
Lisp
Evaluation

What of the empty list and atom ()?

Does it self-evaluate or does it need quoting?

It varies. It doesn’t hurt to quote it

The symbol NIL is often pre-set with the value ()

Or sometimes the symbol nil. Sometimes case of symbols is
important, sometimes not

1 / 142



Lisp
Evaluation

What of the empty list and atom ()?

Does it self-evaluate or does it need quoting?

It varies. It doesn’t hurt to quote it

The symbol NIL is often pre-set with the value ()

Or sometimes the symbol nil. Sometimes case of symbols is
important, sometimes not

2 / 142



Lisp
Evaluation

What of the empty list and atom ()?

Does it self-evaluate or does it need quoting?

It varies. It doesn’t hurt to quote it

The symbol NIL is often pre-set with the value ()

Or sometimes the symbol nil. Sometimes case of symbols is
important, sometimes not

3 / 142



Lisp
Evaluation

What of the empty list and atom ()?

Does it self-evaluate or does it need quoting?

It varies. It doesn’t hurt to quote it

The symbol NIL is often pre-set with the value ()

Or sometimes the symbol nil. Sometimes case of symbols is
important, sometimes not

4 / 142



Lisp
Evaluation

What of the empty list and atom ()?

Does it self-evaluate or does it need quoting?

It varies. It doesn’t hurt to quote it

The symbol NIL is often pre-set with the value ()

Or sometimes the symbol nil. Sometimes case of symbols is
important, sometimes not

5 / 142



Lisp

Within this Unit we shall be taking examples from EuLisp. It is a
Lisp-1, and has more consistent semantics than Common Lisp;
its syntax is more like most Lisps than Scheme

In EuLisp case is important: NIL and nil are different symbols

In Common Lisp they are the same symbol

Even stranger, in Common Lisp () is considered syntactically
identical to NIL, so () is classed as a symbol as well as a list

6 / 142



Lisp

Within this Unit we shall be taking examples from EuLisp. It is a
Lisp-1, and has more consistent semantics than Common Lisp;
its syntax is more like most Lisps than Scheme

In EuLisp case is important: NIL and nil are different symbols

In Common Lisp they are the same symbol

Even stranger, in Common Lisp () is considered syntactically
identical to NIL, so () is classed as a symbol as well as a list

7 / 142



Lisp

Within this Unit we shall be taking examples from EuLisp. It is a
Lisp-1, and has more consistent semantics than Common Lisp;
its syntax is more like most Lisps than Scheme

In EuLisp case is important: NIL and nil are different symbols

In Common Lisp they are the same symbol

Even stranger, in Common Lisp () is considered syntactically
identical to NIL, so () is classed as a symbol as well as a list

8 / 142



Lisp

Within this Unit we shall be taking examples from EuLisp. It is a
Lisp-1, and has more consistent semantics than Common Lisp;
its syntax is more like most Lisps than Scheme

In EuLisp case is important: NIL and nil are different symbols

In Common Lisp they are the same symbol

Even stranger, in Common Lisp () is considered syntactically
identical to NIL, so () is classed as a symbol as well as a list

9 / 142



Lisp
Truth

() is quite often taken as the “false” value in Lisp; anything else
is “true”

The symbol t is often taken as an exemplar true

(listp ’(a b)) → t
(listp ’a) → ()

For convenience, the value of the variable t is set to the
symbol t
t → t

This is not self-evaluation: just that the value is itself!

Exercise: what would happen if you set the value of t to ()?

10 / 142



Lisp
Truth

() is quite often taken as the “false” value in Lisp; anything else
is “true”

The symbol t is often taken as an exemplar true

(listp ’(a b)) → t
(listp ’a) → ()

For convenience, the value of the variable t is set to the
symbol t
t → t

This is not self-evaluation: just that the value is itself!

Exercise: what would happen if you set the value of t to ()?

11 / 142



Lisp
Truth

() is quite often taken as the “false” value in Lisp; anything else
is “true”

The symbol t is often taken as an exemplar true

(listp ’(a b)) → t
(listp ’a) → ()

For convenience, the value of the variable t is set to the
symbol t
t → t

This is not self-evaluation: just that the value is itself!

Exercise: what would happen if you set the value of t to ()?

12 / 142



Lisp
Truth

() is quite often taken as the “false” value in Lisp; anything else
is “true”

The symbol t is often taken as an exemplar true

(listp ’(a b)) → t
(listp ’a) → ()

For convenience, the value of the variable t is set to the
symbol t
t → t

This is not self-evaluation: just that the value is itself!

Exercise: what would happen if you set the value of t to ()?

13 / 142



Lisp
Truth

() is quite often taken as the “false” value in Lisp; anything else
is “true”

The symbol t is often taken as an exemplar true

(listp ’(a b)) → t
(listp ’a) → ()

For convenience, the value of the variable t is set to the
symbol t
t → t

This is not self-evaluation: just that the value is itself!

Exercise: what would happen if you set the value of t to ()?

14 / 142



Lisp
Truth

() is quite often taken as the “false” value in Lisp; anything else
is “true”

The symbol t is often taken as an exemplar true

(listp ’(a b)) → t
(listp ’a) → ()

For convenience, the value of the variable t is set to the
symbol t
t → t

This is not self-evaluation: just that the value is itself!

Exercise: what would happen if you set the value of t to ()?

15 / 142



Lisp
Truth

Other Lisps have a separate Truth datatype for true and false

So () is invalid in a Boolean expression

Still others have a separate false value and any other value,
including (), is true

16 / 142



Lisp
Truth

Other Lisps have a separate Truth datatype for true and false

So () is invalid in a Boolean expression

Still others have a separate false value and any other value,
including (), is true

17 / 142



Lisp
Truth

Other Lisps have a separate Truth datatype for true and false

So () is invalid in a Boolean expression

Still others have a separate false value and any other value,
including (), is true

18 / 142



Lisp
Truth

We have now covered most of the ways Lisp expressions are
evaluated

There are a few more special forms, and we shall treat them as
they come up

The fundamental underlying idea is: all expressions return a
value

Lisp knows the value of everything, but the cost of
nothing

19 / 142



Lisp
Truth

We have now covered most of the ways Lisp expressions are
evaluated

There are a few more special forms, and we shall treat them as
they come up

The fundamental underlying idea is: all expressions return a
value

Lisp knows the value of everything, but the cost of
nothing

20 / 142



Lisp
Truth

We have now covered most of the ways Lisp expressions are
evaluated

There are a few more special forms, and we shall treat them as
they come up

The fundamental underlying idea is: all expressions return a
value

Lisp knows the value of everything, but the cost of
nothing

21 / 142



Lisp
Truth

We have now covered most of the ways Lisp expressions are
evaluated

There are a few more special forms, and we shall treat them as
they come up

The fundamental underlying idea is: all expressions return a
value

Lisp knows the value of everything, but the cost of
nothing

22 / 142



Lisp
Lists

The principal datastructure in Lisp is the list

The function list makes lists: (list 1 ’x x) makes a list
containing 1, the symbol x and whatever the current value of
the variable x is

list is a n-ary function

Exercise. What is the value of (list)?

We can also input a constant list using quote

Exercise. What is the value of ’(1 ’x x)?

23 / 142



Lisp
Lists

The principal datastructure in Lisp is the list

The function list makes lists: (list 1 ’x x) makes a list
containing 1, the symbol x and whatever the current value of
the variable x is

list is a n-ary function

Exercise. What is the value of (list)?

We can also input a constant list using quote

Exercise. What is the value of ’(1 ’x x)?

24 / 142



Lisp
Lists

The principal datastructure in Lisp is the list

The function list makes lists: (list 1 ’x x) makes a list
containing 1, the symbol x and whatever the current value of
the variable x is

list is a n-ary function

Exercise. What is the value of (list)?

We can also input a constant list using quote

Exercise. What is the value of ’(1 ’x x)?

25 / 142



Lisp
Lists

The principal datastructure in Lisp is the list

The function list makes lists: (list 1 ’x x) makes a list
containing 1, the symbol x and whatever the current value of
the variable x is

list is a n-ary function

Exercise. What is the value of (list)?

We can also input a constant list using quote

Exercise. What is the value of ’(1 ’x x)?

26 / 142



Lisp
Lists

The principal datastructure in Lisp is the list

The function list makes lists: (list 1 ’x x) makes a list
containing 1, the symbol x and whatever the current value of
the variable x is

list is a n-ary function

Exercise. What is the value of (list)?

We can also input a constant list using quote

Exercise. What is the value of ’(1 ’x x)?

27 / 142



Lisp
Lists

The principal datastructure in Lisp is the list

The function list makes lists: (list 1 ’x x) makes a list
containing 1, the symbol x and whatever the current value of
the variable x is

list is a n-ary function

Exercise. What is the value of (list)?

We can also input a constant list using quote

Exercise. What is the value of ’(1 ’x x)?

28 / 142



Lisp
Lists

The functions car and cdr return parts of lists

(car ’(a b c)) is a

car gives us the first thing in the list, called first or head in
some Lisps

(cdr ’(a b c)) is (b c)

cdr gives us the rest of the list, called rest or tail in some
Lisps

29 / 142



Lisp
Lists

The functions car and cdr return parts of lists

(car ’(a b c)) is a

car gives us the first thing in the list, called first or head in
some Lisps

(cdr ’(a b c)) is (b c)

cdr gives us the rest of the list, called rest or tail in some
Lisps

30 / 142



Lisp
Lists

The functions car and cdr return parts of lists

(car ’(a b c)) is a

car gives us the first thing in the list, called first or head in
some Lisps

(cdr ’(a b c)) is (b c)

cdr gives us the rest of the list, called rest or tail in some
Lisps

31 / 142



Lisp
Lists

The functions car and cdr return parts of lists

(car ’(a b c)) is a

car gives us the first thing in the list, called first or head in
some Lisps

(cdr ’(a b c)) is (b c)

cdr gives us the rest of the list, called rest or tail in some
Lisps

32 / 142



Lisp
Lists

The functions car and cdr return parts of lists

(car ’(a b c)) is a

car gives us the first thing in the list, called first or head in
some Lisps

(cdr ’(a b c)) is (b c)

cdr gives us the rest of the list, called rest or tail in some
Lisps

33 / 142



Lisp
Lists

Note that in (car ’((a b) (c d))) the first item in the list is
(a b)

Exercise. What is (cdr ’((a b) (c d)))?

34 / 142



Lisp
Lists

Note that in (car ’((a b) (c d))) the first item in the list is
(a b)

Exercise. What is (cdr ’((a b) (c d)))?

35 / 142



Lisp
History

So why the weird names?

McCarthy’s original implementation was on an IBM 704 whose
architecture had several registers, in particular an address
register and a decrement register

It was convenient for the system when manipulating to a list to
put a pointer to the head in the address register and a pointer
to the tail in the decrement register

The head was the contents of the address register: car

The tail was the contents of the decrement register: cdr

36 / 142



Lisp
History

So why the weird names?

McCarthy’s original implementation was on an IBM 704 whose
architecture had several registers, in particular an address
register and a decrement register

It was convenient for the system when manipulating to a list to
put a pointer to the head in the address register and a pointer
to the tail in the decrement register

The head was the contents of the address register: car

The tail was the contents of the decrement register: cdr

37 / 142



Lisp
History

So why the weird names?

McCarthy’s original implementation was on an IBM 704 whose
architecture had several registers, in particular an address
register and a decrement register

It was convenient for the system when manipulating to a list to
put a pointer to the head in the address register and a pointer
to the tail in the decrement register

The head was the contents of the address register: car

The tail was the contents of the decrement register: cdr

38 / 142



Lisp
History

So why the weird names?

McCarthy’s original implementation was on an IBM 704 whose
architecture had several registers, in particular an address
register and a decrement register

It was convenient for the system when manipulating to a list to
put a pointer to the head in the address register and a pointer
to the tail in the decrement register

The head was the contents of the address register: car

The tail was the contents of the decrement register: cdr

39 / 142



Lisp
History

So why the weird names?

McCarthy’s original implementation was on an IBM 704 whose
architecture had several registers, in particular an address
register and a decrement register

It was convenient for the system when manipulating to a list to
put a pointer to the head in the address register and a pointer
to the tail in the decrement register

The head was the contents of the address register: car

The tail was the contents of the decrement register: cdr

40 / 142



Lisp
Lists

• (car ’(a b c)) is a

• (cdr ’(a b c)) is (b c)

• (car (cdr ’(a b c))) is b

• (cdr (cdr ’(a b c))) is (c)

• (car (cdr (cdr ’(a b c)))) is c

• (cdr (cdr (cdr ’(a b c)))) is ()

41 / 142



Lisp
Lists

• (car ’(a b c)) is a

• (cdr ’(a b c)) is (b c)

• (car (cdr ’(a b c))) is b

• (cdr (cdr ’(a b c))) is (c)

• (car (cdr (cdr ’(a b c)))) is c

• (cdr (cdr (cdr ’(a b c)))) is ()

42 / 142



Lisp
Lists

• (car ’(a b c)) is a

• (cdr ’(a b c)) is (b c)

• (car (cdr ’(a b c))) is b

• (cdr (cdr ’(a b c))) is (c)

• (car (cdr (cdr ’(a b c)))) is c

• (cdr (cdr (cdr ’(a b c)))) is ()

43 / 142



Lisp
Lists

• (car ’(a b c)) is a

• (cdr ’(a b c)) is (b c)

• (car (cdr ’(a b c))) is b

• (cdr (cdr ’(a b c))) is (c)

• (car (cdr (cdr ’(a b c)))) is c

• (cdr (cdr (cdr ’(a b c)))) is ()

44 / 142



Lisp
Lists

• (car ’(a b c)) is a

• (cdr ’(a b c)) is (b c)

• (car (cdr ’(a b c))) is b

• (cdr (cdr ’(a b c))) is (c)

• (car (cdr (cdr ’(a b c)))) is c

• (cdr (cdr (cdr ’(a b c)))) is ()

45 / 142



Lisp
Lists

• (car ’(a b c)) is a

• (cdr ’(a b c)) is (b c)

• (car (cdr ’(a b c))) is b

• (cdr (cdr ’(a b c))) is (c)

• (car (cdr (cdr ’(a b c)))) is c

• (cdr (cdr (cdr ’(a b c)))) is ()

46 / 142



Lisp
Lists

car and cdr of () is another dodgy point

Some Lisps give an error for (car ()) and (cdr ())

Some give () as the value for both (efficiency over semantics,
again)

47 / 142



Lisp
Lists

car and cdr of () is another dodgy point

Some Lisps give an error for (car ()) and (cdr ())

Some give () as the value for both (efficiency over semantics,
again)

48 / 142



Lisp
Lists

car and cdr of () is another dodgy point

Some Lisps give an error for (car ()) and (cdr ())

Some give () as the value for both (efficiency over semantics,
again)

49 / 142



Lisp
Lists

car and cdr are primitives: list is not

The function cons takes an object and a list and constructs a
new list by sticking the object on the front of the list

(cons 1 ’(2 3)) is (1 2 3)

(cons ’(1 2) ’(2 3)) is ((1 2) 2 3)

(cons 1 ()) is (1)

(cons 1 (cons 2 ())) is (1 2)

50 / 142



Lisp
Lists

car and cdr are primitives: list is not

The function cons takes an object and a list and constructs a
new list by sticking the object on the front of the list

(cons 1 ’(2 3)) is (1 2 3)

(cons ’(1 2) ’(2 3)) is ((1 2) 2 3)

(cons 1 ()) is (1)

(cons 1 (cons 2 ())) is (1 2)

51 / 142



Lisp
Lists

car and cdr are primitives: list is not

The function cons takes an object and a list and constructs a
new list by sticking the object on the front of the list

(cons 1 ’(2 3)) is (1 2 3)

(cons ’(1 2) ’(2 3)) is ((1 2) 2 3)

(cons 1 ()) is (1)

(cons 1 (cons 2 ())) is (1 2)

52 / 142



Lisp
Lists

car and cdr are primitives: list is not

The function cons takes an object and a list and constructs a
new list by sticking the object on the front of the list

(cons 1 ’(2 3)) is (1 2 3)

(cons ’(1 2) ’(2 3)) is ((1 2) 2 3)

(cons 1 ()) is (1)

(cons 1 (cons 2 ())) is (1 2)

53 / 142



Lisp
Lists

car and cdr are primitives: list is not

The function cons takes an object and a list and constructs a
new list by sticking the object on the front of the list

(cons 1 ’(2 3)) is (1 2 3)

(cons ’(1 2) ’(2 3)) is ((1 2) 2 3)

(cons 1 ()) is (1)

(cons 1 (cons 2 ())) is (1 2)

54 / 142



Lisp
Lists

car and cdr are primitives: list is not

The function cons takes an object and a list and constructs a
new list by sticking the object on the front of the list

(cons 1 ’(2 3)) is (1 2 3)

(cons ’(1 2) ’(2 3)) is ((1 2) 2 3)

(cons 1 ()) is (1)

(cons 1 (cons 2 ())) is (1 2)

55 / 142



Lisp
Lists

list is defined as multiple cons

So (list 1 2 3) executes (cons 1 (cons 2 (cons 3
())))

You can tell why list is often provided as well as the primitive
cons

56 / 142



Lisp
Lists

list is defined as multiple cons

So (list 1 2 3) executes (cons 1 (cons 2 (cons 3
())))

You can tell why list is often provided as well as the primitive
cons

57 / 142



Lisp
Lists

list is defined as multiple cons

So (list 1 2 3) executes (cons 1 (cons 2 (cons 3
())))

You can tell why list is often provided as well as the primitive
cons

58 / 142



Lisp
Pairs

So cons is a primitive

In fact, cons takes any pair of objects and makes a thing called
a pair

(cons 1 2) → (1 . 2)

The dot indicates this is a pair

(cons 1 ’(2)) → (1 2)

Where’s the dot?

59 / 142



Lisp
Pairs

So cons is a primitive

In fact, cons takes any pair of objects and makes a thing called
a pair

(cons 1 2) → (1 . 2)

The dot indicates this is a pair

(cons 1 ’(2)) → (1 2)

Where’s the dot?

60 / 142



Lisp
Pairs

So cons is a primitive

In fact, cons takes any pair of objects and makes a thing called
a pair

(cons 1 2) → (1 . 2)

The dot indicates this is a pair

(cons 1 ’(2)) → (1 2)

Where’s the dot?

61 / 142



Lisp
Pairs

So cons is a primitive

In fact, cons takes any pair of objects and makes a thing called
a pair

(cons 1 2) → (1 . 2)

The dot indicates this is a pair

(cons 1 ’(2)) → (1 2)

Where’s the dot?

62 / 142



Lisp
Pairs

So cons is a primitive

In fact, cons takes any pair of objects and makes a thing called
a pair

(cons 1 2) → (1 . 2)

The dot indicates this is a pair

(cons 1 ’(2)) → (1 2)

Where’s the dot?

63 / 142



Lisp
Pairs

So cons is a primitive

In fact, cons takes any pair of objects and makes a thing called
a pair

(cons 1 2) → (1 . 2)

The dot indicates this is a pair

(cons 1 ’(2)) → (1 2)

Where’s the dot?

64 / 142



Lisp
Pairs

It’s still there internally, but the Lisp printer prints pairs specially

Rather than printing (1 . (2 . (3 . ()))) it prints
(1 2 3)

It’s much more readable and fits our intuition of a list

A list is really just a pair whose second element is a list

65 / 142



Lisp
Pairs

It’s still there internally, but the Lisp printer prints pairs specially

Rather than printing (1 . (2 . (3 . ()))) it prints
(1 2 3)

It’s much more readable and fits our intuition of a list

A list is really just a pair whose second element is a list

66 / 142



Lisp
Pairs

It’s still there internally, but the Lisp printer prints pairs specially

Rather than printing (1 . (2 . (3 . ()))) it prints
(1 2 3)

It’s much more readable and fits our intuition of a list

A list is really just a pair whose second element is a list

67 / 142



Lisp
Pairs

It’s still there internally, but the Lisp printer prints pairs specially

Rather than printing (1 . (2 . (3 . ()))) it prints
(1 2 3)

It’s much more readable and fits our intuition of a list

A list is really just a pair whose second element is a list

68 / 142



Lisp
Pairs

Essentially, if the cdr is a list Lisp prints a space then the cdr
(recursively)

If the cdr is not a list, it prints a dot then the cdr

This produces the nice list output for lists and only prints dots
for pairs that are not lists

69 / 142



Lisp
Pairs

Essentially, if the cdr is a list Lisp prints a space then the cdr
(recursively)

If the cdr is not a list, it prints a dot then the cdr

This produces the nice list output for lists and only prints dots
for pairs that are not lists

70 / 142



Lisp
Pairs

Essentially, if the cdr is a list Lisp prints a space then the cdr
(recursively)

If the cdr is not a list, it prints a dot then the cdr

This produces the nice list output for lists and only prints dots
for pairs that are not lists

71 / 142



Lisp
Pairs

Exercise. Predict the result of printing

• (cons 1 ())

• (cons (cons 1 2) (cons 3 4))

• (cons 1 (cons 2 (cons 3 4)))

72 / 142



Lisp
Pairs

We now see that car and cdr are actually quite symmetric:
each is just one part of a pair

It’s just that in lists the cdr part is itself a list

Internally to Lisp, there are no lists, just pairs

We fool ourselves by printing certain pairs in a pretty way

(cons (cons (cons (cons () 4) 3) 2) 1) would be an
equally acceptable way to implement a list, with cdr for the
head and car for the tail

Exercise. What would this look like when printed?

73 / 142



Lisp
Pairs

We now see that car and cdr are actually quite symmetric:
each is just one part of a pair

It’s just that in lists the cdr part is itself a list

Internally to Lisp, there are no lists, just pairs

We fool ourselves by printing certain pairs in a pretty way

(cons (cons (cons (cons () 4) 3) 2) 1) would be an
equally acceptable way to implement a list, with cdr for the
head and car for the tail

Exercise. What would this look like when printed?

74 / 142



Lisp
Pairs

We now see that car and cdr are actually quite symmetric:
each is just one part of a pair

It’s just that in lists the cdr part is itself a list

Internally to Lisp, there are no lists, just pairs

We fool ourselves by printing certain pairs in a pretty way

(cons (cons (cons (cons () 4) 3) 2) 1) would be an
equally acceptable way to implement a list, with cdr for the
head and car for the tail

Exercise. What would this look like when printed?

75 / 142



Lisp
Pairs

We now see that car and cdr are actually quite symmetric:
each is just one part of a pair

It’s just that in lists the cdr part is itself a list

Internally to Lisp, there are no lists, just pairs

We fool ourselves by printing certain pairs in a pretty way

(cons (cons (cons (cons () 4) 3) 2) 1) would be an
equally acceptable way to implement a list, with cdr for the
head and car for the tail

Exercise. What would this look like when printed?

76 / 142



Lisp
Pairs

We now see that car and cdr are actually quite symmetric:
each is just one part of a pair

It’s just that in lists the cdr part is itself a list

Internally to Lisp, there are no lists, just pairs

We fool ourselves by printing certain pairs in a pretty way

(cons (cons (cons (cons () 4) 3) 2) 1) would be an
equally acceptable way to implement a list, with cdr for the
head and car for the tail

Exercise. What would this look like when printed?

77 / 142



Lisp
Pairs

We now see that car and cdr are actually quite symmetric:
each is just one part of a pair

It’s just that in lists the cdr part is itself a list

Internally to Lisp, there are no lists, just pairs

We fool ourselves by printing certain pairs in a pretty way

(cons (cons (cons (cons () 4) 3) 2) 1) would be an
equally acceptable way to implement a list, with cdr for the
head and car for the tail

Exercise. What would this look like when printed?

78 / 142



Lisp
Lists

Lists are supremely suited for recursive procedures

Most recursions are like

• Treat the base case
• Otherwise do something with some part of the problem
• Then call yourself recursively on the rest of the problem

int factorial(int n)

{

if (n < 2) return 1;

return n*factorial(n-1);

}

79 / 142



Lisp
Lists

Lists are supremely suited for recursive procedures

Most recursions are like

• Treat the base case
• Otherwise do something with some part of the problem
• Then call yourself recursively on the rest of the problem

int factorial(int n)

{

if (n < 2) return 1;

return n*factorial(n-1);

}

80 / 142



Lisp
Lists

Lists are supremely suited for recursive procedures

Most recursions are like

• Treat the base case

• Otherwise do something with some part of the problem
• Then call yourself recursively on the rest of the problem

int factorial(int n)

{

if (n < 2) return 1;

return n*factorial(n-1);

}

81 / 142



Lisp
Lists

Lists are supremely suited for recursive procedures

Most recursions are like

• Treat the base case
• Otherwise do something with some part of the problem

• Then call yourself recursively on the rest of the problem

int factorial(int n)

{

if (n < 2) return 1;

return n*factorial(n-1);

}

82 / 142



Lisp
Lists

Lists are supremely suited for recursive procedures

Most recursions are like

• Treat the base case
• Otherwise do something with some part of the problem
• Then call yourself recursively on the rest of the problem

int factorial(int n)

{

if (n < 2) return 1;

return n*factorial(n-1);

}

83 / 142



Lisp
Lists

Lists are supremely suited for recursive procedures

Most recursions are like

• Treat the base case
• Otherwise do something with some part of the problem
• Then call yourself recursively on the rest of the problem

int factorial(int n)

{

if (n < 2) return 1;

return n*factorial(n-1);

}

84 / 142



Lisp
Lists

A list is exactly the right structure for this

• Treat the base case: often ()

• Otherwise do something with some part of the problem,
the car

• Then call yourself recursively on the rest of the problem,
the cdr

85 / 142



Lisp
Lists

A list is exactly the right structure for this

• Treat the base case: often ()

• Otherwise do something with some part of the problem,
the car

• Then call yourself recursively on the rest of the problem,
the cdr

86 / 142



Lisp
Lists

A list is exactly the right structure for this

• Treat the base case: often ()

• Otherwise do something with some part of the problem,
the car

• Then call yourself recursively on the rest of the problem,
the cdr

87 / 142



Lisp
Lists

A list is exactly the right structure for this

• Treat the base case: often ()

• Otherwise do something with some part of the problem,
the car

• Then call yourself recursively on the rest of the problem,
the cdr

88 / 142



Lisp
Lists

A list can be defined recursively

A list is

• ()

• or an object (the car)
• consd onto a list (the cdr)

89 / 142



Lisp
Lists

A list can be defined recursively

A list is

• ()

• or an object (the car)
• consd onto a list (the cdr)

90 / 142



Lisp
Lists

A list can be defined recursively

A list is

• ()

• or an object (the car)
• consd onto a list (the cdr)

91 / 142



Lisp
Lists

A list can be defined recursively

A list is

• ()

• or an object (the car)

• consd onto a list (the cdr)

92 / 142



Lisp
Lists

A list can be defined recursively

A list is

• ()

• or an object (the car)
• consd onto a list (the cdr)

93 / 142



Lisp
Lists

We have

• (car (cons x l)) returns x

• (cdr (cons x l)) returns l

• (cons (car l) (cdr l)) return something like l

To explain the “something like” will take some time

But before that, we need to see more Lisp basics

94 / 142



Lisp
Lists

We have

• (car (cons x l)) returns x

• (cdr (cons x l)) returns l

• (cons (car l) (cdr l)) return something like l

To explain the “something like” will take some time

But before that, we need to see more Lisp basics

95 / 142



Lisp
Lists

We have

• (car (cons x l)) returns x

• (cdr (cons x l)) returns l

• (cons (car l) (cdr l)) return something like l

To explain the “something like” will take some time

But before that, we need to see more Lisp basics

96 / 142



Lisp
Lists

We have

• (car (cons x l)) returns x

• (cdr (cons x l)) returns l

• (cons (car l) (cdr l)) return something like l

To explain the “something like” will take some time

But before that, we need to see more Lisp basics

97 / 142



Lisp
Lists

We have

• (car (cons x l)) returns x

• (cdr (cons x l)) returns l

• (cons (car l) (cdr l)) return something like l

To explain the “something like” will take some time

But before that, we need to see more Lisp basics

98 / 142



Lisp
Lists

We have

• (car (cons x l)) returns x

• (cdr (cons x l)) returns l

• (cons (car l) (cdr l)) return something like l

To explain the “something like” will take some time

But before that, we need to see more Lisp basics

99 / 142



Lisp
Basic Lisp Functionality

We now whizz though the basic Lisp bits and pieces: they are
from EuLisp, but as always other Lisps are similar, but maybe
different

Constants

• numbers: 1 integer and 1.0 float
• strings: "hello world"

• characters: #\c for the character ’c’
• vectors: #(1 (b c) "hi") a vector of length 3, indexed

from 0 to 2

100 / 142



Lisp
Basic Lisp Functionality

We now whizz though the basic Lisp bits and pieces: they are
from EuLisp, but as always other Lisps are similar, but maybe
different

Constants

• numbers: 1 integer and 1.0 float
• strings: "hello world"

• characters: #\c for the character ’c’
• vectors: #(1 (b c) "hi") a vector of length 3, indexed

from 0 to 2

101 / 142



Lisp
List and Vectors

Lists: cons and list, quoted constant ’(a b c)

Vectors: (make-vector 4) makes a vector of length 4

Access: (vector-ref v 3) for element 3 in vector v

Update: ((setter vector-ref) v 3 x) to update element
3 to value of x

setter is a general update mechanism

All arguments can be arbitrary expressions, here and elsewhere

102 / 142



Lisp
List and Vectors

Lists: cons and list, quoted constant ’(a b c)

Vectors: (make-vector 4) makes a vector of length 4

Access: (vector-ref v 3) for element 3 in vector v

Update: ((setter vector-ref) v 3 x) to update element
3 to value of x

setter is a general update mechanism

All arguments can be arbitrary expressions, here and elsewhere

103 / 142



Lisp
List and Vectors

Lists: cons and list, quoted constant ’(a b c)

Vectors: (make-vector 4) makes a vector of length 4

Access: (vector-ref v 3) for element 3 in vector v

Update: ((setter vector-ref) v 3 x) to update element
3 to value of x

setter is a general update mechanism

All arguments can be arbitrary expressions, here and elsewhere

104 / 142



Lisp
List and Vectors

Lists: cons and list, quoted constant ’(a b c)

Vectors: (make-vector 4) makes a vector of length 4

Access: (vector-ref v 3) for element 3 in vector v

Update: ((setter vector-ref) v 3 x) to update element
3 to value of x

setter is a general update mechanism

All arguments can be arbitrary expressions, here and elsewhere

105 / 142



Lisp
List and Vectors

Lists: cons and list, quoted constant ’(a b c)

Vectors: (make-vector 4) makes a vector of length 4

Access: (vector-ref v 3) for element 3 in vector v

Update: ((setter vector-ref) v 3 x) to update element
3 to value of x

setter is a general update mechanism

All arguments can be arbitrary expressions, here and elsewhere

106 / 142



Lisp
List and Vectors

Lists: cons and list, quoted constant ’(a b c)

Vectors: (make-vector 4) makes a vector of length 4

Access: (vector-ref v 3) for element 3 in vector v

Update: ((setter vector-ref) v 3 x) to update element
3 to value of x

setter is a general update mechanism

All arguments can be arbitrary expressions, here and elsewhere

107 / 142



Lisp
Expressions

Anything that is not constant will be evaluated; things prefixed
by quote are constant

All expressions return a value

Usually it’s the obvious value from the function call

((setter vector-ref) v 3 99) returns 99

108 / 142



Lisp
Expressions

Anything that is not constant will be evaluated; things prefixed
by quote are constant

All expressions return a value

Usually it’s the obvious value from the function call

((setter vector-ref) v 3 99) returns 99

109 / 142



Lisp
Expressions

Anything that is not constant will be evaluated; things prefixed
by quote are constant

All expressions return a value

Usually it’s the obvious value from the function call

((setter vector-ref) v 3 99) returns 99

110 / 142



Lisp
Expressions

Anything that is not constant will be evaluated; things prefixed
by quote are constant

All expressions return a value

Usually it’s the obvious value from the function call

((setter vector-ref) v 3 99) returns 99

111 / 142



Lisp
Expressions

A special form progn collects together several expressions and
wraps them into a single expression

(progn

expr1

expr2

...

exprn)

This evaluates the exprs sequentially in order and its value is
the value of the last exprn

Exercise. Why is progn a special form?

112 / 142



Lisp
Expressions

A special form progn collects together several expressions and
wraps them into a single expression

(progn

expr1

expr2

...

exprn)

This evaluates the exprs sequentially in order and its value is
the value of the last exprn

Exercise. Why is progn a special form?

113 / 142



Lisp
Expressions

(progn

(print "adding values")

(+ 2 3))

prints the message and returns 5

progn is useful for when Lisp expects a single expression but
we want to do more than one thing

The progn wraps several things up and makes a single
expression out of them

114 / 142



Lisp
Expressions

(progn

(print "adding values")

(+ 2 3))

prints the message and returns 5

progn is useful for when Lisp expects a single expression but
we want to do more than one thing

The progn wraps several things up and makes a single
expression out of them

115 / 142



Lisp
Expressions

(progn

(print "adding values")

(+ 2 3))

prints the message and returns 5

progn is useful for when Lisp expects a single expression but
we want to do more than one thing

The progn wraps several things up and makes a single
expression out of them

116 / 142



Lisp
Expressions

A related special form introduces local variables

(let ((var1 val1)

(var2 val2)

...

(varm valm))

expr1

expr2

...

exprn)

The vars are symbols

Its value is the value of the last exprn

117 / 142



Lisp
Expressions

(let ((var1 val1)

(var2 val2)

...

(varm valm))

expr1

expr2

...

exprn)

The vals can be arbitrary expressions; they are evaluated in
some order, then the vars are given the corresponding values

The body of the let can use the variables; they revert to
whatever they were before (or being undefined) on exit

118 / 142



Lisp
Expressions

(let ((var1 val1)

(var2 val2)

...

(varm valm))

expr1

expr2

...

exprn)

The vals can be arbitrary expressions; they are evaluated in
some order, then the vars are given the corresponding values

The body of the let can use the variables; they revert to
whatever they were before (or being undefined) on exit

119 / 142



Lisp
Expressions

(let ((a 1)

(b (let ((x 2)) (* x x))))

(foo a b)

(* a (- b a)))

(let ((car cdr)

(cdr car))

(cdr ’(a b))) -> a

Take care with this kind of thing: you can write unreadable code
in any language

Exercise. Rewrite the second let for a Lisp-2

120 / 142



Lisp
Expressions

(let ((a 1)

(b (let ((x 2)) (* x x))))

(foo a b)

(* a (- b a)))

(let ((car cdr)

(cdr car))

(cdr ’(a b))) -> a

Take care with this kind of thing: you can write unreadable code
in any language

Exercise. Rewrite the second let for a Lisp-2

121 / 142



Lisp
Expressions

(let ((a 1)

(b (let ((x 2)) (* x x))))

(foo a b)

(* a (- b a)))

(let ((car cdr)

(cdr car))

(cdr ’(a b))) -> a

Take care with this kind of thing: you can write unreadable code
in any language

Exercise. Rewrite the second let for a Lisp-2

122 / 142



Lisp
Expressions

Exercise. What is the value of

(let ((x 1))

(let ((x 2)

(y x))

y))

123 / 142



Lisp
Expressions

There is also a let*

(let* ((var1 val1)

(var2 val2)

...

(varm valm))

expr1

expr2

...

exprn)

This is like let, but evaluates the vals in the given order,
assigning to the vars as it goes; thus val2 can refer to the
just-computed value of var1

124 / 142



Lisp
Expressions

Exercise.

(let* ((car cdr)

(cdr car))

(cdr ’(a b))) -> ?

(let ((x 1))

(let* ((x 2)

(y x))

y)) -> ?

Exercise. Think about how let* could be implemented using
let

125 / 142



Lisp
Expressions

let* is more like the way local variables are declared in other
languages

{ int x = 1;

{ int x = 2;

int y = x;

...

}

}

Each variable in the initialiser refers to its closest declaration,
be it inside this block or not

126 / 142



Lisp
Expressions

let is more general and can be more efficient than let*

For example, the values in a let might be able to be evaluated
in parallel: a let* explicitly denies this

127 / 142



Lisp
Expressions

let is more general and can be more efficient than let*

For example, the values in a let might be able to be evaluated
in parallel: a let* explicitly denies this

128 / 142



Lisp
Expressions

Symbols: the full syntax is quite general, but stick to “sequence
of letters and digits, starting with a letter”

Certain other things, like + and *, are also regarded as valid
constituents of symbols

Case is significant in EuLisp: car and Car are different symbols

129 / 142



Lisp
Expressions

Symbols: the full syntax is quite general, but stick to “sequence
of letters and digits, starting with a letter”

Certain other things, like + and *, are also regarded as valid
constituents of symbols

Case is significant in EuLisp: car and Car are different symbols

130 / 142



Lisp
Expressions

Symbols: the full syntax is quite general, but stick to “sequence
of letters and digits, starting with a letter”

Certain other things, like + and *, are also regarded as valid
constituents of symbols

Case is significant in EuLisp: car and Car are different symbols

131 / 142



Lisp
Expressions

Conditionals: if is a simple special form

(if condition expr1 expr2)

Evaluate the condition; if true, evaluate expr1, else evaluate
expr2

The value returned from the if is the value of whichever expr
that was evaluated

if plays the role of both if and ?: in C:
y = 2*(x > 0 ? 1 : -1) + z

132 / 142



Lisp
Expressions

Conditionals: if is a simple special form

(if condition expr1 expr2)

Evaluate the condition; if true, evaluate expr1, else evaluate
expr2

The value returned from the if is the value of whichever expr
that was evaluated

if plays the role of both if and ?: in C:
y = 2*(x > 0 ? 1 : -1) + z

133 / 142



Lisp
Expressions

(if (> x 0)

(progn

(print "x is positive")

(foo x))

(bar x))

(let ((y (+ (* 2 (if (> x 0) 1 -1)) z)))

...)

134 / 142



Lisp
Expressions

EuLisp also provides

(when condition

expr1

expr2

...

exprn)

Evaluate the condition; if true, evaluate the exprs in order and
return the value of the last; otherwise return ()

135 / 142



Lisp
Expressions

EuLisp also provides

(unless condition

expr1

expr2

...

exprn)

Evaluate the condition; if false, evaluate the exprs in order and
return the value of the last; otherwise return ()

Note: all of if, when and unless are special forms as they
treat their arguments specially: in particular, they do not
evaluate them unless required

136 / 142



Lisp
Expressions

EuLisp also provides

(unless condition

expr1

expr2

...

exprn)

Evaluate the condition; if false, evaluate the exprs in order and
return the value of the last; otherwise return ()

Note: all of if, when and unless are special forms as they
treat their arguments specially: in particular, they do not
evaluate them unless required

137 / 142



Lisp
Expressions

• (not x) if x is () (false) return t; else return ()

• (or expr1 expr2 ... exprn) evaluate the exprs in
order; whenever any value is true, immediately return it as
the value of the or; if all are false, return ()

• (and expr1 expr2 ... exprn) evaluate the exprs in
order; whenever any value is false, immediately return ()
as the value of the and; if all are false, return the value of
the last exprn

and and or are special forms; not is an ordinary function

138 / 142



Lisp
Expressions

• (not x) if x is () (false) return t; else return ()

• (or expr1 expr2 ... exprn) evaluate the exprs in
order; whenever any value is true, immediately return it as
the value of the or; if all are false, return ()

• (and expr1 expr2 ... exprn) evaluate the exprs in
order; whenever any value is false, immediately return ()
as the value of the and; if all are false, return the value of
the last exprn

and and or are special forms; not is an ordinary function

139 / 142



Lisp
Expressions

• (not x) if x is () (false) return t; else return ()

• (or expr1 expr2 ... exprn) evaluate the exprs in
order; whenever any value is true, immediately return it as
the value of the or; if all are false, return ()

• (and expr1 expr2 ... exprn) evaluate the exprs in
order; whenever any value is false, immediately return ()
as the value of the and; if all are false, return the value of
the last exprn

and and or are special forms; not is an ordinary function

140 / 142



Lisp
Expressions

• (not x) if x is () (false) return t; else return ()

• (or expr1 expr2 ... exprn) evaluate the exprs in
order; whenever any value is true, immediately return it as
the value of the or; if all are false, return ()

• (and expr1 expr2 ... exprn) evaluate the exprs in
order; whenever any value is false, immediately return ()
as the value of the and; if all are false, return the value of
the last exprn

and and or are special forms; not is an ordinary function

141 / 142



Lisp
Expressions

(if (and (> x 0) (not (= y z)))

(foo x y z)

(foo y z x))

(foo (or (bar x) (bar y)) 42)

142 / 142


