
Lisp
Expressions

Defining functions: use the special form defun

(defun name (arg1 arg2 ... argn)

expr1

expr2

...

exprn)

When the function named by name is called, the args are set to
the values of the arguments passed and the exprs in the body
are evaluated in order; the value returned from the function call
is the value of the last exprn

1 / 124



Lisp
Expressions

Defining functions: use the special form defun

(defun name (arg1 arg2 ... argn)

expr1

expr2

...

exprn)

When the function named by name is called, the args are set to
the values of the arguments passed and the exprs in the body
are evaluated in order; the value returned from the function call
is the value of the last exprn

2 / 124



Lisp
Expressions

(defun factorial (n)

(if (< n 2)

n

(* n (factorial (- n 1)))))

In this example we happen to have a single expr in the body,
the if

Generally, defuns should be at top level—not inside any other
code—but some Lisps let you nest function definitions inside
other expressions

There are better ways of defining local functions than using
nested defuns

3 / 124



Lisp
Expressions

(defun factorial (n)

(if (< n 2)

n

(* n (factorial (- n 1)))))

In this example we happen to have a single expr in the body,
the if

Generally, defuns should be at top level—not inside any other
code—but some Lisps let you nest function definitions inside
other expressions

There are better ways of defining local functions than using
nested defuns

4 / 124



Lisp
Expressions

(defun factorial (n)

(if (< n 2)

n

(* n (factorial (- n 1)))))

In this example we happen to have a single expr in the body,
the if

Generally, defuns should be at top level—not inside any other
code—but some Lisps let you nest function definitions inside
other expressions

There are better ways of defining local functions than using
nested defuns

5 / 124



Lisp
Expressions

(defun factorial (n)

(if (< n 2)

n

(* n (factorial (- n 1)))))

In this example we happen to have a single expr in the body,
the if

Generally, defuns should be at top level—not inside any other
code—but some Lisps let you nest function definitions inside
other expressions

There are better ways of defining local functions than using
nested defuns

6 / 124



Lisp
Expressions

Function of no arguments

(defun hello ()

(print "hi there"))

Called as (hello)

7 / 124



Lisp
Expressions

Function of no arguments

(defun hello ()

(print "hi there"))

Called as (hello)

8 / 124



Lisp

More Lisp

Skip to the end

9 / 124



Lisp
Expressions

Another Lisp conditional is like a generalisation of switch from
C

(cond

(test1 expr1a expr1b ...)

(test2 expr2a expr2b ...)

...

(testn exprna exprnb ...))

Evaluate test1; if true evaluate the expr1s in order; return the
value of the last expr1 as the value of the cond

Else evaluate test2; if true evaluate the expr2s in order;
return the value of the last expr2 as the value of the cond

Else. . .

If no condition was true, return () as the value of the cond

10 / 124



Lisp
Expressions

Another Lisp conditional is like a generalisation of switch from
C

(cond

(test1 expr1a expr1b ...)

(test2 expr2a expr2b ...)

...

(testn exprna exprnb ...))

Evaluate test1; if true evaluate the expr1s in order; return the
value of the last expr1 as the value of the cond

Else evaluate test2; if true evaluate the expr2s in order;
return the value of the last expr2 as the value of the cond

Else. . .

If no condition was true, return () as the value of the cond

11 / 124



Lisp
Expressions

Another Lisp conditional is like a generalisation of switch from
C

(cond

(test1 expr1a expr1b ...)

(test2 expr2a expr2b ...)

...

(testn exprna exprnb ...))

Evaluate test1; if true evaluate the expr1s in order; return the
value of the last expr1 as the value of the cond

Else evaluate test2; if true evaluate the expr2s in order;
return the value of the last expr2 as the value of the cond

Else. . .

If no condition was true, return () as the value of the cond

12 / 124



Lisp
Expressions

Another Lisp conditional is like a generalisation of switch from
C

(cond

(test1 expr1a expr1b ...)

(test2 expr2a expr2b ...)

...

(testn exprna exprnb ...))

Evaluate test1; if true evaluate the expr1s in order; return the
value of the last expr1 as the value of the cond

Else evaluate test2; if true evaluate the expr2s in order;
return the value of the last expr2 as the value of the cond

Else. . .

If no condition was true, return () as the value of the cond
13 / 124



Lisp
Expressions

(cond ((> x 0) "positive")

((< x 0) "negative")

(t "zero"))

The value of the expression t is the symbol t, which is a true
value; this is like default in C’s switch

14 / 124



Lisp
Expressions

(cond ((> x 0) "positive")

((< x 0) "negative")

(t "zero"))

The value of the expression t is the symbol t, which is a true
value; this is like default in C’s switch

15 / 124



Lisp
Expressions

cond is the original conditional construct in Lisp: if came
along later

Each can be defined in terms of the other

16 / 124



Lisp
Expressions

cond is the original conditional construct in Lisp: if came
along later

Each can be defined in terms of the other

17 / 124



Lisp
Expressions

Function of variable number of arguments

(defun name (arg1 arg2 ... argn . restarg)

expr1

expr2

...

exprn)

This takes n or more arguments; the first n are given to arg1 to
argn; any others are made into a list and given to the variable
restarg

It is an error to call the function on fewer than n arguments

18 / 124



Lisp
Expressions

Function of variable number of arguments

(defun name (arg1 arg2 ... argn . restarg)

expr1

expr2

...

exprn)

This takes n or more arguments; the first n are given to arg1 to
argn; any others are made into a list and given to the variable
restarg

It is an error to call the function on fewer than n arguments

19 / 124



Lisp
Expressions

(defun bar (a b . c)

(list a b c))

Takes two or more arguments

(bar 1 2 3 4) → (1 2 (3 4))

(bar 1 2) → (1 2 ())

(bar 1) → error, not enough arguments

20 / 124



Lisp
Expressions

(defun bar (a b . c)

(list a b c))

Takes two or more arguments

(bar 1 2 3 4) → (1 2 (3 4))

(bar 1 2) → (1 2 ())

(bar 1) → error, not enough arguments

21 / 124



Lisp
Expressions

(defun bar (a b . c)

(list a b c))

Takes two or more arguments

(bar 1 2 3 4) → (1 2 (3 4))

(bar 1 2) → (1 2 ())

(bar 1) → error, not enough arguments

22 / 124



Lisp
Expressions

(defun bar (a b . c)

(list a b c))

Takes two or more arguments

(bar 1 2 3 4) → (1 2 (3 4))

(bar 1 2) → (1 2 ())

(bar 1) → error, not enough arguments

23 / 124



Lisp
Expressions

A special case:

(defun bar a

a)

Takes zero or more arguments

(bar 1 2 3 4) → (1 2 3 4)

(bar) → ()

bar is just list!

24 / 124



Lisp
Expressions

A special case:

(defun bar a

a)

Takes zero or more arguments

(bar 1 2 3 4) → (1 2 3 4)

(bar) → ()

bar is just list!

25 / 124



Lisp
Expressions

A special case:

(defun bar a

a)

Takes zero or more arguments

(bar 1 2 3 4) → (1 2 3 4)

(bar) → ()

bar is just list!

26 / 124



Lisp
Expressions

A special case:

(defun bar a

a)

Takes zero or more arguments

(bar 1 2 3 4) → (1 2 3 4)

(bar) → ()

bar is just list!

27 / 124



Lisp
Expressions

Arithmetic: all the usual stuff

• +

• -

• *

• /

• sin etc.
• exp etc.
• pow raise to power
• etc.

28 / 124



Lisp
Expressions

Additionally the basic arithmetic operations have variable arity

• (+) → 0

• (+ 1) → 1

• (+ 1 2) → 3

• (+ 1 2 3) → 6

• (-) → error, not enough arguments
• (- 1) → -1

• (- 1 2 3) → -4

• (* 1 2 3 4) → 24

• etc.

29 / 124



Lisp
Expressions

Exercise. What do you expect from (*)?

Exercise. What do you expect from (/)?

Exercise. What do you expect from (/ 2)?

Exercise. What do you expect from (/ 2.0)?

30 / 124



Lisp
I/O

open-input-file takes a string and opens and returns a file
stream for input; return () if the files does not exist

open-output-file takes a string and opens and returns a file
stream for output; creates the file if it doesn’t exist; truncates it if
it does

open-update-file takes a string and opens and returns a file
stream for append; return () if the files does not exist

close-port closes a file stream

31 / 124



Lisp
I/O

open-input-file takes a string and opens and returns a file
stream for input; return () if the files does not exist

open-output-file takes a string and opens and returns a file
stream for output; creates the file if it doesn’t exist; truncates it if
it does

open-update-file takes a string and opens and returns a file
stream for append; return () if the files does not exist

close-port closes a file stream

32 / 124



Lisp
I/O

open-input-file takes a string and opens and returns a file
stream for input; return () if the files does not exist

open-output-file takes a string and opens and returns a file
stream for output; creates the file if it doesn’t exist; truncates it if
it does

open-update-file takes a string and opens and returns a file
stream for append; return () if the files does not exist

close-port closes a file stream

33 / 124



Lisp
I/O

open-input-file takes a string and opens and returns a file
stream for input; return () if the files does not exist

open-output-file takes a string and opens and returns a file
stream for output; creates the file if it doesn’t exist; truncates it if
it does

open-update-file takes a string and opens and returns a file
stream for append; return () if the files does not exist

close-port closes a file stream

34 / 124



Lisp
I/O

Reading: the function read takes an optional input stream and
reads a complete Lisp expression

If no input stream is given, it reads from the standard input
(usually the terminal)

(let ((x (read))

(y (read)))

(list x y))

35 / 124



Lisp
I/O

Reading: the function read takes an optional input stream and
reads a complete Lisp expression

If no input stream is given, it reads from the standard input
(usually the terminal)

(let ((x (read))

(y (read)))

(list x y))

36 / 124



Lisp
I/O

Reading: the function read takes an optional input stream and
reads a complete Lisp expression

If no input stream is given, it reads from the standard input
(usually the terminal)

(let ((x (read))

(y (read)))

(list x y))

37 / 124



Lisp
I/O

Output: two main functions, print and write

write prints a value in such a way (if possible) that it can be
read back in by read

print prints a value in a more human-friendly manner

(write "hello")

"hello"

(print "hello")

hello

(write cos)

#<Subr cos>

Both take an optional second argument of an output stream

38 / 124



Lisp
I/O

Output: two main functions, print and write

write prints a value in such a way (if possible) that it can be
read back in by read

print prints a value in a more human-friendly manner

(write "hello")

"hello"

(print "hello")

hello

(write cos)

#<Subr cos>

Both take an optional second argument of an output stream

39 / 124



Lisp
I/O

Output: two main functions, print and write

write prints a value in such a way (if possible) that it can be
read back in by read

print prints a value in a more human-friendly manner

(write "hello")

"hello"

(print "hello")

hello

(write cos)

#<Subr cos>

Both take an optional second argument of an output stream

40 / 124



Lisp
I/O

Output: two main functions, print and write

write prints a value in such a way (if possible) that it can be
read back in by read

print prints a value in a more human-friendly manner

(write "hello")

"hello"

(print "hello")

hello

(write cos)

#<Subr cos>

Both take an optional second argument of an output stream

41 / 124



Lisp
I/O

Output: two main functions, print and write

write prints a value in such a way (if possible) that it can be
read back in by read

print prints a value in a more human-friendly manner

(write "hello")

"hello"

(print "hello")

hello

(write cos)

#<Subr cos>

Both take an optional second argument of an output stream

42 / 124



Lisp
I/O

prin is like print without a newline on the end

Exercise. When typing at the Lisp interpreter

> (write "hello")

"hello""hello"

>

Why does "hello" appear twice?

There is also a format rather like C’s

43 / 124



Lisp
I/O

prin is like print without a newline on the end

Exercise. When typing at the Lisp interpreter

> (write "hello")

"hello""hello"

>

Why does "hello" appear twice?

There is also a format rather like C’s

44 / 124



Lisp
I/O

prin is like print without a newline on the end

Exercise. When typing at the Lisp interpreter

> (write "hello")

"hello""hello"

>

Why does "hello" appear twice?

There is also a format rather like C’s

45 / 124



Lisp
Comparison

Equality test:

• = for numbers
• equal for general objects

There is much more about equal to come later

46 / 124



Lisp
Comparison

Equality test:

• = for numbers

• equal for general objects

There is much more about equal to come later

47 / 124



Lisp
Comparison

Equality test:

• = for numbers
• equal for general objects

There is much more about equal to come later

48 / 124



Lisp
Comparison

Equality test:

• = for numbers
• equal for general objects

There is much more about equal to come later

49 / 124



Lisp
Comparison

Inequality test:

• <

• <=

• >

• >=

These are all n-ary: (< 1 2 3 4) returns true if the values are
strictly increasing

Similarly for the others

50 / 124



Lisp
Comparison

Inequality test:

• <

• <=

• >

• >=

These are all n-ary: (< 1 2 3 4) returns true if the values are
strictly increasing

Similarly for the others

51 / 124



Lisp
Comparison

Inequality test:

• <

• <=

• >

• >=

These are all n-ary: (< 1 2 3 4) returns true if the values are
strictly increasing

Similarly for the others

52 / 124



Lisp
Local Functions

Just like let introduces local variables, the labels special
form can introduce local functions

(labels ((name1 (arg1a arg1b ...)

expr1a expr1b ...)

(name2 (arg2a arg2b ...)

expr1a expr1b ...)

...

(namen (argna argnb ...)

exprna exprnb ...))

body1

body2

...

bodym)

53 / 124



Lisp
Local Functions

(labels ((name1 (arg1a arg1b ...)

expr1a expr1b ...)

(name2 (arg2a arg2b ...)

expr1a expr1b ...)

...

(namen (argna argnb ...)

exprna exprnb ...))

body1

body2

...

bodym)

This makes functions named names with arguments args and
bodies exprs available in the body of the labels; the value of
the labels is the value of the last bodym

54 / 124



Lisp
Local Functions

(labels ((foo (a b) (+ a b))

(bar (n) (* n n)))

(foo (bar 1) (bar 2)))

As with let the names foo and bar revert at the exit of the
labels form

This is not quite like let, as within the definition of foo we can
refer to bar, and vice versa

And to themselves, too

It is this way by default because we naturally want functions to
refer to each other, and to themselves

55 / 124



Lisp
Local Functions

(labels ((foo (a b) (+ a b))

(bar (n) (* n n)))

(foo (bar 1) (bar 2)))

As with let the names foo and bar revert at the exit of the
labels form

This is not quite like let, as within the definition of foo we can
refer to bar, and vice versa

And to themselves, too

It is this way by default because we naturally want functions to
refer to each other, and to themselves

56 / 124



Lisp
Local Functions

(labels ((foo (a b) (+ a b))

(bar (n) (* n n)))

(foo (bar 1) (bar 2)))

As with let the names foo and bar revert at the exit of the
labels form

This is not quite like let, as within the definition of foo we can
refer to bar, and vice versa

And to themselves, too

It is this way by default because we naturally want functions to
refer to each other, and to themselves

57 / 124



Lisp
Local Functions

(labels ((foo (a b) (+ a b))

(bar (n) (* n n)))

(foo (bar 1) (bar 2)))

As with let the names foo and bar revert at the exit of the
labels form

This is not quite like let, as within the definition of foo we can
refer to bar, and vice versa

And to themselves, too

It is this way by default because we naturally want functions to
refer to each other, and to themselves

58 / 124



Lisp
Local Functions

(labels ((foo (a b) (+ a b))

(bar (n) (* n n)))

(foo (bar 1) (bar 2)))

As with let the names foo and bar revert at the exit of the
labels form

This is not quite like let, as within the definition of foo we can
refer to bar, and vice versa

And to themselves, too

It is this way by default because we naturally want functions to
refer to each other, and to themselves

59 / 124



Lisp
Local Functions

(labels ((fact (n) (if (< n 2)

1

(* n (fact (- n 1))))))

(fact 5))

In Lisp, functions are just like other objects and you should not
be shy of local functions

60 / 124



Lisp
Local Functions

(labels ((fact (n) (if (< n 2)

1

(* n (fact (- n 1))))))

(fact 5))

In Lisp, functions are just like other objects and you should not
be shy of local functions

61 / 124



Lisp
Errors

You will make errors

When this happens Lisp calls an error handler

Error handlers are programmable, but the default handler is
usually what we need

The default handler enters a debug loop

62 / 124



Lisp
Errors

You will make errors

When this happens Lisp calls an error handler

Error handlers are programmable, but the default handler is
usually what we need

The default handler enters a debug loop

63 / 124



Lisp
Errors

You will make errors

When this happens Lisp calls an error handler

Error handlers are programmable, but the default handler is
usually what we need

The default handler enters a debug loop

64 / 124



Lisp
Errors

You will make errors

When this happens Lisp calls an error handler

Error handlers are programmable, but the default handler is
usually what we need

The default handler enters a debug loop

65 / 124



Lisp
Errors

user> qwerty

Continuable error---calling default handler:

Condition class is #<class unbound-error>

message: "variable unbound in module ’user’"

value: qwerty

Debug loop. Type help: for help

Broken at #<Code #1bb6c320>

DEBUG>

66 / 124



Lisp
Errors

Firstly, it tells you the problem:

Condition class is #<class unbound-error>

message: "variable unbound in module ’user’"

value: qwerty

The message tells us the variable qwerty is unbound, i.e., has
no value

The error class is unbound-error

67 / 124



Lisp
Errors

Firstly, it tells you the problem:

Condition class is #<class unbound-error>

message: "variable unbound in module ’user’"

value: qwerty

The message tells us the variable qwerty is unbound, i.e., has
no value

The error class is unbound-error

68 / 124



Lisp
Errors

Firstly, it tells you the problem:

Condition class is #<class unbound-error>

message: "variable unbound in module ’user’"

value: qwerty

The message tells us the variable qwerty is unbound, i.e., has
no value

The error class is unbound-error

69 / 124



Lisp
Errors

In EuLisp errors and (error handlers) are first class objects and
fit into the class hierarchy as part of a general condition
mechanism

There are various classes of error and we can define methods
that do whatever we want dependent on the type

For now, just read the message

70 / 124



Lisp
Errors

In EuLisp errors and (error handlers) are first class objects and
fit into the class hierarchy as part of a general condition
mechanism

There are various classes of error and we can define methods
that do whatever we want dependent on the type

For now, just read the message

71 / 124



Lisp
Errors

In EuLisp errors and (error handlers) are first class objects and
fit into the class hierarchy as part of a general condition
mechanism

There are various classes of error and we can define methods
that do whatever we want dependent on the type

For now, just read the message

72 / 124



Lisp
Errors

Next,

Debug loop. Type help: for help

Broken at #<Code #1bb6c320>

We are in a debug loop, halted inside the broken code: here the
code is not too useful, at other times it can identify the function
where the error happened

Typing help: at the prompt will give help!

73 / 124



Lisp
Errors

Next,

Debug loop. Type help: for help

Broken at #<Code #1bb6c320>

We are in a debug loop, halted inside the broken code: here the
code is not too useful, at other times it can identify the function
where the error happened

Typing help: at the prompt will give help!

74 / 124



Lisp
Errors

DEBUG> help:

Debug loop.

top: return to top level

resume: or (resume: val) resume from error

bt: backtrace

locals: local variables

cond: current condition

up: or (up: n) up one or n frames

down: or (down: n) down one or n frames

where: current function

DEBUG>

75 / 124



Lisp
Errors

• top: this will throw away the error and return us to the top
level read-eval-print loop

• resume: this will continue running the code from where it
stopped, passing in a value (or ())

• bt: will give a list of the function call frames we are inside
(a backtrace); (due to tail recursion some frames may be
absent)

• local: the values of the local variables
• cond: the current error condition (as given in the error

message)

76 / 124



Lisp
Errors

• top: this will throw away the error and return us to the top
level read-eval-print loop

• resume: this will continue running the code from where it
stopped, passing in a value (or ())

• bt: will give a list of the function call frames we are inside
(a backtrace); (due to tail recursion some frames may be
absent)

• local: the values of the local variables
• cond: the current error condition (as given in the error

message)

77 / 124



Lisp
Errors

• top: this will throw away the error and return us to the top
level read-eval-print loop

• resume: this will continue running the code from where it
stopped, passing in a value (or ())

• bt: will give a list of the function call frames we are inside
(a backtrace); (due to tail recursion some frames may be
absent)

• local: the values of the local variables
• cond: the current error condition (as given in the error

message)

78 / 124



Lisp
Errors

• top: this will throw away the error and return us to the top
level read-eval-print loop

• resume: this will continue running the code from where it
stopped, passing in a value (or ())

• bt: will give a list of the function call frames we are inside
(a backtrace); (due to tail recursion some frames may be
absent)

• local: the values of the local variables

• cond: the current error condition (as given in the error
message)

79 / 124



Lisp
Errors

• top: this will throw away the error and return us to the top
level read-eval-print loop

• resume: this will continue running the code from where it
stopped, passing in a value (or ())

• bt: will give a list of the function call frames we are inside
(a backtrace); (due to tail recursion some frames may be
absent)

• local: the values of the local variables
• cond: the current error condition (as given in the error

message)

80 / 124



Lisp
Errors

• up: move up one frame: if foo calls bar and we broke in
bar, this move us up into foo

• down: move down one frame
• where: the name of the function we broke in, if available

81 / 124



Lisp
Errors

• up: move up one frame: if foo calls bar and we broke in
bar, this move us up into foo

• down: move down one frame

• where: the name of the function we broke in, if available

82 / 124



Lisp
Errors

• up: move up one frame: if foo calls bar and we broke in
bar, this move us up into foo

• down: move down one frame
• where: the name of the function we broke in, if available

83 / 124



Lisp
Errors

Usually, we do a bt: to see where we are and then a top: to
clean up the error before we try again

Debug loops can be nested if we make an error while in a
debug loop

84 / 124



Lisp
Errors

Usually, we do a bt: to see where we are and then a top: to
clean up the error before we try again

Debug loops can be nested if we make an error while in a
debug loop

85 / 124



Lisp
Errors

(defun foo (n)

(+ 1 (bar n)))

(defun bar (m)

(/ 1 m))

(foo 0)

86 / 124



Lisp
Errors

Continuable error---calling default handler:

Condition class is #<class arithmetic-error>

message: "division by zero"

value: 1

Debug loop. Type help: for help

Broken at #<Code bar>

DEBUG>

87 / 124



Lisp
Errors

DEBUG> bt:

Stack backtrace:

function bar (m)

m: 0

function foo (n)

n: 0

function *TOPLEVEL* ()

function *TOPLEVEL* ()

DEBUG> top:

88 / 124



Lisp
Errors

Or

DEBUG> (resume: 5)

6

We exit the debug loop, passing back the value 5 from where
the error occurred; foo then adds 1

89 / 124



Lisp
Errors

Or

DEBUG> (resume: 5)

6

We exit the debug loop, passing back the value 5 from where
the error occurred; foo then adds 1

90 / 124



Lisp
Type Tests

• (null x) → t if x is the empty list; else ()

• (atom x) → t if x is an atom; else ()

• (consp x) → t if x is a pair; else ()

• (listp x) → t if x is a list; else ()

• (stringp x) → t if x is a string; else ()

• (numberp x) → t if x is a number; else ()

• (integerp x) → t if x is an integer; else ()

• (functionp x) → t if x is a function; else ()

• etc.

“p” is for “predicate”; Scheme uses ?, so cons?, etc.

91 / 124



Lisp
Type Tests

• (null x) → t if x is the empty list; else ()

• (atom x) → t if x is an atom; else ()

• (consp x) → t if x is a pair; else ()

• (listp x) → t if x is a list; else ()

• (stringp x) → t if x is a string; else ()

• (numberp x) → t if x is a number; else ()

• (integerp x) → t if x is an integer; else ()

• (functionp x) → t if x is a function; else ()

• etc.

“p” is for “predicate”; Scheme uses ?, so cons?, etc.

92 / 124



Lisp
Type Tests

• (null x) → t if x is the empty list; else ()

• (atom x) → t if x is an atom; else ()

• (consp x) → t if x is a pair; else ()

• (listp x) → t if x is a list; else ()

• (stringp x) → t if x is a string; else ()

• (numberp x) → t if x is a number; else ()

• (integerp x) → t if x is an integer; else ()

• (functionp x) → t if x is a function; else ()

• etc.

“p” is for “predicate”; Scheme uses ?, so cons?, etc.

93 / 124



Lisp
Type Tests

• (null x) → t if x is the empty list; else ()

• (atom x) → t if x is an atom; else ()

• (consp x) → t if x is a pair; else ()

• (listp x) → t if x is a list; else ()

• (stringp x) → t if x is a string; else ()

• (numberp x) → t if x is a number; else ()

• (integerp x) → t if x is an integer; else ()

• (functionp x) → t if x is a function; else ()

• etc.

“p” is for “predicate”; Scheme uses ?, so cons?, etc.

94 / 124



Lisp
Type Tests

• (null x) → t if x is the empty list; else ()

• (atom x) → t if x is an atom; else ()

• (consp x) → t if x is a pair; else ()

• (listp x) → t if x is a list; else ()

• (stringp x) → t if x is a string; else ()

• (numberp x) → t if x is a number; else ()

• (integerp x) → t if x is an integer; else ()

• (functionp x) → t if x is a function; else ()

• etc.

“p” is for “predicate”; Scheme uses ?, so cons?, etc.

95 / 124



Lisp
Type Tests

• (null x) → t if x is the empty list; else ()

• (atom x) → t if x is an atom; else ()

• (consp x) → t if x is a pair; else ()

• (listp x) → t if x is a list; else ()

• (stringp x) → t if x is a string; else ()

• (numberp x) → t if x is a number; else ()

• (integerp x) → t if x is an integer; else ()

• (functionp x) → t if x is a function; else ()

• etc.

“p” is for “predicate”; Scheme uses ?, so cons?, etc.

96 / 124



Lisp
Type Tests

• (null x) → t if x is the empty list; else ()

• (atom x) → t if x is an atom; else ()

• (consp x) → t if x is a pair; else ()

• (listp x) → t if x is a list; else ()

• (stringp x) → t if x is a string; else ()

• (numberp x) → t if x is a number; else ()

• (integerp x) → t if x is an integer; else ()

• (functionp x) → t if x is a function; else ()

• etc.

“p” is for “predicate”; Scheme uses ?, so cons?, etc.

97 / 124



Lisp
Type Tests

• (null x) → t if x is the empty list; else ()

• (atom x) → t if x is an atom; else ()

• (consp x) → t if x is a pair; else ()

• (listp x) → t if x is a list; else ()

• (stringp x) → t if x is a string; else ()

• (numberp x) → t if x is a number; else ()

• (integerp x) → t if x is an integer; else ()

• (functionp x) → t if x is a function; else ()

• etc.

“p” is for “predicate”; Scheme uses ?, so cons?, etc.

98 / 124



Lisp
Type Tests

• (null x) → t if x is the empty list; else ()

• (atom x) → t if x is an atom; else ()

• (consp x) → t if x is a pair; else ()

• (listp x) → t if x is a list; else ()

• (stringp x) → t if x is a string; else ()

• (numberp x) → t if x is a number; else ()

• (integerp x) → t if x is an integer; else ()

• (functionp x) → t if x is a function; else ()

• etc.

“p” is for “predicate”; Scheme uses ?, so cons?, etc.

99 / 124



Lisp
Type Tests

• (null x) → t if x is the empty list; else ()

• (atom x) → t if x is an atom; else ()

• (consp x) → t if x is a pair; else ()

• (listp x) → t if x is a list; else ()

• (stringp x) → t if x is a string; else ()

• (numberp x) → t if x is a number; else ()

• (integerp x) → t if x is an integer; else ()

• (functionp x) → t if x is a function; else ()

• etc.

“p” is for “predicate”; Scheme uses ?, so cons?, etc.

100 / 124



Lisp
Type Tests

Exercise. listp is different from consp. Explain

Exercise. What is (atom #(1 2))?

Exercise. Compare not and null

101 / 124



Lisp
Lists

cons, car, cdr, list

• length of a list
• caar same as (car (car l))

• cadr same as (car (cdr l))

• cdar same as (cdr (car l))

• cddr same as (cdr (cdr l))

• . . .
• cddddr same as (cdr (cdr (cdr (cdr l))))

102 / 124



Lisp
Lists

cons, car, cdr, list

• length of a list

• caar same as (car (car l))

• cadr same as (car (cdr l))

• cdar same as (cdr (car l))

• cddr same as (cdr (cdr l))

• . . .
• cddddr same as (cdr (cdr (cdr (cdr l))))

103 / 124



Lisp
Lists

cons, car, cdr, list

• length of a list
• caar same as (car (car l))

• cadr same as (car (cdr l))

• cdar same as (cdr (car l))

• cddr same as (cdr (cdr l))

• . . .
• cddddr same as (cdr (cdr (cdr (cdr l))))

104 / 124



Lisp
Lists

cons, car, cdr, list

• length of a list
• caar same as (car (car l))

• cadr same as (car (cdr l))

• cdar same as (cdr (car l))

• cddr same as (cdr (cdr l))

• . . .
• cddddr same as (cdr (cdr (cdr (cdr l))))

105 / 124



Lisp
Lists

cons, car, cdr, list

• length of a list
• caar same as (car (car l))

• cadr same as (car (cdr l))

• cdar same as (cdr (car l))

• cddr same as (cdr (cdr l))

• . . .
• cddddr same as (cdr (cdr (cdr (cdr l))))

106 / 124



Lisp
Lists

cons, car, cdr, list

• length of a list
• caar same as (car (car l))

• cadr same as (car (cdr l))

• cdar same as (cdr (car l))

• cddr same as (cdr (cdr l))

• . . .
• cddddr same as (cdr (cdr (cdr (cdr l))))

107 / 124



Lisp
Lists

cons, car, cdr, list

• length of a list
• caar same as (car (car l))

• cadr same as (car (cdr l))

• cdar same as (cdr (car l))

• cddr same as (cdr (cdr l))

• . . .

• cddddr same as (cdr (cdr (cdr (cdr l))))

108 / 124



Lisp
Lists

cons, car, cdr, list

• length of a list
• caar same as (car (car l))

• cadr same as (car (cdr l))

• cdar same as (cdr (car l))

• cddr same as (cdr (cdr l))

• . . .
• cddddr same as (cdr (cdr (cdr (cdr l))))

109 / 124



Lisp
Lists

(append l1 l2) appends l2 to the end of list l1

More precisely: it makes a new list that starts as l1 and
continues with l2

This is different from cons

(append ’(1 2) ’(3 4)) → (1 2 3 4)

(cons ’(1 2) ’(3 4)) → ((1 2) 3 4)

Make sure you understand what is happening here. You will get
this wrong!

110 / 124



Lisp
Lists

(append l1 l2) appends l2 to the end of list l1

More precisely: it makes a new list that starts as l1 and
continues with l2

This is different from cons

(append ’(1 2) ’(3 4)) → (1 2 3 4)

(cons ’(1 2) ’(3 4)) → ((1 2) 3 4)

Make sure you understand what is happening here. You will get
this wrong!

111 / 124



Lisp
Lists

(append l1 l2) appends l2 to the end of list l1

More precisely: it makes a new list that starts as l1 and
continues with l2

This is different from cons

(append ’(1 2) ’(3 4)) → (1 2 3 4)

(cons ’(1 2) ’(3 4)) → ((1 2) 3 4)

Make sure you understand what is happening here. You will get
this wrong!

112 / 124



Lisp
Lists

(append l1 l2) appends l2 to the end of list l1

More precisely: it makes a new list that starts as l1 and
continues with l2

This is different from cons

(append ’(1 2) ’(3 4)) → (1 2 3 4)

(cons ’(1 2) ’(3 4)) → ((1 2) 3 4)

Make sure you understand what is happening here. You will get
this wrong!

113 / 124



Lisp
Lists

(append l1 l2) appends l2 to the end of list l1

More precisely: it makes a new list that starts as l1 and
continues with l2

This is different from cons

(append ’(1 2) ’(3 4)) → (1 2 3 4)

(cons ’(1 2) ’(3 4)) → ((1 2) 3 4)

Make sure you understand what is happening here. You will get
this wrong!

114 / 124



Lisp
Lists

(append l1 l2) appends l2 to the end of list l1

More precisely: it makes a new list that starts as l1 and
continues with l2

This is different from cons

(append ’(1 2) ’(3 4)) → (1 2 3 4)

(cons ’(1 2) ’(3 4)) → ((1 2) 3 4)

Make sure you understand what is happening here. You will get
this wrong!

115 / 124



Lisp
Lists

Note for future reference: append copies the first argument and
shares the second argument

Also: consider

x → (a b)

(append x ’(c d)) → (a b c d)

x → (a b)

Note: appending to (the list referred to by) x does not change
the value of x or the list referred to by x, it makes a new list (a
b c d)

Functions like cons, list and append never modify an existing
value; they always make a new one

116 / 124



Lisp
Lists

Note for future reference: append copies the first argument and
shares the second argument

Also: consider

x → (a b)

(append x ’(c d)) → (a b c d)

x → (a b)

Note: appending to (the list referred to by) x does not change
the value of x or the list referred to by x, it makes a new list (a
b c d)

Functions like cons, list and append never modify an existing
value; they always make a new one

117 / 124



Lisp
Lists

Note for future reference: append copies the first argument and
shares the second argument

Also: consider

x → (a b)

(append x ’(c d)) → (a b c d)

x → (a b)

Note: appending to (the list referred to by) x does not change
the value of x or the list referred to by x, it makes a new list (a
b c d)

Functions like cons, list and append never modify an existing
value; they always make a new one

118 / 124



Lisp
Lists

Note for future reference: append copies the first argument and
shares the second argument

Also: consider

x → (a b)

(append x ’(c d)) → (a b c d)

x → (a b)

Note: appending to (the list referred to by) x does not change
the value of x or the list referred to by x, it makes a new list (a
b c d)

Functions like cons, list and append never modify an existing
value; they always make a new one

119 / 124



Lisp
Expressions

Enough of Lisp basics for now: there is lots more, including
generic functions and (multi)methods; setters; converters;
string operations; maps; continuations; hash tables; macros;
threads; modules

See
http://people.bath.ac.uk/masrjb/Sources/eunotes.html

(link on my unit web page) for much more

Use (load "file") to load a Lisp file named "file"

There is a list of simple Lisp exercises on the Unit web page:
you must try them otherwise you will completely be unable to
do the coursework properly

The best way to learn a language is to use it!

120 / 124

http://people.bath.ac.uk/masrjb/Sources/eunotes.html


Lisp
Expressions

Enough of Lisp basics for now: there is lots more, including
generic functions and (multi)methods; setters; converters;
string operations; maps; continuations; hash tables; macros;
threads; modules

See
http://people.bath.ac.uk/masrjb/Sources/eunotes.html

(link on my unit web page) for much more

Use (load "file") to load a Lisp file named "file"

There is a list of simple Lisp exercises on the Unit web page:
you must try them otherwise you will completely be unable to
do the coursework properly

The best way to learn a language is to use it!

121 / 124

http://people.bath.ac.uk/masrjb/Sources/eunotes.html


Lisp
Expressions

Enough of Lisp basics for now: there is lots more, including
generic functions and (multi)methods; setters; converters;
string operations; maps; continuations; hash tables; macros;
threads; modules

See
http://people.bath.ac.uk/masrjb/Sources/eunotes.html

(link on my unit web page) for much more

Use (load "file") to load a Lisp file named "file"

There is a list of simple Lisp exercises on the Unit web page:
you must try them otherwise you will completely be unable to
do the coursework properly

The best way to learn a language is to use it!

122 / 124

http://people.bath.ac.uk/masrjb/Sources/eunotes.html


Lisp
Expressions

Enough of Lisp basics for now: there is lots more, including
generic functions and (multi)methods; setters; converters;
string operations; maps; continuations; hash tables; macros;
threads; modules

See
http://people.bath.ac.uk/masrjb/Sources/eunotes.html

(link on my unit web page) for much more

Use (load "file") to load a Lisp file named "file"

There is a list of simple Lisp exercises on the Unit web page:
you must try them otherwise you will completely be unable to
do the coursework properly

The best way to learn a language is to use it!

123 / 124

http://people.bath.ac.uk/masrjb/Sources/eunotes.html


Lisp
Expressions

Enough of Lisp basics for now: there is lots more, including
generic functions and (multi)methods; setters; converters;
string operations; maps; continuations; hash tables; macros;
threads; modules

See
http://people.bath.ac.uk/masrjb/Sources/eunotes.html

(link on my unit web page) for much more

Use (load "file") to load a Lisp file named "file"

There is a list of simple Lisp exercises on the Unit web page:
you must try them otherwise you will completely be unable to
do the coursework properly

The best way to learn a language is to use it!

124 / 124

http://people.bath.ac.uk/masrjb/Sources/eunotes.html

