
Lisp
Running Lisp

Lisp can be used a via a compiler (like C) or as an interactive
system (like Python)

On BUCS Linux machines lcpu we have

• ˜masrjb/bin/euscheme is an implementation of EuLisp
(not a Scheme!)

• ˜masrjb/bin/xlisp is an implementation of Scheme
• ˜masrjb/bin/clisp is an implementation of Common

Lisp
• ˜masrjb/bin/clojure is an implementation of Clojure, a

Lisp that runs atop the Java VM
• Emacs contains a Common Lisp-like interpreter (most of

Emacs is written in Lisp)

1 / 131

Lisp
Running Lisp

Lisp can be used a via a compiler (like C) or as an interactive
system (like Python)

On BUCS Linux machines lcpu we have

• ˜masrjb/bin/euscheme is an implementation of EuLisp
(not a Scheme!)

• ˜masrjb/bin/xlisp is an implementation of Scheme
• ˜masrjb/bin/clisp is an implementation of Common

Lisp
• ˜masrjb/bin/clojure is an implementation of Clojure, a

Lisp that runs atop the Java VM
• Emacs contains a Common Lisp-like interpreter (most of

Emacs is written in Lisp)

2 / 131

Lisp
Running Lisp

Lisp can be used a via a compiler (like C) or as an interactive
system (like Python)

On BUCS Linux machines lcpu we have

• ˜masrjb/bin/euscheme is an implementation of EuLisp
(not a Scheme!)

• ˜masrjb/bin/xlisp is an implementation of Scheme
• ˜masrjb/bin/clisp is an implementation of Common

Lisp
• ˜masrjb/bin/clojure is an implementation of Clojure, a

Lisp that runs atop the Java VM
• Emacs contains a Common Lisp-like interpreter (most of

Emacs is written in Lisp)

3 / 131

Lisp
Running Lisp

Lisp can be used a via a compiler (like C) or as an interactive
system (like Python)

On BUCS Linux machines lcpu we have

• ˜masrjb/bin/euscheme is an implementation of EuLisp
(not a Scheme!)

• ˜masrjb/bin/xlisp is an implementation of Scheme

• ˜masrjb/bin/clisp is an implementation of Common
Lisp

• ˜masrjb/bin/clojure is an implementation of Clojure, a
Lisp that runs atop the Java VM

• Emacs contains a Common Lisp-like interpreter (most of
Emacs is written in Lisp)

4 / 131

Lisp
Running Lisp

Lisp can be used a via a compiler (like C) or as an interactive
system (like Python)

On BUCS Linux machines lcpu we have

• ˜masrjb/bin/euscheme is an implementation of EuLisp
(not a Scheme!)

• ˜masrjb/bin/xlisp is an implementation of Scheme
• ˜masrjb/bin/clisp is an implementation of Common

Lisp

• ˜masrjb/bin/clojure is an implementation of Clojure, a
Lisp that runs atop the Java VM

• Emacs contains a Common Lisp-like interpreter (most of
Emacs is written in Lisp)

5 / 131

Lisp
Running Lisp

Lisp can be used a via a compiler (like C) or as an interactive
system (like Python)

On BUCS Linux machines lcpu we have

• ˜masrjb/bin/euscheme is an implementation of EuLisp
(not a Scheme!)

• ˜masrjb/bin/xlisp is an implementation of Scheme
• ˜masrjb/bin/clisp is an implementation of Common

Lisp
• ˜masrjb/bin/clojure is an implementation of Clojure, a

Lisp that runs atop the Java VM

• Emacs contains a Common Lisp-like interpreter (most of
Emacs is written in Lisp)

6 / 131

Lisp
Running Lisp

Lisp can be used a via a compiler (like C) or as an interactive
system (like Python)

On BUCS Linux machines lcpu we have

• ˜masrjb/bin/euscheme is an implementation of EuLisp
(not a Scheme!)

• ˜masrjb/bin/xlisp is an implementation of Scheme
• ˜masrjb/bin/clisp is an implementation of Common

Lisp
• ˜masrjb/bin/clojure is an implementation of Clojure, a

Lisp that runs atop the Java VM
• Emacs contains a Common Lisp-like interpreter (most of

Emacs is written in Lisp)

7 / 131

Lisp
Stopping Lisp

A ^ D will exit most of these Lisps

If you stuck in a recursive error handler, you might have to hit
^ D several times

8 / 131

Lisp
Stopping Lisp

A ^ D will exit most of these Lisps

If you stuck in a recursive error handler, you might have to hit
^ D several times

9 / 131

Lisp
Expressions

When you type an expression at a Lisp interpreter, it takes that
as a sign you want it evaluated

(+ 1 2) will return 3

(+ (+ 1 2 3) (* 2 8)) evaluates (+ 1 2 3) to get 6; (*
2 8) to get 16; then (+ 6 16) to get 22

Note: + names a n-ary function

Note: + and * have no special syntactic significance; they are
treated exactly as symbols like sin or foo

10 / 131

Lisp
Expressions

When you type an expression at a Lisp interpreter, it takes that
as a sign you want it evaluated

(+ 1 2) will return 3

(+ (+ 1 2 3) (* 2 8)) evaluates (+ 1 2 3) to get 6; (*
2 8) to get 16; then (+ 6 16) to get 22

Note: + names a n-ary function

Note: + and * have no special syntactic significance; they are
treated exactly as symbols like sin or foo

11 / 131

Lisp
Expressions

When you type an expression at a Lisp interpreter, it takes that
as a sign you want it evaluated

(+ 1 2) will return 3

(+ (+ 1 2 3) (* 2 8)) evaluates (+ 1 2 3) to get 6; (*
2 8) to get 16; then (+ 6 16) to get 22

Note: + names a n-ary function

Note: + and * have no special syntactic significance; they are
treated exactly as symbols like sin or foo

12 / 131

Lisp
Expressions

When you type an expression at a Lisp interpreter, it takes that
as a sign you want it evaluated

(+ 1 2) will return 3

(+ (+ 1 2 3) (* 2 8)) evaluates (+ 1 2 3) to get 6; (*
2 8) to get 16; then (+ 6 16) to get 22

Note: + names a n-ary function

Note: + and * have no special syntactic significance; they are
treated exactly as symbols like sin or foo

13 / 131

Lisp
Expressions

When you type an expression at a Lisp interpreter, it takes that
as a sign you want it evaluated

(+ 1 2) will return 3

(+ (+ 1 2 3) (* 2 8)) evaluates (+ 1 2 3) to get 6; (*
2 8) to get 16; then (+ 6 16) to get 22

Note: + names a n-ary function

Note: + and * have no special syntactic significance; they are
treated exactly as symbols like sin or foo

14 / 131

Lisp
Expressions

length is the name of a function that takes a list and returns its
length

The length of ((a b) 1 2 (d 1 3)) is 4

So we go (length (a b c)) and expect to get 3?

15 / 131

Lisp
Expressions

length is the name of a function that takes a list and returns its
length

The length of ((a b) 1 2 (d 1 3)) is 4

So we go (length (a b c)) and expect to get 3?

16 / 131

Lisp
Expressions

length is the name of a function that takes a list and returns its
length

The length of ((a b) 1 2 (d 1 3)) is 4

So we go (length (a b c)) and expect to get 3?

17 / 131

Lisp
Expressions

No: we get something like

Continuable error---calling default handler:

Condition class is #<class unbound-error>

message: "variable unbound in module ’user’"

value: c

Debug loop. Type help: for help

Broken at #<Code #157f1330>

DEBUG>

in euscheme

18 / 131

Lisp
Expressions

*** - EVAL: undefined function A

The following restarts are available:

USE-VALUE :R1 You may input a value to be used instead

of (FDEFINITION ’A).

RETRY :R2 Retry

STORE-VALUE :R3 You may input a new value for (FDEFINITION ’A).

ABORT :R4 ABORT

Break 1 [2]>

in clisp

19 / 131

Lisp
Expressions

error: unbound variable - c

happened in: #<Code #x2aee177d7488>

Entering break loop (’(reset)’ to quit)

Debug 1> [1]

in xlisp

20 / 131

Lisp
Expressions

java.lang.Exception: Unable to resolve symbol: length in this context

clojure.lang.Compiler$CompilerException: NO_SOURCE_FILE:1: Unable to

resolve symbol: length in this context

at clojure.lang.Compiler.analyze(Compiler.java:3713)

at clojure.lang.Compiler.analyze(Compiler.java:3671)

at clojure.lang.Compiler.access$100(Compiler.java:37)

at clojure.lang.Compiler$InvokeExpr.parse(Compiler.java:2634)

at clojure.lang.Compiler.analyzeSeq(Compiler.java:3860)

at clojure.lang.Compiler.analyze(Compiler.java:3698)

at clojure.lang.Compiler.analyze(Compiler.java:3671)

at clojure.lang.Compiler.access$100(Compiler.java:37)

at clojure.lang.Compiler$BodyExpr$Parser.parse(Compiler.java:3384)

at clojure.lang.Compiler$FnMethod.parse(Compiler.java:3231)

at clojure.lang.Compiler$FnMethod.access$1200(Compiler.java:3142)

at clojure.lang.Compiler$FnExpr.parse(Compiler.java:2766)

at clojure.lang.Compiler.analyzeSeq(Compiler.java:3856)

at clojure.lang.Compiler.analyze(Compiler.java:3698)

at clojure.lang.Compiler.eval(Compiler.java:3889)

at clojure.lang.Repl.main(Repl.java:75)

Caused by: java.lang.Exception: Unable to resolve symbol: length in this context

at clojure.lang.Compiler.resolveIn(Compiler.java:4019)

at clojure.lang.Compiler.resolve(Compiler.java:3972)

at clojure.lang.Compiler.analyzeSymbol(Compiler.java:3955)

at clojure.lang.Compiler.analyze(Compiler.java:3686)

... 15 more

in Clojure — it doesn’t implement length!

21 / 131

Lisp
Expressions

The problem is that you asked the Lisp to evaluate
(length (a b c))

Compare with evaluating (- (* 2 3))

This, naturally, evaluates the (* 2 3) and then the -

In the same way, it tries to evaluate (a b c) to get something
to pass to length

22 / 131

Lisp
Expressions

The problem is that you asked the Lisp to evaluate
(length (a b c))

Compare with evaluating (- (* 2 3))

This, naturally, evaluates the (* 2 3) and then the -

In the same way, it tries to evaluate (a b c) to get something
to pass to length

23 / 131

Lisp
Expressions

The problem is that you asked the Lisp to evaluate
(length (a b c))

Compare with evaluating (- (* 2 3))

This, naturally, evaluates the (* 2 3) and then the -

In the same way, it tries to evaluate (a b c) to get something
to pass to length

24 / 131

Lisp
Expressions

The problem is that you asked the Lisp to evaluate
(length (a b c))

Compare with evaluating (- (* 2 3))

This, naturally, evaluates the (* 2 3) and then the -

In the same way, it tries to evaluate (a b c) to get something
to pass to length

25 / 131

Lisp
Expressions

It is regarding the (a b c) as program, not data

The function a is not defined; the variables b and c are not
defined

So they all show an error message and dump you in an error
loop

Error loops allow you to investigate problems interactively;
more later

26 / 131

Lisp
Expressions

It is regarding the (a b c) as program, not data

The function a is not defined; the variables b and c are not
defined

So they all show an error message and dump you in an error
loop

Error loops allow you to investigate problems interactively;
more later

27 / 131

Lisp
Expressions

It is regarding the (a b c) as program, not data

The function a is not defined; the variables b and c are not
defined

So they all show an error message and dump you in an error
loop

Error loops allow you to investigate problems interactively;
more later

28 / 131

Lisp
Expressions

It is regarding the (a b c) as program, not data

The function a is not defined; the variables b and c are not
defined

So they all show an error message and dump you in an error
loop

Error loops allow you to investigate problems interactively;
more later

29 / 131

Lisp
Expressions

So how can it tell that we wanted the (a b c) to be data (a list
of three symbols), not a (broken) bit of code to be evaluated?

Remember: program is identical to data in Lisp

So there is a special form named quote we use to say “don’t
eval this, it’s data”

quote is the “opposite” to eval

30 / 131

Lisp
Expressions

So how can it tell that we wanted the (a b c) to be data (a list
of three symbols), not a (broken) bit of code to be evaluated?

Remember: program is identical to data in Lisp

So there is a special form named quote we use to say “don’t
eval this, it’s data”

quote is the “opposite” to eval

31 / 131

Lisp
Expressions

So how can it tell that we wanted the (a b c) to be data (a list
of three symbols), not a (broken) bit of code to be evaluated?

Remember: program is identical to data in Lisp

So there is a special form named quote we use to say “don’t
eval this, it’s data”

quote is the “opposite” to eval

32 / 131

Lisp
Expressions

So how can it tell that we wanted the (a b c) to be data (a list
of three symbols), not a (broken) bit of code to be evaluated?

Remember: program is identical to data in Lisp

So there is a special form named quote we use to say “don’t
eval this, it’s data”

quote is the “opposite” to eval

33 / 131

Lisp
Expressions

(quote (a b c))

quote is exempt from normal evaluation, it says “stop, eval no
deeper”

If we type (quote (a b c)) at Lisp we get:

(a b c)

If we type (length (quote (a b c))) at Lisp we get:

3

34 / 131

Lisp
Expressions

(quote (a b c))

quote is exempt from normal evaluation, it says “stop, eval no
deeper”

If we type (quote (a b c)) at Lisp we get:

(a b c)

If we type (length (quote (a b c))) at Lisp we get:

3

35 / 131

Lisp
Expressions

(quote (a b c))

quote is exempt from normal evaluation, it says “stop, eval no
deeper”

If we type (quote (a b c)) at Lisp we get:

(a b c)

If we type (length (quote (a b c))) at Lisp we get:

3

36 / 131

Lisp
Expressions

(quote (a b c))

quote is exempt from normal evaluation, it says “stop, eval no
deeper”

If we type (quote (a b c)) at Lisp we get:

(a b c)

If we type (length (quote (a b c))) at Lisp we get:

3

37 / 131

Lisp
Expressions

(quote (a b c))

quote is exempt from normal evaluation, it says “stop, eval no
deeper”

If we type (quote (a b c)) at Lisp we get:

(a b c)

If we type (length (quote (a b c))) at Lisp we get:

3

38 / 131

Lisp
Expressions

quote is so important there is a syntactic abbreviation:

’(a b c)

means exactly the same as (quote (a b c))

(length ’(a b c)) returns 3

Remember: typing something at the prompt means you want
Lisp to evaluate it

So if you don’t, use quote

39 / 131

Lisp
Expressions

quote is so important there is a syntactic abbreviation:

’(a b c)

means exactly the same as (quote (a b c))

(length ’(a b c)) returns 3

Remember: typing something at the prompt means you want
Lisp to evaluate it

So if you don’t, use quote

40 / 131

Lisp
Expressions

quote is so important there is a syntactic abbreviation:

’(a b c)

means exactly the same as (quote (a b c))

(length ’(a b c)) returns 3

Remember: typing something at the prompt means you want
Lisp to evaluate it

So if you don’t, use quote

41 / 131

Lisp
Expressions

quote is so important there is a syntactic abbreviation:

’(a b c)

means exactly the same as (quote (a b c))

(length ’(a b c)) returns 3

Remember: typing something at the prompt means you want
Lisp to evaluate it

So if you don’t, use quote

42 / 131

Lisp
Expressions

We can quote any expression: ’x evaluates to the symbol x

Warning: you will make errors with quote, either missing one
where needed, or putting one in when not

You need a quote any place you have something that you want
to be regarded as data that would otherwise be evaluated

Exercise: what do we get from evaluating ’’x?

Exercise: what do we get from evaluating ’(+ 1 2)?

43 / 131

Lisp
Expressions

We can quote any expression: ’x evaluates to the symbol x

Warning: you will make errors with quote, either missing one
where needed, or putting one in when not

You need a quote any place you have something that you want
to be regarded as data that would otherwise be evaluated

Exercise: what do we get from evaluating ’’x?

Exercise: what do we get from evaluating ’(+ 1 2)?

44 / 131

Lisp
Expressions

We can quote any expression: ’x evaluates to the symbol x

Warning: you will make errors with quote, either missing one
where needed, or putting one in when not

You need a quote any place you have something that you want
to be regarded as data that would otherwise be evaluated

Exercise: what do we get from evaluating ’’x?

Exercise: what do we get from evaluating ’(+ 1 2)?

45 / 131

Lisp
Expressions

We can quote any expression: ’x evaluates to the symbol x

Warning: you will make errors with quote, either missing one
where needed, or putting one in when not

You need a quote any place you have something that you want
to be regarded as data that would otherwise be evaluated

Exercise: what do we get from evaluating ’’x?

Exercise: what do we get from evaluating ’(+ 1 2)?

46 / 131

Lisp
Expressions

We can quote any expression: ’x evaluates to the symbol x

Warning: you will make errors with quote, either missing one
where needed, or putting one in when not

You need a quote any place you have something that you want
to be regarded as data that would otherwise be evaluated

Exercise: what do we get from evaluating ’’x?

Exercise: what do we get from evaluating ’(+ 1 2)?

47 / 131

Lisp
Evaluation

Most atoms are self-evaluating

• 1 evaluates to 1
• "hello" evaluates to "hello"

Symbols evaluate to their current value, if any

Just like variables in other languages

If the symbol has no current value, evaluating it results in an
error (usually)

48 / 131

Lisp
Evaluation

Most atoms are self-evaluating

• 1 evaluates to 1

• "hello" evaluates to "hello"

Symbols evaluate to their current value, if any

Just like variables in other languages

If the symbol has no current value, evaluating it results in an
error (usually)

49 / 131

Lisp
Evaluation

Most atoms are self-evaluating

• 1 evaluates to 1
• "hello" evaluates to "hello"

Symbols evaluate to their current value, if any

Just like variables in other languages

If the symbol has no current value, evaluating it results in an
error (usually)

50 / 131

Lisp
Evaluation

Most atoms are self-evaluating

• 1 evaluates to 1
• "hello" evaluates to "hello"

Symbols evaluate to their current value, if any

Just like variables in other languages

If the symbol has no current value, evaluating it results in an
error (usually)

51 / 131

Lisp
Evaluation

Most atoms are self-evaluating

• 1 evaluates to 1
• "hello" evaluates to "hello"

Symbols evaluate to their current value, if any

Just like variables in other languages

If the symbol has no current value, evaluating it results in an
error (usually)

52 / 131

Lisp
Evaluation

Most atoms are self-evaluating

• 1 evaluates to 1
• "hello" evaluates to "hello"

Symbols evaluate to their current value, if any

Just like variables in other languages

If the symbol has no current value, evaluating it results in an
error (usually)

53 / 131

Lisp
Evaluation

Typically, in Lisp, we don’t have to declare variables before use

Variables don’t have types associated with them

A variable can hold any object of any type

The types are in the objects, not the variables

54 / 131

Lisp
Evaluation

Typically, in Lisp, we don’t have to declare variables before use

Variables don’t have types associated with them

A variable can hold any object of any type

The types are in the objects, not the variables

55 / 131

Lisp
Evaluation

Typically, in Lisp, we don’t have to declare variables before use

Variables don’t have types associated with them

A variable can hold any object of any type

The types are in the objects, not the variables

56 / 131

Lisp
Evaluation

Typically, in Lisp, we don’t have to declare variables before use

Variables don’t have types associated with them

A variable can hold any object of any type

The types are in the objects, not the variables

57 / 131

Lisp
Evaluation

Lists evaluate as function calls: (f a b)

When the list is not a special form, like quote:

• evaluate the arguments
• evaluate the function to call
• call the function on the arguments

Each special form has its own, individual, evaluation rule

quote’s rule is: don’t evaluate the argument

58 / 131

Lisp
Evaluation

Lists evaluate as function calls: (f a b)

When the list is not a special form, like quote:

• evaluate the arguments
• evaluate the function to call
• call the function on the arguments

Each special form has its own, individual, evaluation rule

quote’s rule is: don’t evaluate the argument

59 / 131

Lisp
Evaluation

Lists evaluate as function calls: (f a b)

When the list is not a special form, like quote:

• evaluate the arguments

• evaluate the function to call
• call the function on the arguments

Each special form has its own, individual, evaluation rule

quote’s rule is: don’t evaluate the argument

60 / 131

Lisp
Evaluation

Lists evaluate as function calls: (f a b)

When the list is not a special form, like quote:

• evaluate the arguments
• evaluate the function to call

• call the function on the arguments

Each special form has its own, individual, evaluation rule

quote’s rule is: don’t evaluate the argument

61 / 131

Lisp
Evaluation

Lists evaluate as function calls: (f a b)

When the list is not a special form, like quote:

• evaluate the arguments
• evaluate the function to call
• call the function on the arguments

Each special form has its own, individual, evaluation rule

quote’s rule is: don’t evaluate the argument

62 / 131

Lisp
Evaluation

Lists evaluate as function calls: (f a b)

When the list is not a special form, like quote:

• evaluate the arguments
• evaluate the function to call
• call the function on the arguments

Each special form has its own, individual, evaluation rule

quote’s rule is: don’t evaluate the argument

63 / 131

Lisp
Evaluation

Lists evaluate as function calls: (f a b)

When the list is not a special form, like quote:

• evaluate the arguments
• evaluate the function to call
• call the function on the arguments

Each special form has its own, individual, evaluation rule

quote’s rule is: don’t evaluate the argument

64 / 131

Lisp
Evaluation

Some Lisps evaluate the function before the arguments; others
after

Some Lisps evaluate the arguments left-to-right; others
right-to-left; others as they see fit

Some Lisps evaluate the arguments in parallel

So don’t write code that relies on, say foo being executed
before bar in (+ (foo 2) (bar 4 5))

Bad to do that in most languages, anyway

65 / 131

Lisp
Evaluation

Some Lisps evaluate the function before the arguments; others
after

Some Lisps evaluate the arguments left-to-right; others
right-to-left; others as they see fit

Some Lisps evaluate the arguments in parallel

So don’t write code that relies on, say foo being executed
before bar in (+ (foo 2) (bar 4 5))

Bad to do that in most languages, anyway

66 / 131

Lisp
Evaluation

Some Lisps evaluate the function before the arguments; others
after

Some Lisps evaluate the arguments left-to-right; others
right-to-left; others as they see fit

Some Lisps evaluate the arguments in parallel

So don’t write code that relies on, say foo being executed
before bar in (+ (foo 2) (bar 4 5))

Bad to do that in most languages, anyway

67 / 131

Lisp
Evaluation

Some Lisps evaluate the function before the arguments; others
after

Some Lisps evaluate the arguments left-to-right; others
right-to-left; others as they see fit

Some Lisps evaluate the arguments in parallel

So don’t write code that relies on, say foo being executed
before bar in (+ (foo 2) (bar 4 5))

Bad to do that in most languages, anyway

68 / 131

Lisp
Evaluation

Some Lisps evaluate the function before the arguments; others
after

Some Lisps evaluate the arguments left-to-right; others
right-to-left; others as they see fit

Some Lisps evaluate the arguments in parallel

So don’t write code that relies on, say foo being executed
before bar in (+ (foo 2) (bar 4 5))

Bad to do that in most languages, anyway

69 / 131

Lisp
Evaluation

So (+ (* 2 3) 4) is evaluated as, say,

• + is the name of the addition function
• 4 self-evaluates to 4

• (* 2 3) evaluates as

• * is the name of the multiplication function
• 2 self-evaluates to 2
• 3 self-evaluates to 3
• call multiplication on 2 and 3: get 6

• call addition on 4 and 6: get 10

We are being fussy here as it makes a big difference later

70 / 131

Lisp
Evaluation

So (+ (* 2 3) 4) is evaluated as, say,

• + is the name of the addition function

• 4 self-evaluates to 4

• (* 2 3) evaluates as

• * is the name of the multiplication function
• 2 self-evaluates to 2
• 3 self-evaluates to 3
• call multiplication on 2 and 3: get 6

• call addition on 4 and 6: get 10

We are being fussy here as it makes a big difference later

71 / 131

Lisp
Evaluation

So (+ (* 2 3) 4) is evaluated as, say,

• + is the name of the addition function
• 4 self-evaluates to 4

• (* 2 3) evaluates as

• * is the name of the multiplication function
• 2 self-evaluates to 2
• 3 self-evaluates to 3
• call multiplication on 2 and 3: get 6

• call addition on 4 and 6: get 10

We are being fussy here as it makes a big difference later

72 / 131

Lisp
Evaluation

So (+ (* 2 3) 4) is evaluated as, say,

• + is the name of the addition function
• 4 self-evaluates to 4

• (* 2 3) evaluates as

• * is the name of the multiplication function
• 2 self-evaluates to 2
• 3 self-evaluates to 3
• call multiplication on 2 and 3: get 6

• call addition on 4 and 6: get 10

We are being fussy here as it makes a big difference later

73 / 131

Lisp
Evaluation

So (+ (* 2 3) 4) is evaluated as, say,

• + is the name of the addition function
• 4 self-evaluates to 4

• (* 2 3) evaluates as
• * is the name of the multiplication function

• 2 self-evaluates to 2
• 3 self-evaluates to 3
• call multiplication on 2 and 3: get 6

• call addition on 4 and 6: get 10

We are being fussy here as it makes a big difference later

74 / 131

Lisp
Evaluation

So (+ (* 2 3) 4) is evaluated as, say,

• + is the name of the addition function
• 4 self-evaluates to 4

• (* 2 3) evaluates as
• * is the name of the multiplication function
• 2 self-evaluates to 2

• 3 self-evaluates to 3
• call multiplication on 2 and 3: get 6

• call addition on 4 and 6: get 10

We are being fussy here as it makes a big difference later

75 / 131

Lisp
Evaluation

So (+ (* 2 3) 4) is evaluated as, say,

• + is the name of the addition function
• 4 self-evaluates to 4

• (* 2 3) evaluates as
• * is the name of the multiplication function
• 2 self-evaluates to 2
• 3 self-evaluates to 3

• call multiplication on 2 and 3: get 6

• call addition on 4 and 6: get 10

We are being fussy here as it makes a big difference later

76 / 131

Lisp
Evaluation

So (+ (* 2 3) 4) is evaluated as, say,

• + is the name of the addition function
• 4 self-evaluates to 4

• (* 2 3) evaluates as
• * is the name of the multiplication function
• 2 self-evaluates to 2
• 3 self-evaluates to 3
• call multiplication on 2 and 3: get 6

• call addition on 4 and 6: get 10

We are being fussy here as it makes a big difference later

77 / 131

Lisp
Evaluation

So (+ (* 2 3) 4) is evaluated as, say,

• + is the name of the addition function
• 4 self-evaluates to 4

• (* 2 3) evaluates as
• * is the name of the multiplication function
• 2 self-evaluates to 2
• 3 self-evaluates to 3
• call multiplication on 2 and 3: get 6

• call addition on 4 and 6: get 10

We are being fussy here as it makes a big difference later

78 / 131

Lisp
Evaluation

So (+ (* 2 3) 4) is evaluated as, say,

• + is the name of the addition function
• 4 self-evaluates to 4

• (* 2 3) evaluates as
• * is the name of the multiplication function
• 2 self-evaluates to 2
• 3 self-evaluates to 3
• call multiplication on 2 and 3: get 6

• call addition on 4 and 6: get 10

We are being fussy here as it makes a big difference later

79 / 131

Lisp
Evaluation

Special forms are treated specially

The first special form is quote: it stops evaluation

Another special form is if, as in
(if test trueexpr falseexpr)

Exercise: think why it is a special form. Answer later

80 / 131

Lisp
Evaluation

Special forms are treated specially

The first special form is quote: it stops evaluation

Another special form is if, as in
(if test trueexpr falseexpr)

Exercise: think why it is a special form. Answer later

81 / 131

Lisp
Evaluation

Special forms are treated specially

The first special form is quote: it stops evaluation

Another special form is if, as in
(if test trueexpr falseexpr)

Exercise: think why it is a special form. Answer later

82 / 131

Lisp
Evaluation

Special forms are treated specially

The first special form is quote: it stops evaluation

Another special form is if, as in
(if test trueexpr falseexpr)

Exercise: think why it is a special form. Answer later

83 / 131

Lisp
Evaluation

In some Lisps (e.g., Scheme, EuLisp; generally on the right
side of the family tree) collectively called Lisp-1s the function
position is the same as the arguments

In (+ x y) the + is evaluated in the same way as the x and y

The value of the symbol + is a function that adds things

84 / 131

Lisp
Evaluation

In some Lisps (e.g., Scheme, EuLisp; generally on the right
side of the family tree) collectively called Lisp-1s the function
position is the same as the arguments

In (+ x y) the + is evaluated in the same way as the x and y

The value of the symbol + is a function that adds things

85 / 131

Lisp
Evaluation

In some Lisps (e.g., Scheme, EuLisp; generally on the right
side of the family tree) collectively called Lisp-1s the function
position is the same as the arguments

In (+ x y) the + is evaluated in the same way as the x and y

The value of the symbol + is a function that adds things

86 / 131

Lisp
Evaluation

If you type + at such a Lisp, you get something like #<Subr +>

This is a way of saying “some code for something”

There’s no simple way of outputting code like there is for strings
or numbers

But functions (code) are first class objects: you can pass these
values to other functions: (compose sqrt sin) is meaningful

Exercise. The function list makes a list of its arguments, so
(list 1 2) returns (1 2). What is (list list list)?

Exercise. Compare this with making a list using quote:
’(list list)

87 / 131

Lisp
Evaluation

If you type + at such a Lisp, you get something like #<Subr +>

This is a way of saying “some code for something”

There’s no simple way of outputting code like there is for strings
or numbers

But functions (code) are first class objects: you can pass these
values to other functions: (compose sqrt sin) is meaningful

Exercise. The function list makes a list of its arguments, so
(list 1 2) returns (1 2). What is (list list list)?

Exercise. Compare this with making a list using quote:
’(list list)

88 / 131

Lisp
Evaluation

If you type + at such a Lisp, you get something like #<Subr +>

This is a way of saying “some code for something”

There’s no simple way of outputting code like there is for strings
or numbers

But functions (code) are first class objects: you can pass these
values to other functions: (compose sqrt sin) is meaningful

Exercise. The function list makes a list of its arguments, so
(list 1 2) returns (1 2). What is (list list list)?

Exercise. Compare this with making a list using quote:
’(list list)

89 / 131

Lisp
Evaluation

If you type + at such a Lisp, you get something like #<Subr +>

This is a way of saying “some code for something”

There’s no simple way of outputting code like there is for strings
or numbers

But functions (code) are first class objects: you can pass these
values to other functions: (compose sqrt sin) is meaningful

Exercise. The function list makes a list of its arguments, so
(list 1 2) returns (1 2). What is (list list list)?

Exercise. Compare this with making a list using quote:
’(list list)

90 / 131

Lisp
Evaluation

If you type + at such a Lisp, you get something like #<Subr +>

This is a way of saying “some code for something”

There’s no simple way of outputting code like there is for strings
or numbers

But functions (code) are first class objects: you can pass these
values to other functions: (compose sqrt sin) is meaningful

Exercise. The function list makes a list of its arguments, so
(list 1 2) returns (1 2). What is (list list list)?

Exercise. Compare this with making a list using quote:
’(list list)

91 / 131

Lisp
Evaluation

If you type + at such a Lisp, you get something like #<Subr +>

This is a way of saying “some code for something”

There’s no simple way of outputting code like there is for strings
or numbers

But functions (code) are first class objects: you can pass these
values to other functions: (compose sqrt sin) is meaningful

Exercise. The function list makes a list of its arguments, so
(list 1 2) returns (1 2). What is (list list list)?

Exercise. Compare this with making a list using quote:
’(list list)

92 / 131

Lisp
Evaluation

In a Lisp-1, the function position can be an arbitrary expression:
consider ((if (> x 1) sin cos) 3.0)

3.0 self-evaluates to 3.0

The function position evaluates to either the value of the symbol
sin or the value of the symbol cos, presumably the functions
sin and cos, respectively

It then calls that function with the argument 3.0

93 / 131

Lisp
Evaluation

In a Lisp-1, the function position can be an arbitrary expression:
consider ((if (> x 1) sin cos) 3.0)

3.0 self-evaluates to 3.0

The function position evaluates to either the value of the symbol
sin or the value of the symbol cos, presumably the functions
sin and cos, respectively

It then calls that function with the argument 3.0

94 / 131

Lisp
Evaluation

In a Lisp-1, the function position can be an arbitrary expression:
consider ((if (> x 1) sin cos) 3.0)

3.0 self-evaluates to 3.0

The function position evaluates to either the value of the symbol
sin or the value of the symbol cos, presumably the functions
sin and cos, respectively

It then calls that function with the argument 3.0

95 / 131

Lisp
Evaluation

In a Lisp-1, the function position can be an arbitrary expression:
consider ((if (> x 1) sin cos) 3.0)

3.0 self-evaluates to 3.0

The function position evaluates to either the value of the symbol
sin or the value of the symbol cos, presumably the functions
sin and cos, respectively

It then calls that function with the argument 3.0

96 / 131

Lisp
Evaluation

So, for a Lisp-1, a list is evaluated as

evaluate all the items in the list; then call the first item
with arguments the remainder of the items

If the first item turns out not to be a function, this will be an error

Remember trying to evaluate (a b c)

Similarly trying to evaluate (1 2 3)

97 / 131

Lisp
Evaluation

So, for a Lisp-1, a list is evaluated as

evaluate all the items in the list; then call the first item
with arguments the remainder of the items

If the first item turns out not to be a function, this will be an error

Remember trying to evaluate (a b c)

Similarly trying to evaluate (1 2 3)

98 / 131

Lisp
Evaluation

So, for a Lisp-1, a list is evaluated as

evaluate all the items in the list; then call the first item
with arguments the remainder of the items

If the first item turns out not to be a function, this will be an error

Remember trying to evaluate (a b c)

Similarly trying to evaluate (1 2 3)

99 / 131

Lisp
Evaluation

So, for a Lisp-1, a list is evaluated as

evaluate all the items in the list; then call the first item
with arguments the remainder of the items

If the first item turns out not to be a function, this will be an error

Remember trying to evaluate (a b c)

Similarly trying to evaluate (1 2 3)

100 / 131

Lisp
Evaluation

In other Lisps (e.g., Common Lisp, Emacs Lisp; generally on
the left side of the family tree) collectively called Lisp-2s the
function position is treated differently

Such Lisps keep function objects separate from other objects

A symbol has (possibly) two values: a function value to use in
function position and an ordinary value to use in argument
position

Either can be present or absent independently and will cause
an error if you try to use it when it is not set

They are stored in the function cell and the value cell of the
symbol

101 / 131

Lisp
Evaluation

In other Lisps (e.g., Common Lisp, Emacs Lisp; generally on
the left side of the family tree) collectively called Lisp-2s the
function position is treated differently

Such Lisps keep function objects separate from other objects

A symbol has (possibly) two values: a function value to use in
function position and an ordinary value to use in argument
position

Either can be present or absent independently and will cause
an error if you try to use it when it is not set

They are stored in the function cell and the value cell of the
symbol

102 / 131

Lisp
Evaluation

In other Lisps (e.g., Common Lisp, Emacs Lisp; generally on
the left side of the family tree) collectively called Lisp-2s the
function position is treated differently

Such Lisps keep function objects separate from other objects

A symbol has (possibly) two values: a function value to use in
function position and an ordinary value to use in argument
position

Either can be present or absent independently and will cause
an error if you try to use it when it is not set

They are stored in the function cell and the value cell of the
symbol

103 / 131

Lisp
Evaluation

In other Lisps (e.g., Common Lisp, Emacs Lisp; generally on
the left side of the family tree) collectively called Lisp-2s the
function position is treated differently

Such Lisps keep function objects separate from other objects

A symbol has (possibly) two values: a function value to use in
function position and an ordinary value to use in argument
position

Either can be present or absent independently and will cause
an error if you try to use it when it is not set

They are stored in the function cell and the value cell of the
symbol

104 / 131

Lisp
Evaluation

In other Lisps (e.g., Common Lisp, Emacs Lisp; generally on
the left side of the family tree) collectively called Lisp-2s the
function position is treated differently

Such Lisps keep function objects separate from other objects

A symbol has (possibly) two values: a function value to use in
function position and an ordinary value to use in argument
position

Either can be present or absent independently and will cause
an error if you try to use it when it is not set

They are stored in the function cell and the value cell of the
symbol

105 / 131

Lisp
Evaluation

Such a Lisp evaluates a (non-special form) list as

• evaluate the arguments: for the values of variables you
look in their value cells

• look in the function cell of the symbol in the function
position

• call the function you find there on the arguments

If you want the function value of a symbol when it is in a value
position, use the special form function, as in
(function list)
or its equivalent #’list

Weird, as #’ is not really a quote

106 / 131

Lisp
Evaluation

Such a Lisp evaluates a (non-special form) list as

• evaluate the arguments: for the values of variables you
look in their value cells

• look in the function cell of the symbol in the function
position

• call the function you find there on the arguments

If you want the function value of a symbol when it is in a value
position, use the special form function, as in
(function list)
or its equivalent #’list

Weird, as #’ is not really a quote

107 / 131

Lisp
Evaluation

Such a Lisp evaluates a (non-special form) list as

• evaluate the arguments: for the values of variables you
look in their value cells

• look in the function cell of the symbol in the function
position

• call the function you find there on the arguments

If you want the function value of a symbol when it is in a value
position, use the special form function, as in
(function list)
or its equivalent #’list

Weird, as #’ is not really a quote

108 / 131

Lisp
Evaluation

Such a Lisp evaluates a (non-special form) list as

• evaluate the arguments: for the values of variables you
look in their value cells

• look in the function cell of the symbol in the function
position

• call the function you find there on the arguments

If you want the function value of a symbol when it is in a value
position, use the special form function, as in
(function list)
or its equivalent #’list

Weird, as #’ is not really a quote

109 / 131

Lisp
Evaluation

Such a Lisp evaluates a (non-special form) list as

• evaluate the arguments: for the values of variables you
look in their value cells

• look in the function cell of the symbol in the function
position

• call the function you find there on the arguments

If you want the function value of a symbol when it is in a value
position, use the special form function, as in
(function list)
or its equivalent #’list

Weird, as #’ is not really a quote

110 / 131

Lisp
Evaluation

Such a Lisp evaluates a (non-special form) list as

• evaluate the arguments: for the values of variables you
look in their value cells

• look in the function cell of the symbol in the function
position

• call the function you find there on the arguments

If you want the function value of a symbol when it is in a value
position, use the special form function, as in
(function list)
or its equivalent #’list

Weird, as #’ is not really a quote

111 / 131

Lisp
Evaluation

The reason for this is a mixture of history (some older Lisps did
this) and concerns for efficiency

It is arranged so that the function cell can only hold a function:
you can’t put a non-function (e.g., a number or string) into the
function cell. The mechanism that stores things in the function
cell checks and errors if it’s a non-function

So when calling a function (foo 1) you don’t need to check
the thing “in” foo is a function before calling it: it must be

So this is slightly faster than a Lisp-1

112 / 131

Lisp
Evaluation

The reason for this is a mixture of history (some older Lisps did
this) and concerns for efficiency

It is arranged so that the function cell can only hold a function:
you can’t put a non-function (e.g., a number or string) into the
function cell. The mechanism that stores things in the function
cell checks and errors if it’s a non-function

So when calling a function (foo 1) you don’t need to check
the thing “in” foo is a function before calling it: it must be

So this is slightly faster than a Lisp-1

113 / 131

Lisp
Evaluation

The reason for this is a mixture of history (some older Lisps did
this) and concerns for efficiency

It is arranged so that the function cell can only hold a function:
you can’t put a non-function (e.g., a number or string) into the
function cell. The mechanism that stores things in the function
cell checks and errors if it’s a non-function

So when calling a function (foo 1) you don’t need to check
the thing “in” foo is a function before calling it: it must be

So this is slightly faster than a Lisp-1

114 / 131

Lisp
Evaluation

The reason for this is a mixture of history (some older Lisps did
this) and concerns for efficiency

It is arranged so that the function cell can only hold a function:
you can’t put a non-function (e.g., a number or string) into the
function cell. The mechanism that stores things in the function
cell checks and errors if it’s a non-function

So when calling a function (foo 1) you don’t need to check
the thing “in” foo is a function before calling it: it must be

So this is slightly faster than a Lisp-1

115 / 131

Lisp
Evaluation

So this is another place to be careful in porting between Lisps

Exercise. In a Lisp-2, what is the result of
(list list list)?

Exercise. Suggest something that gives the same result as the
Lisp-1 version

116 / 131

Lisp
Evaluation

So this is another place to be careful in porting between Lisps

Exercise. In a Lisp-2, what is the result of
(list list list)?

Exercise. Suggest something that gives the same result as the
Lisp-1 version

117 / 131

Lisp
Evaluation

So this is another place to be careful in porting between Lisps

Exercise. In a Lisp-2, what is the result of
(list list list)?

Exercise. Suggest something that gives the same result as the
Lisp-1 version

118 / 131

Lisp
Evaluation

Lisp-2s don’t stop you storing a function in the value cell, but to
get the expected behaviour you should use the function cell

You use

• #’ to get the function value of a symbol:
#’list →<a function>

• funcall to call a function that is stored in the value cell of
a symbol: (funcall myfun 1 2), since a simple (myfun
1 2) will look in the function cell of myfun

Lisp-1s don’t have or need #’ and funcall

119 / 131

Lisp
Evaluation

Lisp-2s don’t stop you storing a function in the value cell, but to
get the expected behaviour you should use the function cell

You use

• #’ to get the function value of a symbol:
#’list →<a function>

• funcall to call a function that is stored in the value cell of
a symbol: (funcall myfun 1 2), since a simple (myfun
1 2) will look in the function cell of myfun

Lisp-1s don’t have or need #’ and funcall

120 / 131

Lisp
Evaluation

Lisp-2s don’t stop you storing a function in the value cell, but to
get the expected behaviour you should use the function cell

You use

• #’ to get the function value of a symbol:
#’list →<a function>

• funcall to call a function that is stored in the value cell of
a symbol: (funcall myfun 1 2), since a simple (myfun
1 2) will look in the function cell of myfun

Lisp-1s don’t have or need #’ and funcall

121 / 131

Lisp
Evaluation

Lisp-2s don’t stop you storing a function in the value cell, but to
get the expected behaviour you should use the function cell

You use

• #’ to get the function value of a symbol:
#’list →<a function>

• funcall to call a function that is stored in the value cell of
a symbol: (funcall myfun 1 2), since a simple (myfun
1 2) will look in the function cell of myfun

Lisp-1s don’t have or need #’ and funcall

122 / 131

Lisp
Evaluation

In a Lisp-2 you cannot write code like

((if (> 1 2) #’sin #’cos) 1.0)

as the object in the function position must be a symbol (with an
exception. . .)

> ((if (> 1 2) #’sin #’cos) 1.0)

*** - EVAL: (IF (> 1 2) #’SIN #’COS) is not a function

name; try using a symbol instead

123 / 131

Lisp
Evaluation

In a Lisp-2 you cannot write code like

((if (> 1 2) #’sin #’cos) 1.0)

as the object in the function position must be a symbol (with an
exception. . .)

> ((if (> 1 2) #’sin #’cos) 1.0)

*** - EVAL: (IF (> 1 2) #’SIN #’COS) is not a function

name; try using a symbol instead

124 / 131

Lisp
Evaluation

What you need is

(funcall (if (> 1 2) #’sin #’cos) 1.0)

Lisp-2s gain a slight efficiency over Lisp-1s when calling
functions

They lose a lot in simplicity and generality

125 / 131

Lisp
Evaluation

What you need is

(funcall (if (> 1 2) #’sin #’cos) 1.0)

Lisp-2s gain a slight efficiency over Lisp-1s when calling
functions

They lose a lot in simplicity and generality

126 / 131

Lisp
Evaluation

What you need is

(funcall (if (> 1 2) #’sin #’cos) 1.0)

Lisp-2s gain a slight efficiency over Lisp-1s when calling
functions

They lose a lot in simplicity and generality

127 / 131

Lisp
Evaluation

To evaluate (a b c)

Lisp-1s:

• evaluate a

• check if a is a function
• evaluate b

• evaluate c

• call the function on those values

(in some order)

128 / 131

Lisp
Evaluation

Lisp-2s:

• evaluate a using its function cell
• evaluate b using its value cell
• evaluate c using its value cell
• call the function on those values

129 / 131

Lisp
Evaluation

Lisp-1s:

• variables have a single value
• evaluation is uniform across the elements of a list
• evaluation is slightly slower than Lisp-2s

130 / 131

Lisp
Evaluation

Lisp-2s:

• variables have two values, in the function cell and the value
cell

• evaluation is more complex: use the function cell in the
function position, use the value cell in the argument
position

• need to use function (or #’) to get at the function cell,
and use funcall to call a function in the value cell

• evaluation is slightly faster than Lisp-1s

131 / 131

