme standard was revised: called “The Revised Report
on Scheme”

Then to “The Revised Revised Report on Scheme”, or R2RS

And so on

R5RS is just 50 pages long

R6RS includes (not to universal acclaim) specifications of
library functions, so is longer, but the basic language part is just
90 pages long

66 / 114

Lisp
Standards

The Scheme standard was revised: called “The Revised Report
on Scheme”

Then to “The Revised Revised Report on Scheme”, or R2RS

And so on

R5RS is just 50 pages long

R6RS includes (not to universal acclaim) specifications of
library functions, so is longer, but the basic language part is just
90 pages long

67 / 114

Lisp
Standards

R7RS (2013) has split the language into chunks, “large” and
“small”

The small part much closer to R5RS (88 pages)

The large is “focused on the practical needs of mainstream
software development”, and is closer to R6RS

68 / 114

Lisp
Standards

R7RS (2013) has split the language into chunks, “large” and
“small”

The small part much closer to R5RS (88 pages)

The large is “focused on the practical needs of mainstream
software development”, and is closer to R6RS

69 / 114

Lisp
Standards

R7RS (2013) has split the language into chunks, “large” and
“small”

The small part much closer to R5RS (88 pages)

The large is “focused on the practical needs of mainstream
software development”, and is closer to R6RS

70 / 114

Lisp
Standards

Scheme is characterised by having few, but powerful,
constructs

For example, continuations

A continuation is a generalisation of the idea of “current
execution position in the program”

In Scheme, a continuation is a first class object, meaning a
program can manipulate its own flow of control
programmatically

71 / 114

Lisp
Standards

Scheme is characterised by having few, but powerful,
constructs

For example, continuations

A continuation is a generalisation of the idea of “current
execution position in the program”

In Scheme, a continuation is a first class object, meaning a
program can manipulate its own flow of control
programmatically

72 / 114

Lisp
Standards

Scheme is characterised by having few, but powerful,
constructs

For example, continuations

A continuation is a generalisation of the idea of “current
execution position in the program”

In Scheme, a continuation is a first class object, meaning a
program can manipulate its own flow of control
programmatically

73 / 114

Lisp
Standards

Scheme is characterised by having few, but powerful,
constructs

For example, continuations

A continuation is a generalisation of the idea of “current
execution position in the program”

In Scheme, a continuation is a first class object, meaning a
program can manipulate its own flow of control
programmatically

74 / 114

Lisp
Standards

Continuations can be used to implement other, more
understandable, things, like non-local jumps and parallel
execution

But the idea is that continuations replace a collection of other
concepts; and allow the implementation of new and different
concepts

75 / 114

Lisp
Standards

Continuations can be used to implement other, more
understandable, things, like non-local jumps and parallel
execution

But the idea is that continuations replace a collection of other
concepts; and allow the implementation of new and different
concepts

76 / 114

Lisp
Standards

Scheme is simple enough to be used as an introductory
language in some University courses

It is also sophisticated enough to be used to explain some very
difficult topics

The book “Structure and Interpretation of Computer Programs”
by Abelson and Sussman should be read by all Computer
Scientists

77 / 114

Lisp
Standards

Scheme is simple enough to be used as an introductory
language in some University courses

It is also sophisticated enough to be used to explain some very
difficult topics

The book “Structure and Interpretation of Computer Programs”
by Abelson and Sussman should be read by all Computer
Scientists

78 / 114

Lisp
Standards

Scheme is simple enough to be used as an introductory
language in some University courses

It is also sophisticated enough to be used to explain some very
difficult topics

The book “Structure and Interpretation of Computer Programs”
by Abelson and Sussman should be read by all Computer
Scientists

79 / 114

Lisp
Standards

At this point is it worthwhile making clear the difference
between implementations and standards, as they are often
confused for one another

A standard is a document that describes how an
implementation should behave

An implementation is a program, usually a compiler or an
interpreter

There can be several, differing, implementations of a standard

Just as there are many C compilers and a few Java compilers,
there are many different implementations of Common Lisp and
Scheme

80 / 114

Lisp
Standards

At this point is it worthwhile making clear the difference
between implementations and standards, as they are often
confused for one another

A standard is a document that describes how an
implementation should behave

An implementation is a program, usually a compiler or an
interpreter

There can be several, differing, implementations of a standard

Just as there are many C compilers and a few Java compilers,
there are many different implementations of Common Lisp and
Scheme

81 / 114

Lisp
Standards

At this point is it worthwhile making clear the difference
between implementations and standards, as they are often
confused for one another

A standard is a document that describes how an
implementation should behave

An implementation is a program, usually a compiler or an
interpreter

There can be several, differing, implementations of a standard

Just as there are many C compilers and a few Java compilers,
there are many different implementations of Common Lisp and
Scheme

82 / 114

Lisp
Standards

At this point is it worthwhile making clear the difference
between implementations and standards, as they are often
confused for one another

A standard is a document that describes how an
implementation should behave

An implementation is a program, usually a compiler or an
interpreter

There can be several, differing, implementations of a standard

Just as there are many C compilers and a few Java compilers,
there are many different implementations of Common Lisp and
Scheme

83 / 114

Lisp
Standards

At this point is it worthwhile making clear the difference
between implementations and standards, as they are often
confused for one another

A standard is a document that describes how an
implementation should behave

An implementation is a program, usually a compiler or an
interpreter

There can be several, differing, implementations of a standard

Just as there are many C compilers and a few Java compilers,
there are many different implementations of Common Lisp and
Scheme

84 / 114

Lisp
Standards

A program written to run in one implementation of, say,
Common Lisp, ought to run on all other implementations of
Common Lisp

Reality is never so neat

85 / 114

Lisp
Standards

A program written to run in one implementation of, say,
Common Lisp, ought to run on all other implementations of
Common Lisp

Reality is never so neat

86 / 114

Lisp
Standards

There might be

• bugs in the implementation
• bugs in the standard
• things not defined or not clear in the standard
• things deliberately left undefined in the standard (e.g., size

of an int in C. A portable program will not make the
assumption that an int is 4 bytes)

• deliberate features in the implementation designed for
lock-in by the vendor

87 / 114

Lisp
Standards

There might be

• bugs in the implementation

• bugs in the standard
• things not defined or not clear in the standard
• things deliberately left undefined in the standard (e.g., size

of an int in C. A portable program will not make the
assumption that an int is 4 bytes)

• deliberate features in the implementation designed for
lock-in by the vendor

88 / 114

Lisp
Standards

There might be

• bugs in the implementation
• bugs in the standard

• things not defined or not clear in the standard
• things deliberately left undefined in the standard (e.g., size

of an int in C. A portable program will not make the
assumption that an int is 4 bytes)

• deliberate features in the implementation designed for
lock-in by the vendor

89 / 114

Lisp
Standards

There might be

• bugs in the implementation
• bugs in the standard
• things not defined or not clear in the standard

• things deliberately left undefined in the standard (e.g., size
of an int in C. A portable program will not make the
assumption that an int is 4 bytes)

• deliberate features in the implementation designed for
lock-in by the vendor

90 / 114

Lisp
Standards

There might be

• bugs in the implementation
• bugs in the standard
• things not defined or not clear in the standard
• things deliberately left undefined in the standard (e.g., size

of an int in C. A portable program will not make the
assumption that an int is 4 bytes)

• deliberate features in the implementation designed for
lock-in by the vendor

91 / 114

Lisp
Standards

There might be

• bugs in the implementation
• bugs in the standard
• things not defined or not clear in the standard
• things deliberately left undefined in the standard (e.g., size

of an int in C. A portable program will not make the
assumption that an int is 4 bytes)

• deliberate features in the implementation designed for
lock-in by the vendor

92 / 114

Lisp
Standards

All meaning that you have to be careful when porting a program
to a new implementation

And this applies to all languages, particularly C

93 / 114

Lisp
Standards

All meaning that you have to be careful when porting a program
to a new implementation

And this applies to all languages, particularly C

94 / 114

Lisp
Standards

If Common Lisp is too large, Scheme is too small

Many day-to-day useful things are deliberately left out of
Scheme, though R6 and R7 try to address this issue

In response, there is a middle-sized Lisp, EuLisp

In fact, EuLisp comes in three sizes

1. Small, Scheme sized
2. Medium
3. Large, but not as big as Common Lisp

Each Level is a subset of the next, so we can pick the size we
need

95 / 114

Lisp
Standards

If Common Lisp is too large, Scheme is too small

Many day-to-day useful things are deliberately left out of
Scheme, though R6 and R7 try to address this issue

In response, there is a middle-sized Lisp, EuLisp

In fact, EuLisp comes in three sizes

1. Small, Scheme sized
2. Medium
3. Large, but not as big as Common Lisp

Each Level is a subset of the next, so we can pick the size we
need

96 / 114

Lisp
Standards

If Common Lisp is too large, Scheme is too small

Many day-to-day useful things are deliberately left out of
Scheme, though R6 and R7 try to address this issue

In response, there is a middle-sized Lisp, EuLisp

In fact, EuLisp comes in three sizes

1. Small, Scheme sized
2. Medium
3. Large, but not as big as Common Lisp

Each Level is a subset of the next, so we can pick the size we
need

97 / 114

Lisp
Standards

If Common Lisp is too large, Scheme is too small

Many day-to-day useful things are deliberately left out of
Scheme, though R6 and R7 try to address this issue

In response, there is a middle-sized Lisp, EuLisp

In fact, EuLisp comes in three sizes

1. Small, Scheme sized
2. Medium
3. Large, but not as big as Common Lisp

Each Level is a subset of the next, so we can pick the size we
need

98 / 114

Lisp
Standards

If Common Lisp is too large, Scheme is too small

Many day-to-day useful things are deliberately left out of
Scheme, though R6 and R7 try to address this issue

In response, there is a middle-sized Lisp, EuLisp

In fact, EuLisp comes in three sizes

1. Small, Scheme sized

2. Medium
3. Large, but not as big as Common Lisp

Each Level is a subset of the next, so we can pick the size we
need

99 / 114

Lisp
Standards

If Common Lisp is too large, Scheme is too small

Many day-to-day useful things are deliberately left out of
Scheme, though R6 and R7 try to address this issue

In response, there is a middle-sized Lisp, EuLisp

In fact, EuLisp comes in three sizes

1. Small, Scheme sized
2. Medium

3. Large, but not as big as Common Lisp

Each Level is a subset of the next, so we can pick the size we
need

100 / 114

Lisp
Standards

If Common Lisp is too large, Scheme is too small

Many day-to-day useful things are deliberately left out of
Scheme, though R6 and R7 try to address this issue

In response, there is a middle-sized Lisp, EuLisp

In fact, EuLisp comes in three sizes

1. Small, Scheme sized
2. Medium
3. Large, but not as big as Common Lisp

Each Level is a subset of the next, so we can pick the size we
need

101 / 114

Lisp
Standards

If Common Lisp is too large, Scheme is too small

Many day-to-day useful things are deliberately left out of
Scheme, though R6 and R7 try to address this issue

In response, there is a middle-sized Lisp, EuLisp

In fact, EuLisp comes in three sizes

1. Small, Scheme sized
2. Medium
3. Large, but not as big as Common Lisp

Each Level is a subset of the next, so we can pick the size we
need

102 / 114

Lisp
Standards

It is called “Eu”Lisp as its design was sponsored by the EU

We at Bath were strongly involved in this standard

The EU eventually lost interest, so the standard has not gained
popularity

The standard lives in a modified form as ISLisp, ISO standard
ISO/IEC 13816:1997(E)

103 / 114

Lisp
Standards

It is called “Eu”Lisp as its design was sponsored by the EU

We at Bath were strongly involved in this standard

The EU eventually lost interest, so the standard has not gained
popularity

The standard lives in a modified form as ISLisp, ISO standard
ISO/IEC 13816:1997(E)

104 / 114

Lisp
Standards

It is called “Eu”Lisp as its design was sponsored by the EU

We at Bath were strongly involved in this standard

The EU eventually lost interest, so the standard has not gained
popularity

The standard lives in a modified form as ISLisp, ISO standard
ISO/IEC 13816:1997(E)

105 / 114

Lisp
Standards

It is called “Eu”Lisp as its design was sponsored by the EU

We at Bath were strongly involved in this standard

The EU eventually lost interest, so the standard has not gained
popularity

The standard lives in a modified form as ISLisp, ISO standard
ISO/IEC 13816:1997(E)

106 / 114

Lisp
Standards

EuLisp strongly influenced a language called Dylan, developed
by Apple

Dylan was eventually dropped by Apple, but provided impetus
to the development of a new language, called Java

107 / 114

Lisp
Standards

EuLisp strongly influenced a language called Dylan, developed
by Apple

Dylan was eventually dropped by Apple, but provided impetus
to the development of a new language, called Java

108 / 114

Lisp
Standards

You will also come across something called Standard Lisp

This was a standard defined with the intention that applications
sticking to this standard (e.g., Algebra Systems) could be
ported easily between Lisps

This left contentious elements undefined, e.g., some specific
properties of the empty list

This meant programmers couldn’t rely on having such
properties and so had to avoid using them

Thus making their programs more portable

Standard Lisp was eventually eclipsed by Common Lisp

109 / 114

Lisp
Standards

You will also come across something called Standard Lisp

This was a standard defined with the intention that applications
sticking to this standard (e.g., Algebra Systems) could be
ported easily between Lisps

This left contentious elements undefined, e.g., some specific
properties of the empty list

This meant programmers couldn’t rely on having such
properties and so had to avoid using them

Thus making their programs more portable

Standard Lisp was eventually eclipsed by Common Lisp

110 / 114

Lisp
Standards

You will also come across something called Standard Lisp

This was a standard defined with the intention that applications
sticking to this standard (e.g., Algebra Systems) could be
ported easily between Lisps

This left contentious elements undefined, e.g., some specific
properties of the empty list

This meant programmers couldn’t rely on having such
properties and so had to avoid using them

Thus making their programs more portable

Standard Lisp was eventually eclipsed by Common Lisp

111 / 114

Lisp
Standards

You will also come across something called Standard Lisp

This was a standard defined with the intention that applications
sticking to this standard (e.g., Algebra Systems) could be
ported easily between Lisps

This left contentious elements undefined, e.g., some specific
properties of the empty list

This meant programmers couldn’t rely on having such
properties and so had to avoid using them

Thus making their programs more portable

Standard Lisp was eventually eclipsed by Common Lisp

112 / 114

Lisp
Standards

You will also come across something called Standard Lisp

This was a standard defined with the intention that applications
sticking to this standard (e.g., Algebra Systems) could be
ported easily between Lisps

This left contentious elements undefined, e.g., some specific
properties of the empty list

This meant programmers couldn’t rely on having such
properties and so had to avoid using them

Thus making their programs more portable

Standard Lisp was eventually eclipsed by Common Lisp

113 / 114

Lisp
Standards

You will also come across something called Standard Lisp

This was a standard defined with the intention that applications
sticking to this standard (e.g., Algebra Systems) could be
ported easily between Lisps

This left contentious elements undefined, e.g., some specific
properties of the empty list

This meant programmers couldn’t rely on having such
properties and so had to avoid using them

Thus making their programs more portable

Standard Lisp was eventually eclipsed by Common Lisp

114 / 114

