
Lisp
Mapping

Iteration (for loops) is fine for linear datastructures, like vectors
of lists, but it does not generalise to more complicated
structures, e.g., trees

Recursion is an excellent way of going through a datastructure,
particularly non-linear ones

But having higher order functions allows us another way

And this way is somehow closer to the way we naturally think

“Do this operation on every element of this datastructure”

1 / 181



Lisp
Mapping

Iteration (for loops) is fine for linear datastructures, like vectors
of lists, but it does not generalise to more complicated
structures, e.g., trees

Recursion is an excellent way of going through a datastructure,
particularly non-linear ones

But having higher order functions allows us another way

And this way is somehow closer to the way we naturally think

“Do this operation on every element of this datastructure”

2 / 181



Lisp
Mapping

Iteration (for loops) is fine for linear datastructures, like vectors
of lists, but it does not generalise to more complicated
structures, e.g., trees

Recursion is an excellent way of going through a datastructure,
particularly non-linear ones

But having higher order functions allows us another way

And this way is somehow closer to the way we naturally think

“Do this operation on every element of this datastructure”

3 / 181



Lisp
Mapping

Iteration (for loops) is fine for linear datastructures, like vectors
of lists, but it does not generalise to more complicated
structures, e.g., trees

Recursion is an excellent way of going through a datastructure,
particularly non-linear ones

But having higher order functions allows us another way

And this way is somehow closer to the way we naturally think

“Do this operation on every element of this datastructure”

4 / 181



Lisp
Mapping

Iteration (for loops) is fine for linear datastructures, like vectors
of lists, but it does not generalise to more complicated
structures, e.g., trees

Recursion is an excellent way of going through a datastructure,
particularly non-linear ones

But having higher order functions allows us another way

And this way is somehow closer to the way we naturally think

“Do this operation on every element of this datastructure”

5 / 181



Lisp
Mapping

Suppose we want to add 1 to every value in a list:

(defun add1 (l)

(if (null l)

()

(cons (+ 1 (car l)) (add1 (cdr l)))))

6 / 181



Lisp
Mapping

Suppose we want subtract 2 from every value in a list:

(defun sub2 (l)

(if (null l)

()

(cons (- (car l) 2) (sub2 (cdr l)))))

7 / 181



Lisp
Mapping

Suppose we want to square every value in a list:

(defun sq (l)

(if (null l)

()

(cons (* (car l) (car l)) (sq (cdr l)))))

8 / 181



Lisp
Mapping

Recursive functions are nice and simple, but we can see we are
re-writing the same code many times

Can we abstract this out and write the common code just once?

Higher order functions will allow us to do this

9 / 181



Lisp
Mapping

Recursive functions are nice and simple, but we can see we are
re-writing the same code many times

Can we abstract this out and write the common code just once?

Higher order functions will allow us to do this

10 / 181



Lisp
Mapping

Recursive functions are nice and simple, but we can see we are
re-writing the same code many times

Can we abstract this out and write the common code just once?

Higher order functions will allow us to do this

11 / 181



Lisp
Mapping

There are a few Lisp functions we need to look at: do, map
accumulate. We start with do

This function applies some operation to each member of (for
now) a list

(do print ’(a (b c) d)) prints
a
(b c)
d

(and returns () as its value)

12 / 181



Lisp
Mapping

There are a few Lisp functions we need to look at: do, map
accumulate. We start with do

This function applies some operation to each member of (for
now) a list

(do print ’(a (b c) d)) prints
a
(b c)
d

(and returns () as its value)

13 / 181



Lisp
Mapping

There are a few Lisp functions we need to look at: do, map
accumulate. We start with do

This function applies some operation to each member of (for
now) a list

(do print ’(a (b c) d)) prints
a
(b c)
d

(and returns () as its value)

14 / 181



Lisp
Mapping

There are a few Lisp functions we need to look at: do, map
accumulate. We start with do

This function applies some operation to each member of (for
now) a list

(do print ’(a (b c) d)) prints
a
(b c)
d

(and returns () as its value)

15 / 181



Lisp
Mapping

So do is a higher order function, namely it takes a function as
an argument

So this is (one) conceptually simpler way of doing loops: there’s
no index variable when it’s not needed

map is similar, but it makes a list of the results of doing the
operation

(map symbolp ’(1 a (b c))) → (() t ())

16 / 181



Lisp
Mapping

So do is a higher order function, namely it takes a function as
an argument

So this is (one) conceptually simpler way of doing loops: there’s
no index variable when it’s not needed

map is similar, but it makes a list of the results of doing the
operation

(map symbolp ’(1 a (b c))) → (() t ())

17 / 181



Lisp
Mapping

So do is a higher order function, namely it takes a function as
an argument

So this is (one) conceptually simpler way of doing loops: there’s
no index variable when it’s not needed

map is similar, but it makes a list of the results of doing the
operation

(map symbolp ’(1 a (b c))) → (() t ())

18 / 181



Lisp
Mapping

So do is a higher order function, namely it takes a function as
an argument

So this is (one) conceptually simpler way of doing loops: there’s
no index variable when it’s not needed

map is similar, but it makes a list of the results of doing the
operation

(map symbolp ’(1 a (b c))) → (() t ())

19 / 181



Lisp
Mapping

To increment values in a list we can

(defun inc (n) (+ n 1))

(map inc ’(1 2 3)) → (2 3 4)

This is very simple coding: we have a function inc that
encodes what we want to do, and map hides the fiddly stuff of
applying it to each element of the list

Even better, we can simplify this a bit more

Defining a function just to use it once in such a construct is a bit
of overkill

20 / 181



Lisp
Mapping

To increment values in a list we can

(defun inc (n) (+ n 1))

(map inc ’(1 2 3)) → (2 3 4)

This is very simple coding: we have a function inc that
encodes what we want to do, and map hides the fiddly stuff of
applying it to each element of the list

Even better, we can simplify this a bit more

Defining a function just to use it once in such a construct is a bit
of overkill

21 / 181



Lisp
Mapping

To increment values in a list we can

(defun inc (n) (+ n 1))

(map inc ’(1 2 3)) → (2 3 4)

This is very simple coding: we have a function inc that
encodes what we want to do, and map hides the fiddly stuff of
applying it to each element of the list

Even better, we can simplify this a bit more

Defining a function just to use it once in such a construct is a bit
of overkill

22 / 181



Lisp
Mapping

To increment values in a list we can

(defun inc (n) (+ n 1))

(map inc ’(1 2 3)) → (2 3 4)

This is very simple coding: we have a function inc that
encodes what we want to do, and map hides the fiddly stuff of
applying it to each element of the list

Even better, we can simplify this a bit more

Defining a function just to use it once in such a construct is a bit
of overkill

23 / 181



Lisp
Mapping

What we want to do is write

(map a-function-that-increments ’(1 2 3))

we are not interested in giving the increment function any
particular importance, such as a name that might clash with a
name elsewhere

Just like, if we wanted to use the number 7 once, we don’t want
to have to assign the value to a variable and use the variable

We just write “7”. In a similar way, we want to just write “a
function”

24 / 181



Lisp
Mapping

What we want to do is write

(map a-function-that-increments ’(1 2 3))

we are not interested in giving the increment function any
particular importance, such as a name that might clash with a
name elsewhere

Just like, if we wanted to use the number 7 once, we don’t want
to have to assign the value to a variable and use the variable

We just write “7”. In a similar way, we want to just write “a
function”

25 / 181



Lisp
Mapping

What we want to do is write

(map a-function-that-increments ’(1 2 3))

we are not interested in giving the increment function any
particular importance, such as a name that might clash with a
name elsewhere

Just like, if we wanted to use the number 7 once, we don’t want
to have to assign the value to a variable and use the variable

We just write “7”. In a similar way, we want to just write “a
function”

26 / 181



Lisp allows us to define and use anonymous functions; more
commonly called lambdas

Just like writing ”"cat"” for a string with no name (variable)
required, we can write something for a function

27 / 181



Lisp allows us to define and use anonymous functions; more
commonly called lambdas

Just like writing ”"cat"” for a string with no name (variable)
required, we can write something for a function

28 / 181



Lisp
Lambda

(lambda (n) (+ n 1)) denotes a function that takes one
argument and returns one more than that argument

It doesn’t have a name: it just is

The lambda says “I am a function”, just like quotes say “I am a
string”. Just notation

“lambda” comes from the history of Lisp: McCarthy’s Lisp was
to be an implementation of the Lambda Calculus

There’s not much we can do in terms of manipulating functions
(function composition?), its main use is when we apply it to
some arguments

29 / 181



Lisp
Lambda

(lambda (n) (+ n 1)) denotes a function that takes one
argument and returns one more than that argument

It doesn’t have a name: it just is

The lambda says “I am a function”, just like quotes say “I am a
string”. Just notation

“lambda” comes from the history of Lisp: McCarthy’s Lisp was
to be an implementation of the Lambda Calculus

There’s not much we can do in terms of manipulating functions
(function composition?), its main use is when we apply it to
some arguments

30 / 181



Lisp
Lambda

(lambda (n) (+ n 1)) denotes a function that takes one
argument and returns one more than that argument

It doesn’t have a name: it just is

The lambda says “I am a function”, just like quotes say “I am a
string”. Just notation

“lambda” comes from the history of Lisp: McCarthy’s Lisp was
to be an implementation of the Lambda Calculus

There’s not much we can do in terms of manipulating functions
(function composition?), its main use is when we apply it to
some arguments

31 / 181



Lisp
Lambda

(lambda (n) (+ n 1)) denotes a function that takes one
argument and returns one more than that argument

It doesn’t have a name: it just is

The lambda says “I am a function”, just like quotes say “I am a
string”. Just notation

“lambda” comes from the history of Lisp: McCarthy’s Lisp was
to be an implementation of the Lambda Calculus

There’s not much we can do in terms of manipulating functions
(function composition?), its main use is when we apply it to
some arguments

32 / 181



Lisp
Lambda

(lambda (n) (+ n 1)) denotes a function that takes one
argument and returns one more than that argument

It doesn’t have a name: it just is

The lambda says “I am a function”, just like quotes say “I am a
string”. Just notation

“lambda” comes from the history of Lisp: McCarthy’s Lisp was
to be an implementation of the Lambda Calculus

There’s not much we can do in terms of manipulating functions
(function composition?), its main use is when we apply it to
some arguments

33 / 181



Lisp
Lambda

((lambda (n) (+ n 1)) 5)

→
6

Works for both Lisp-1 and Lisp-2

Lisp-2s have this as an exception to the rule that the first thing
after the parenthesis must be a symbol that names a function

For Lisp-1s this is entirely natural

Rather than writing down the name of a function that adds 1,
simply write down a function that adds 1

34 / 181



Lisp
Lambda

((lambda (n) (+ n 1)) 5)

→
6

Works for both Lisp-1 and Lisp-2

Lisp-2s have this as an exception to the rule that the first thing
after the parenthesis must be a symbol that names a function

For Lisp-1s this is entirely natural

Rather than writing down the name of a function that adds 1,
simply write down a function that adds 1

35 / 181



Lisp
Lambda

((lambda (n) (+ n 1)) 5)

→
6

Works for both Lisp-1 and Lisp-2

Lisp-2s have this as an exception to the rule that the first thing
after the parenthesis must be a symbol that names a function

For Lisp-1s this is entirely natural

Rather than writing down the name of a function that adds 1,
simply write down a function that adds 1

36 / 181



Lisp
Lambda

((lambda (n) (+ n 1)) 5)

→
6

Works for both Lisp-1 and Lisp-2

Lisp-2s have this as an exception to the rule that the first thing
after the parenthesis must be a symbol that names a function

For Lisp-1s this is entirely natural

Rather than writing down the name of a function that adds 1,
simply write down a function that adds 1

37 / 181



Lisp
Lambda

Functions are first class objects in Lisp, so just as we have
syntax for writing down numbers “42” and strings “"hello"” we
have syntax for writing down functions

Functions in other languages are often inextricable from their
names

Though “modern” languages are increasingly incorporating
lambdas, e.g., Python, Java, JavaScript, C++, etc.

38 / 181



Lisp
Lambda

Functions are first class objects in Lisp, so just as we have
syntax for writing down numbers “42” and strings “"hello"” we
have syntax for writing down functions

Functions in other languages are often inextricable from their
names

Though “modern” languages are increasingly incorporating
lambdas, e.g., Python, Java, JavaScript, C++, etc.

39 / 181



Lisp
Lambda

Functions are first class objects in Lisp, so just as we have
syntax for writing down numbers “42” and strings “"hello"” we
have syntax for writing down functions

Functions in other languages are often inextricable from their
names

Though “modern” languages are increasingly incorporating
lambdas, e.g., Python, Java, JavaScript, C++, etc.

40 / 181



Lisp
Lambda

Note the string "hello" doesn’t have a name, unless we
assign it to a variable; then that variable is a name we can use
to refer to the string

The function (lambda ...) doesn’t have a name, unless we
assign it to a variable; then that variable is a name we can use
to refer to the function

But it is very common to be lazy and say “the function sin”
rather than “the function named by sin”

41 / 181



Lisp
Lambda

Note the string "hello" doesn’t have a name, unless we
assign it to a variable; then that variable is a name we can use
to refer to the string

The function (lambda ...) doesn’t have a name, unless we
assign it to a variable; then that variable is a name we can use
to refer to the function

But it is very common to be lazy and say “the function sin”
rather than “the function named by sin”

42 / 181



Lisp
Lambda

Note the string "hello" doesn’t have a name, unless we
assign it to a variable; then that variable is a name we can use
to refer to the string

The function (lambda ...) doesn’t have a name, unless we
assign it to a variable; then that variable is a name we can use
to refer to the function

But it is very common to be lazy and say “the function sin”
rather than “the function named by sin”

43 / 181



Lisp
Names

Make sure you are clear on this point: distinguish between
objects and names of objects

While sin might name a function that computes the sine, the
function itself is something that is hard to write down

Many objects (like lambdas) don’t have names: this is why they
are called anonymous

It is easy for objects to have multiple names: assign the same
value to more than one variable. E.g., (the function named by)
not and null

44 / 181



Lisp
Names

Make sure you are clear on this point: distinguish between
objects and names of objects

While sin might name a function that computes the sine, the
function itself is something that is hard to write down

Many objects (like lambdas) don’t have names: this is why they
are called anonymous

It is easy for objects to have multiple names: assign the same
value to more than one variable. E.g., (the function named by)
not and null

45 / 181



Lisp
Names

Make sure you are clear on this point: distinguish between
objects and names of objects

While sin might name a function that computes the sine, the
function itself is something that is hard to write down

Many objects (like lambdas) don’t have names: this is why they
are called anonymous

It is easy for objects to have multiple names: assign the same
value to more than one variable. E.g., (the function named by)
not and null

46 / 181



Lisp
Names

Make sure you are clear on this point: distinguish between
objects and names of objects

While sin might name a function that computes the sine, the
function itself is something that is hard to write down

Many objects (like lambdas) don’t have names: this is why they
are called anonymous

It is easy for objects to have multiple names: assign the same
value to more than one variable. E.g., (the function named by)
not and null

47 / 181



Lisp
Names

Note that in Lisp, because we have symbols as a datatype,
names can have names

(let ((x ’y))

... x ...)

Within the let the symbol y has the name x

Exercise. Read “Through the Looking-Glass” by Lewis Carroll,
in particular the section discussing the poem “Haddocks’ Eyes”

48 / 181



Lisp
Names

Note that in Lisp, because we have symbols as a datatype,
names can have names

(let ((x ’y))

... x ...)

Within the let the symbol y has the name x

Exercise. Read “Through the Looking-Glass” by Lewis Carroll,
in particular the section discussing the poem “Haddocks’ Eyes”

49 / 181



Lisp
Names

In Euscheme:

(lambda (n) (+ n 1))

->

#<Procedure #80d63e4>

The funny way of printing this value is just a way of saying
“some procedure”, i.e., function; in this case the number is
actually a memory location, but that’s coincidental and not
important

50 / 181



Lisp
Names

In Euscheme:

(lambda (n) (+ n 1))

->

#<Procedure #80d63e4>

The funny way of printing this value is just a way of saying
“some procedure”, i.e., function; in this case the number is
actually a memory location, but that’s coincidental and not
important

51 / 181



Lisp
Names

In Clisp

(lambda (n) (+ n 1))

->

#<FUNCTION :LAMBDA (N) (+ N 1)>

As an interpreted function; compiled functions are less
descriptive

#’sin

->

#<SYSTEM-FUNCTION SIN>

There is no simple, succinct way of printing out arbitrary
functions, so most systems don’t try too hard

52 / 181



Lisp
Names

In Clisp

(lambda (n) (+ n 1))

->

#<FUNCTION :LAMBDA (N) (+ N 1)>

As an interpreted function; compiled functions are less
descriptive

#’sin

->

#<SYSTEM-FUNCTION SIN>

There is no simple, succinct way of printing out arbitrary
functions, so most systems don’t try too hard

53 / 181



Lisp
Names

In Clisp

(lambda (n) (+ n 1))

->

#<FUNCTION :LAMBDA (N) (+ N 1)>

As an interpreted function; compiled functions are less
descriptive

#’sin

->

#<SYSTEM-FUNCTION SIN>

There is no simple, succinct way of printing out arbitrary
functions, so most systems don’t try too hard

54 / 181



Lisp
Lambda

Once we realise functions are just like every other object, the
world becomes much simpler

defun is simply shorthand for “make a lambda of the body and
then assign it to the name”

(defun inc (n) (+ n 1))

becomes the lambda

(lambda (n) (+ n 1))

which gets assigned to the name inc

We haven’t looked at assigning to variables yet, though

55 / 181



Lisp
Lambda

Once we realise functions are just like every other object, the
world becomes much simpler

defun is simply shorthand for “make a lambda of the body and
then assign it to the name”

(defun inc (n) (+ n 1))

becomes the lambda

(lambda (n) (+ n 1))

which gets assigned to the name inc

We haven’t looked at assigning to variables yet, though

56 / 181



Lisp
Lambda

Once we realise functions are just like every other object, the
world becomes much simpler

defun is simply shorthand for “make a lambda of the body and
then assign it to the name”

(defun inc (n) (+ n 1))

becomes the lambda

(lambda (n) (+ n 1))

which gets assigned to the name inc

We haven’t looked at assigning to variables yet, though

57 / 181



Lisp
Lambda

And let is itself just another lambda!

(let ((n 2) (m (foo 4)))

(print "hello") (* n m))

is just

((lambda (n m) (print "hello") (* n m))

2 (foo 4))

58 / 181



Lisp
Lambda

So we see that apparently diverse constructs are simply
variants on one simple concept, the lambda

Very much the spirit of Scheme

59 / 181



Lisp
Lambda

So we see that apparently diverse constructs are simply
variants on one simple concept, the lambda

Very much the spirit of Scheme

60 / 181



Lisp
Mapping

Back to mapping: lambdas are very useful here

The idea “take a list of numbers and return a list of incremented
values” becomes

(map (lambda (n) (+ n 1)) ’(1 2 3))

→
(2 3 4)

Everything is simple and in front of us: the function to
increment; the list of numbers; and map to apply it to the list

No loops or loop variables to confuse what is happening

61 / 181



Lisp
Mapping

Back to mapping: lambdas are very useful here

The idea “take a list of numbers and return a list of incremented
values” becomes

(map (lambda (n) (+ n 1)) ’(1 2 3))

→
(2 3 4)

Everything is simple and in front of us: the function to
increment; the list of numbers; and map to apply it to the list

No loops or loop variables to confuse what is happening

62 / 181



Lisp
Mapping

Back to mapping: lambdas are very useful here

The idea “take a list of numbers and return a list of incremented
values” becomes

(map (lambda (n) (+ n 1)) ’(1 2 3))

→
(2 3 4)

Everything is simple and in front of us: the function to
increment; the list of numbers; and map to apply it to the list

No loops or loop variables to confuse what is happening

63 / 181



Lisp
Mapping

Back to mapping: lambdas are very useful here

The idea “take a list of numbers and return a list of incremented
values” becomes

(map (lambda (n) (+ n 1)) ’(1 2 3))

→
(2 3 4)

Everything is simple and in front of us: the function to
increment; the list of numbers; and map to apply it to the list

No loops or loop variables to confuse what is happening

64 / 181



Lisp
Mapping

In fact map and do are a lot cleverer than this

(map + ’(1 2) ’(3 4))

→
(4 6)

(do (lambda (x y) (print (cons x y))) "qwe" "asd")

prints

(q . a)

(w . s)

(e . d)

mapping along the characters of the strings

65 / 181



Lisp
Mapping

Common Lisp: map requires the type of the result as an
argument:

(map ’list (lambda (n) (+ n 1)) ’(2 3 4))

->

(3 4 5)

(map ’vector (lambda (n) (+ n 1)) ’(2 3 4))

->

#(3 4 5)

mapcar is the name of what we have called map (but only for
lists), while mapc is close to the do function (returns the original
list)

Exercise: investigate CL’s mapl and maplist

66 / 181



Lisp
Mapping

Common Lisp: map requires the type of the result as an
argument:

(map ’list (lambda (n) (+ n 1)) ’(2 3 4))

->

(3 4 5)

(map ’vector (lambda (n) (+ n 1)) ’(2 3 4))

->

#(3 4 5)

mapcar is the name of what we have called map (but only for
lists), while mapc is close to the do function (returns the original
list)

Exercise: investigate CL’s mapl and maplist

67 / 181



Lisp
Mapping

Common Lisp: map requires the type of the result as an
argument:

(map ’list (lambda (n) (+ n 1)) ’(2 3 4))

->

(3 4 5)

(map ’vector (lambda (n) (+ n 1)) ’(2 3 4))

->

#(3 4 5)

mapcar is the name of what we have called map (but only for
lists), while mapc is close to the do function (returns the original
list)

Exercise: investigate CL’s mapl and maplist

68 / 181



Lisp
Mapping

Exercise. map and friends are generally not primitives in Lisp as
they are easy to define for yourself. Do so (for a simple, single
argument, list-based map)

Notice what you are doing is abstracting out the code to do a
traversal of a list and making it reusable

Exercise. Then do, maplist and so on

69 / 181



Lisp
Mapping

Exercise. map and friends are generally not primitives in Lisp as
they are easy to define for yourself. Do so (for a simple, single
argument, list-based map)

Notice what you are doing is abstracting out the code to do a
traversal of a list and making it reusable

Exercise. Then do, maplist and so on

70 / 181



Lisp
Mapping

Exercise. map and friends are generally not primitives in Lisp as
they are easy to define for yourself. Do so (for a simple, single
argument, list-based map)

Notice what you are doing is abstracting out the code to do a
traversal of a list and making it reusable

Exercise. Then do, maplist and so on

71 / 181



Lisp
Mapping

Exercise. We might implement a tree as

• empty ()

• or a value and two subtrees (val ltree rtree)

Write a function (dotree fn tree) that takes a function fn
and applies it to each value in the tree

Exercise. Write a function (maptree fn tree) that takes a
function fn and applies it to each value in the tree and returns
the new tree

72 / 181



Lisp
Mapping

A related operation is accumulate, often called reduce in other
contexts

“Add up the numbers in this list”

(accumulate + 0 ’(1 2 3 4))

An operation; an initial value; the list: this computes
0 + 1 + 2 + 3 + 4

73 / 181



Lisp
Mapping

A related operation is accumulate, often called reduce in other
contexts

“Add up the numbers in this list”

(accumulate + 0 ’(1 2 3 4))

An operation; an initial value; the list: this computes
0 + 1 + 2 + 3 + 4

74 / 181



Lisp
Mapping

A related operation is accumulate, often called reduce in other
contexts

“Add up the numbers in this list”

(accumulate + 0 ’(1 2 3 4))

An operation; an initial value; the list: this computes
0 + 1 + 2 + 3 + 4

75 / 181



Lisp
Mapping

A related operation is accumulate, often called reduce in other
contexts

“Add up the numbers in this list”

(accumulate + 0 ’(1 2 3 4))

An operation; an initial value; the list: this computes
0 + 1 + 2 + 3 + 4

76 / 181



Lisp
Mapping

(accumulate * 1 ’(1 2 3 4))

→
24

77 / 181



Lisp
Mapping

Suppose a function named (mklist n) makes a list of
integers 1 to n: (mklist 4) → (1 2 3 4)

(defun factorial (n)

(accumulate * 1 (mklist n)))

is a fairly inefficient factorial

Exercise. Define such a mklist

78 / 181



Lisp
Mapping

Suppose a function named (mklist n) makes a list of
integers 1 to n: (mklist 4) → (1 2 3 4)

(defun factorial (n)

(accumulate * 1 (mklist n)))

is a fairly inefficient factorial

Exercise. Define such a mklist

79 / 181



Lisp
Mapping

Suppose a function named (mklist n) makes a list of
integers 1 to n: (mklist 4) → (1 2 3 4)

(defun factorial (n)

(accumulate * 1 (mklist n)))

is a fairly inefficient factorial

Exercise. Define such a mklist

80 / 181



Lisp
Mapping

accumulate is more commonly seen as reduce

(reduce + ’(1 2 3 4)) → 10

An operation; the list: this computes
1 + 2 + 3 + 4

(reduce - ’(1 2 3 4)) is 1− 2− 3− 4 = −8

(accumulate - 0 ’(1 2 3 4)) is 0− 1− 2− 3− 4 = −10

81 / 181



Lisp
Mapping

accumulate is more commonly seen as reduce

(reduce + ’(1 2 3 4)) → 10

An operation; the list: this computes
1 + 2 + 3 + 4

(reduce - ’(1 2 3 4)) is 1− 2− 3− 4 = −8

(accumulate - 0 ’(1 2 3 4)) is 0− 1− 2− 3− 4 = −10

82 / 181



Lisp
Mapping

accumulate is more commonly seen as reduce

(reduce + ’(1 2 3 4)) → 10

An operation; the list: this computes
1 + 2 + 3 + 4

(reduce - ’(1 2 3 4)) is 1− 2− 3− 4 = −8

(accumulate - 0 ’(1 2 3 4)) is 0− 1− 2− 3− 4 = −10

83 / 181



Lisp
Mapping

accumulate is more commonly seen as reduce

(reduce + ’(1 2 3 4)) → 10

An operation; the list: this computes
1 + 2 + 3 + 4

(reduce - ’(1 2 3 4)) is 1− 2− 3− 4 = −8

(accumulate - 0 ’(1 2 3 4)) is 0− 1− 2− 3− 4 = −10

84 / 181



Lisp
Mapping

We may define

(defun reduce (op vals)

(if (null vals)

(op) ; sometimes gives a default value

(accumulate op (car vals) (cdr vals))))

Not a perfect translation: accumulate is a bit clearer on values
for edge cases

85 / 181



Lisp
Mapping

We may define

(defun reduce (op vals)

(if (null vals)

(op) ; sometimes gives a default value

(accumulate op (car vals) (cdr vals))))

Not a perfect translation: accumulate is a bit clearer on values
for edge cases

86 / 181



Lisp
Mapping

The functions map and accumulate reflect the functional style

• regard the datastructure as a whole
• separate the operation being applied from the act of

application: i.e., the traversal of the datastructure

We can change the datastructure, e.g., replace a vector by a
list, and (as long as map understands how to traverse it) use the
same code unchanged

We can write the traversal of the new datastructure just once
and ensure map knows how to use it; then every application of
whatever operation simply works

87 / 181



Lisp
Mapping

The functions map and accumulate reflect the functional style

• regard the datastructure as a whole

• separate the operation being applied from the act of
application: i.e., the traversal of the datastructure

We can change the datastructure, e.g., replace a vector by a
list, and (as long as map understands how to traverse it) use the
same code unchanged

We can write the traversal of the new datastructure just once
and ensure map knows how to use it; then every application of
whatever operation simply works

88 / 181



Lisp
Mapping

The functions map and accumulate reflect the functional style

• regard the datastructure as a whole
• separate the operation being applied from the act of

application: i.e., the traversal of the datastructure

We can change the datastructure, e.g., replace a vector by a
list, and (as long as map understands how to traverse it) use the
same code unchanged

We can write the traversal of the new datastructure just once
and ensure map knows how to use it; then every application of
whatever operation simply works

89 / 181



Lisp
Mapping

The functions map and accumulate reflect the functional style

• regard the datastructure as a whole
• separate the operation being applied from the act of

application: i.e., the traversal of the datastructure

We can change the datastructure, e.g., replace a vector by a
list, and (as long as map understands how to traverse it) use the
same code unchanged

We can write the traversal of the new datastructure just once
and ensure map knows how to use it; then every application of
whatever operation simply works

90 / 181



Lisp
Mapping

The functions map and accumulate reflect the functional style

• regard the datastructure as a whole
• separate the operation being applied from the act of

application: i.e., the traversal of the datastructure

We can change the datastructure, e.g., replace a vector by a
list, and (as long as map understands how to traverse it) use the
same code unchanged

We can write the traversal of the new datastructure just once
and ensure map knows how to use it; then every application of
whatever operation simply works

91 / 181



Lisp
Mapping

To reiterate: by separating the traversal of a datastructure from
the operation on the elements of the datastructure we are
allowing a greater flexibility

If we have written our code using mapping functions and decide
to change the datastructure our program is using, we need only
to write new traversal code for the new datastructure: the code
that does stuff to the datastructure remains unchanged

Much easier than going through all the program and changing
how each individual access to the datastructure is coded

Maybe having to modify a for loop for every time we go
through a vector

92 / 181



Lisp
Mapping

To reiterate: by separating the traversal of a datastructure from
the operation on the elements of the datastructure we are
allowing a greater flexibility

If we have written our code using mapping functions and decide
to change the datastructure our program is using, we need only
to write new traversal code for the new datastructure: the code
that does stuff to the datastructure remains unchanged

Much easier than going through all the program and changing
how each individual access to the datastructure is coded

Maybe having to modify a for loop for every time we go
through a vector

93 / 181



Lisp
Mapping

To reiterate: by separating the traversal of a datastructure from
the operation on the elements of the datastructure we are
allowing a greater flexibility

If we have written our code using mapping functions and decide
to change the datastructure our program is using, we need only
to write new traversal code for the new datastructure: the code
that does stuff to the datastructure remains unchanged

Much easier than going through all the program and changing
how each individual access to the datastructure is coded

Maybe having to modify a for loop for every time we go
through a vector

94 / 181



Lisp
Mapping

To reiterate: by separating the traversal of a datastructure from
the operation on the elements of the datastructure we are
allowing a greater flexibility

If we have written our code using mapping functions and decide
to change the datastructure our program is using, we need only
to write new traversal code for the new datastructure: the code
that does stuff to the datastructure remains unchanged

Much easier than going through all the program and changing
how each individual access to the datastructure is coded

Maybe having to modify a for loop for every time we go
through a vector

95 / 181



Lisp
Assignment and Binding

Here is another thing that Lisp makes explicit while other
languages ignore, thus encouraging certain kinds of error

What does

n = 2;

mean in C/C++/Java etc.?

The quick answer is “n gets the value 2”

The correct answer is much longer

96 / 181



Lisp
Assignment and Binding

Here is another thing that Lisp makes explicit while other
languages ignore, thus encouraging certain kinds of error

What does

n = 2;

mean in C/C++/Java etc.?

The quick answer is “n gets the value 2”

The correct answer is much longer

97 / 181



Lisp
Assignment and Binding

Here is another thing that Lisp makes explicit while other
languages ignore, thus encouraging certain kinds of error

What does

n = 2;

mean in C/C++/Java etc.?

The quick answer is “n gets the value 2”

The correct answer is much longer

98 / 181



Lisp
Assignment and Binding

Here is another thing that Lisp makes explicit while other
languages ignore, thus encouraging certain kinds of error

What does

n = 2;

mean in C/C++/Java etc.?

The quick answer is “n gets the value 2”

The correct answer is much longer

99 / 181



Lisp
Assignment and Binding

It depends on the context

In

{ int n = 2;

...

}

it is a declaration and initialisation of a local variable in a block

100 / 181



Lisp
Assignment and Binding

It depends on the context

In

{ int n = 2;

...

}

it is a declaration and initialisation of a local variable in a block

101 / 181



Lisp
Assignment and Binding

In

{ ...

n = 2;

...

}

it is an update of a variable

102 / 181



Lisp
Assignment and Binding

Though they look pretty much the same in C, two very different
things are happening

The first, called binding in Lisp, makes a new local variable n
and gives it the value 2

Any existing variable n is unaffected

Lisp writes (let ((n 2)) ...)

Any existing n is restored at the end of the block

103 / 181



Lisp
Assignment and Binding

Though they look pretty much the same in C, two very different
things are happening

The first, called binding in Lisp, makes a new local variable n
and gives it the value 2

Any existing variable n is unaffected

Lisp writes (let ((n 2)) ...)

Any existing n is restored at the end of the block

104 / 181



Lisp
Assignment and Binding

Though they look pretty much the same in C, two very different
things are happening

The first, called binding in Lisp, makes a new local variable n
and gives it the value 2

Any existing variable n is unaffected

Lisp writes (let ((n 2)) ...)

Any existing n is restored at the end of the block

105 / 181



Lisp
Assignment and Binding

Though they look pretty much the same in C, two very different
things are happening

The first, called binding in Lisp, makes a new local variable n
and gives it the value 2

Any existing variable n is unaffected

Lisp writes (let ((n 2)) ...)

Any existing n is restored at the end of the block

106 / 181



Lisp
Assignment and Binding

Though they look pretty much the same in C, two very different
things are happening

The first, called binding in Lisp, makes a new local variable n
and gives it the value 2

Any existing variable n is unaffected

Lisp writes (let ((n 2)) ...)

Any existing n is restored at the end of the block

107 / 181



Lisp
Assignment and Binding

The second, called assignment, updates the value of n

Any existing value of that n is overwritten: destroyed

We can’t get the old value back, even at the end of blocks

Lisp writes: another special form we haven’t seen yet

108 / 181



Lisp
Assignment and Binding

The second, called assignment, updates the value of n

Any existing value of that n is overwritten: destroyed

We can’t get the old value back, even at the end of blocks

Lisp writes: another special form we haven’t seen yet

109 / 181



Lisp
Assignment and Binding

The second, called assignment, updates the value of n

Any existing value of that n is overwritten: destroyed

We can’t get the old value back, even at the end of blocks

Lisp writes: another special form we haven’t seen yet

110 / 181



Lisp
Assignment and Binding

The second, called assignment, updates the value of n

Any existing value of that n is overwritten: destroyed

We can’t get the old value back, even at the end of blocks

Lisp writes:

another special form we haven’t seen yet

111 / 181



Lisp
Assignment and Binding

The second, called assignment, updates the value of n

Any existing value of that n is overwritten: destroyed

We can’t get the old value back, even at the end of blocks

Lisp writes: another special form we haven’t seen yet

112 / 181



Lisp
Assignment and Binding

• binding: non-destructive
• assignment: destructive

If we avoid destructive operations we avoid messing about with
similarly named variables elsewhere in the code: everything is
inherently local

We get the “variable don’t vary” effect; we can analyse code

113 / 181



Lisp
Assignment and Binding

• binding: non-destructive
• assignment: destructive

If we avoid destructive operations we avoid messing about with
similarly named variables elsewhere in the code: everything is
inherently local

We get the “variable don’t vary” effect; we can analyse code

114 / 181



Lisp
Assignment and Binding

• binding: non-destructive
• assignment: destructive

If we avoid destructive operations we avoid messing about with
similarly named variables elsewhere in the code: everything is
inherently local

We get the “variable don’t vary” effect; we can analyse code

115 / 181



Lisp
Assignment in Lisp

We have deliberately avoided mentioning this so far, as it’s not
part of the functional style

(setq n 2)

Early Lisps had a function set that evaluated its first argument
(set ’n 2) was a common idiom

setq as “set quote” was introduced as a handy abbreviation

And people were forever writing (set n 2) by mistake: this
updates the thing (sometimes a symbol) that is the value of n: it
doesn’t update n

Not often what people wanted

116 / 181



Lisp
Assignment in Lisp

We have deliberately avoided mentioning this so far, as it’s not
part of the functional style

(setq n 2)

Early Lisps had a function set that evaluated its first argument
(set ’n 2) was a common idiom

setq as “set quote” was introduced as a handy abbreviation

And people were forever writing (set n 2) by mistake: this
updates the thing (sometimes a symbol) that is the value of n: it
doesn’t update n

Not often what people wanted

117 / 181



Lisp
Assignment in Lisp

We have deliberately avoided mentioning this so far, as it’s not
part of the functional style

(setq n 2)

Early Lisps had a function set that evaluated its first argument
(set ’n 2) was a common idiom

setq as “set quote” was introduced as a handy abbreviation

And people were forever writing (set n 2) by mistake: this
updates the thing (sometimes a symbol) that is the value of n: it
doesn’t update n

Not often what people wanted

118 / 181



Lisp
Assignment in Lisp

We have deliberately avoided mentioning this so far, as it’s not
part of the functional style

(setq n 2)

Early Lisps had a function set that evaluated its first argument
(set ’n 2) was a common idiom

setq as “set quote” was introduced as a handy abbreviation

And people were forever writing (set n 2) by mistake: this
updates the thing (sometimes a symbol) that is the value of n: it
doesn’t update n

Not often what people wanted

119 / 181



Lisp
Assignment in Lisp

We have deliberately avoided mentioning this so far, as it’s not
part of the functional style

(setq n 2)

Early Lisps had a function set that evaluated its first argument
(set ’n 2) was a common idiom

setq as “set quote” was introduced as a handy abbreviation

And people were forever writing (set n 2) by mistake: this
updates the thing (sometimes a symbol) that is the value of n: it
doesn’t update n

Not often what people wanted

120 / 181



Lisp
Assignment in Lisp

We have deliberately avoided mentioning this so far, as it’s not
part of the functional style

(setq n 2)

Early Lisps had a function set that evaluated its first argument
(set ’n 2) was a common idiom

setq as “set quote” was introduced as a handy abbreviation

And people were forever writing (set n 2) by mistake: this
updates the thing (sometimes a symbol) that is the value of n: it
doesn’t update n

Not often what people wanted

121 / 181



Lisp
Assignment in Lisp

[1]> (setq x ’y)

Y

[2]> (setq y 3)

3

[3]> (set x 4)

4

[4]> x

Y

[5]> y

4

122 / 181



Lisp
Assignment in Lisp

Avoid setq, it is not functional style

And NEVER use set

And that includes all the variants,
such as setf and set!

123 / 181



Lisp
Assignment in Lisp

Avoid setq, it is not functional style

And NEVER use set

And that includes all the variants,
such as setf and set!

124 / 181



Lisp
Assignment in Lisp

Avoid setq, it is not functional style

And NEVER use set

And that includes all the variants,
such as setf and set!

125 / 181



Lisp
Assignment in Lisp

The functional style rejects all kinds of destructive update

So values can never be changed by other parts of code you
can’t see

As well as values of variables, this includes updates of
datastructures

126 / 181



Lisp
Assignment in Lisp

The functional style rejects all kinds of destructive update

So values can never be changed by other parts of code you
can’t see

As well as values of variables, this includes updates of
datastructures

127 / 181



Lisp
Assignment in Lisp

The functional style rejects all kinds of destructive update

So values can never be changed by other parts of code you
can’t see

As well as values of variables, this includes updates of
datastructures

128 / 181



Lisp
Assignment in Lisp

E.g., you can’t/shouldn’t change an element in a list:
(1 2 3) -> (1 4 3)

If you want that, make a new list with the replacement value

Some other part of code elsewhere might be using that list, too,
and you’ve just messed it up

This is not as wasteful as it might seem, as a non-update
guarantee allows us to share a lot more of our datastructures.
See later

129 / 181



Lisp
Assignment in Lisp

E.g., you can’t/shouldn’t change an element in a list:
(1 2 3) -> (1 4 3)

If you want that, make a new list with the replacement value

Some other part of code elsewhere might be using that list, too,
and you’ve just messed it up

This is not as wasteful as it might seem, as a non-update
guarantee allows us to share a lot more of our datastructures.
See later

130 / 181



Lisp
Assignment in Lisp

E.g., you can’t/shouldn’t change an element in a list:
(1 2 3) -> (1 4 3)

If you want that, make a new list with the replacement value

Some other part of code elsewhere might be using that list, too,
and you’ve just messed it up

This is not as wasteful as it might seem, as a non-update
guarantee allows us to share a lot more of our datastructures.
See later

131 / 181



Lisp
Assignment in Lisp

E.g., you can’t/shouldn’t change an element in a list:
(1 2 3) -> (1 4 3)

If you want that, make a new list with the replacement value

Some other part of code elsewhere might be using that list, too,
and you’ve just messed it up

This is not as wasteful as it might seem, as a non-update
guarantee allows us to share a lot more of our datastructures.
See later

132 / 181



Lisp
Assignment in Lisp

If you ever find yourself using setq, stop and think: you
probably want to write your code in a better way

If you ever find yourself using set, throw away everything and
start again

Some functional languages do not have assignment

They actively prevent you from making that mistake

They do have binding (local variables), as it is “safe”

133 / 181



Lisp
Assignment in Lisp

If you ever find yourself using setq, stop and think: you
probably want to write your code in a better way

If you ever find yourself using set, throw away everything and
start again

Some functional languages do not have assignment

They actively prevent you from making that mistake

They do have binding (local variables), as it is “safe”

134 / 181



Lisp
Assignment in Lisp

If you ever find yourself using setq, stop and think: you
probably want to write your code in a better way

If you ever find yourself using set, throw away everything and
start again

Some functional languages do not have assignment

They actively prevent you from making that mistake

They do have binding (local variables), as it is “safe”

135 / 181



Lisp
Assignment in Lisp

If you ever find yourself using setq, stop and think: you
probably want to write your code in a better way

If you ever find yourself using set, throw away everything and
start again

Some functional languages do not have assignment

They actively prevent you from making that mistake

They do have binding (local variables), as it is “safe”

136 / 181



Lisp
Assignment in Lisp

If you ever find yourself using setq, stop and think: you
probably want to write your code in a better way

If you ever find yourself using set, throw away everything and
start again

Some functional languages do not have assignment

They actively prevent you from making that mistake

They do have binding (local variables), as it is “safe”

137 / 181



Lisp
Assignment in Lisp

Exercise. Explain the result of

(let ((x ’y)

(y 33))

(set x 44)

y)

in Common Lisp

138 / 181



Lisp
Assignment in Lisp

Function definition in Lisp is “really” an assignment

(defun foo (n) (+ n 1))

is “really”

(setq foo (lambda (n) (+ n 1)))

Plus some bookkeeping: the defun stores the name of the
function in the function, for the benefit of the programmer. Plus
a bit of fiddling for recursive functions

139 / 181



Lisp
Assignment in Lisp

(defun foo (n) (+ n 1))

foo -> #<Procedure foo>

(setq bar (lambda (n) (+ n 1)))

bar -> #<Procedure #80e2388>

This is just a cosmetic feature

140 / 181



Lisp
Assignment and Binding

The functional style reduces or preferably eliminates the use of
assignment: it’s unsafe on non-local variables (no referential
transparency) and overall it makes code hard to analyse

Binding is fine, and often essential!

Note that defining defun in terms of setq isn’t such a bad
thing: we don’t tend to update named functions dynamically in
a program, and assigning just once is not such a problem

141 / 181



Lisp
Assignment and Binding

The functional style reduces or preferably eliminates the use of
assignment: it’s unsafe on non-local variables (no referential
transparency) and overall it makes code hard to analyse

Binding is fine, and often essential!

Note that defining defun in terms of setq isn’t such a bad
thing: we don’t tend to update named functions dynamically in
a program, and assigning just once is not such a problem

142 / 181



Lisp
Assignment and Binding

The functional style reduces or preferably eliminates the use of
assignment: it’s unsafe on non-local variables (no referential
transparency) and overall it makes code hard to analyse

Binding is fine, and often essential!

Note that defining defun in terms of setq isn’t such a bad
thing: we don’t tend to update named functions dynamically in
a program, and assigning just once is not such a problem

143 / 181



Lisp
Assignment and Binding

Single assignment languages allow you to update a variable
just once, from being undefined to the given value

It doesn’t really affect the underlying theory, it’s just
occasionally more convenient for the programmer

After all, you wouldn’t use a variable before it had a defined
value, so the effect is just the same: in this special case
assignment is non-destructive

It just separates the declaration of the local variable from its
initialisation

144 / 181



Lisp
Assignment and Binding

Single assignment languages allow you to update a variable
just once, from being undefined to the given value

It doesn’t really affect the underlying theory, it’s just
occasionally more convenient for the programmer

After all, you wouldn’t use a variable before it had a defined
value, so the effect is just the same: in this special case
assignment is non-destructive

It just separates the declaration of the local variable from its
initialisation

145 / 181



Lisp
Assignment and Binding

Single assignment languages allow you to update a variable
just once, from being undefined to the given value

It doesn’t really affect the underlying theory, it’s just
occasionally more convenient for the programmer

After all, you wouldn’t use a variable before it had a defined
value, so the effect is just the same: in this special case
assignment is non-destructive

It just separates the declaration of the local variable from its
initialisation

146 / 181



Lisp
Assignment and Binding

Single assignment languages allow you to update a variable
just once, from being undefined to the given value

It doesn’t really affect the underlying theory, it’s just
occasionally more convenient for the programmer

After all, you wouldn’t use a variable before it had a defined
value, so the effect is just the same: in this special case
assignment is non-destructive

It just separates the declaration of the local variable from its
initialisation

147 / 181



Lisp
Assignment and Binding

Note: your coursework must not use setq

Or any of its variants

Regardless of how much it appears below!

148 / 181



Lisp
Assignment and Binding

Note: your coursework must not use setq

Or any of its variants

Regardless of how much it appears below!

149 / 181



Lisp
Assignment and Binding

Note: your coursework must not use setq

Or any of its variants

Regardless of how much it appears below!

150 / 181



Lisp
Closures

Another part of the functional style is enabled by closures

Consider the code

(defun addn (n) (lambda (m) (+ m n)))

This returns a function that adds n to its argument

(addn 4) → #<Procedure #14b12948>

Exercise. Write this defun out in the setq of a lambda
equivalent form

151 / 181



Lisp
Closures

Another part of the functional style is enabled by closures

Consider the code

(defun addn (n) (lambda (m) (+ m n)))

This returns a function that adds n to its argument

(addn 4) → #<Procedure #14b12948>

Exercise. Write this defun out in the setq of a lambda
equivalent form

152 / 181



Lisp
Closures

Another part of the functional style is enabled by closures

Consider the code

(defun addn (n) (lambda (m) (+ m n)))

This returns a function that adds n to its argument

(addn 4) → #<Procedure #14b12948>

Exercise. Write this defun out in the setq of a lambda
equivalent form

153 / 181



Lisp
Closures

Another part of the functional style is enabled by closures

Consider the code

(defun addn (n) (lambda (m) (+ m n)))

This returns a function that adds n to its argument

(addn 4) → #<Procedure #14b12948>

Exercise. Write this defun out in the setq of a lambda
equivalent form

154 / 181



Lisp
Closures

Another part of the functional style is enabled by closures

Consider the code

(defun addn (n) (lambda (m) (+ m n)))

This returns a function that adds n to its argument

(addn 4) → #<Procedure #14b12948>

Exercise. Write this defun out in the setq of a lambda
equivalent form

155 / 181



Lisp
Closures

Now,

((addn 4) 5) → 9
(Lisp-1 only; Lisp-2s need funcall)

(addn 4) evaluates to a function that adds 4

Now, (setq addfour (addn 4)) and then

(addfour 6) → 10, as expected

We use setq in the defun, single assignment way

156 / 181



Lisp
Closures

Now,

((addn 4) 5) → 9
(Lisp-1 only; Lisp-2s need funcall)

(addn 4) evaluates to a function that adds 4

Now, (setq addfour (addn 4)) and then

(addfour 6) → 10, as expected

We use setq in the defun, single assignment way

157 / 181



Lisp
Closures

Now,

((addn 4) 5) → 9
(Lisp-1 only; Lisp-2s need funcall)

(addn 4) evaluates to a function that adds 4

Now, (setq addfour (addn 4)) and then

(addfour 6) → 10, as expected

We use setq in the defun, single assignment way

158 / 181



Lisp
Closures

(setq addfive (addn 5)) and then (addfive 7) → 12

But, still (addfour 6) → 10

addfive is a new, different function from addfour

Just as cons makes new pairs, lambda makes new functions

And addfive “remembers” that it was created with n = 5; while
addfour was created with n = 4

(Strictly: “the function that addfive refers to”, etc.)

159 / 181



Lisp
Closures

(setq addfive (addn 5)) and then (addfive 7) → 12

But, still (addfour 6) → 10

addfive is a new, different function from addfour

Just as cons makes new pairs, lambda makes new functions

And addfive “remembers” that it was created with n = 5; while
addfour was created with n = 4

(Strictly: “the function that addfive refers to”, etc.)

160 / 181



Lisp
Closures

(setq addfive (addn 5)) and then (addfive 7) → 12

But, still (addfour 6) → 10

addfive is a new, different function from addfour

Just as cons makes new pairs, lambda makes new functions

And addfive “remembers” that it was created with n = 5; while
addfour was created with n = 4

(Strictly: “the function that addfive refers to”, etc.)

161 / 181



Lisp
Closures

(setq addfive (addn 5)) and then (addfive 7) → 12

But, still (addfour 6) → 10

addfive is a new, different function from addfour

Just as cons makes new pairs, lambda makes new functions

And addfive “remembers” that it was created with n = 5; while
addfour was created with n = 4

(Strictly: “the function that addfive refers to”, etc.)

162 / 181



Lisp
Closures

(setq addfive (addn 5)) and then (addfive 7) → 12

But, still (addfour 6) → 10

addfive is a new, different function from addfour

Just as cons makes new pairs, lambda makes new functions

And addfive “remembers” that it was created with n = 5; while
addfour was created with n = 4

(Strictly: “the function that addfive refers to”, etc.)

163 / 181



Lisp
Closures

(setq addfive (addn 5)) and then (addfive 7) → 12

But, still (addfour 6) → 10

addfive is a new, different function from addfour

Just as cons makes new pairs, lambda makes new functions

And addfive “remembers” that it was created with n = 5; while
addfour was created with n = 4

(Strictly: “the function that addfive refers to”, etc.)

164 / 181



Lisp
Closures

This is because addfour and addfive name more than just
simple bits of code: they are closures

A closure consists of two parts

• code
• environment

Code is the simple executable thing we were expecting

The environment is the collection of the non-local bindings
used in the function together with their values from the context
of the definition of the function

165 / 181



Lisp
Closures

This is because addfour and addfive name more than just
simple bits of code: they are closures

A closure consists of two parts

• code
• environment

Code is the simple executable thing we were expecting

The environment is the collection of the non-local bindings
used in the function together with their values from the context
of the definition of the function

166 / 181



Lisp
Closures

This is because addfour and addfive name more than just
simple bits of code: they are closures

A closure consists of two parts

• code
• environment

Code is the simple executable thing we were expecting

The environment is the collection of the non-local bindings
used in the function together with their values from the context
of the definition of the function

167 / 181



Lisp
Closures

This is because addfour and addfive name more than just
simple bits of code: they are closures

A closure consists of two parts

• code
• environment

Code is the simple executable thing we were expecting

The environment is the collection of the non-local bindings
used in the function together with their values from the context
of the definition of the function

168 / 181



Lisp
Closures

When we evaluate (addn 4) the closure returned contains

• the code (lambda (m) (+ m n))

• the environment n: 4

The environment refers to the n from the context created by the
call to addn

That n local to addn is no longer accessible when addn exits,
apart from through the above environment binding

The binding does not disappear when we leave the addn, but is
captured and kept by the closure, i.e., the lambda

169 / 181



Lisp
Closures

When we evaluate (addn 4) the closure returned contains

• the code (lambda (m) (+ m n))

• the environment n: 4

The environment refers to the n from the context created by the
call to addn

That n local to addn is no longer accessible when addn exits,
apart from through the above environment binding

The binding does not disappear when we leave the addn, but is
captured and kept by the closure, i.e., the lambda

170 / 181



Lisp
Closures

When we evaluate (addn 4) the closure returned contains

• the code (lambda (m) (+ m n))

• the environment n: 4

The environment refers to the n from the context created by the
call to addn

That n local to addn is no longer accessible when addn exits,
apart from through the above environment binding

The binding does not disappear when we leave the addn, but is
captured and kept by the closure, i.e., the lambda

171 / 181



Lisp
Closures

When the closure is evaluated, it can look up n in the
associated environment to determine its value is 4 (or whatever)

This, of course, has repercussions on how functions/closures
are implemented in Lisp, but the benefits are huge

In particular, each closure needs a bit more memory to store
the environment, over and above what the function code uses

Closures are another powerful basic idea that can be used for
many different purposes

172 / 181



Lisp
Closures

When the closure is evaluated, it can look up n in the
associated environment to determine its value is 4 (or whatever)

This, of course, has repercussions on how functions/closures
are implemented in Lisp, but the benefits are huge

In particular, each closure needs a bit more memory to store
the environment, over and above what the function code uses

Closures are another powerful basic idea that can be used for
many different purposes

173 / 181



Lisp
Closures

When the closure is evaluated, it can look up n in the
associated environment to determine its value is 4 (or whatever)

This, of course, has repercussions on how functions/closures
are implemented in Lisp, but the benefits are huge

In particular, each closure needs a bit more memory to store
the environment, over and above what the function code uses

Closures are another powerful basic idea that can be used for
many different purposes

174 / 181



Lisp
Closures

When the closure is evaluated, it can look up n in the
associated environment to determine its value is 4 (or whatever)

This, of course, has repercussions on how functions/closures
are implemented in Lisp, but the benefits are huge

In particular, each closure needs a bit more memory to store
the environment, over and above what the function code uses

Closures are another powerful basic idea that can be used for
many different purposes

175 / 181



Lisp
Closures

When the closure is evaluated, it can look up n in the
associated environment to determine its value is 4 (or whatever)

This, of course, has repercussions on how functions/closures
are implemented in Lisp, but the benefits are huge

In particular, each closure needs a bit more memory to store
the environment, over and above what the function code uses

Closures are another powerful basic idea that can be used for
many different purposes

176 / 181



Lisp
Closures

Thus: lambdas actually create new closures, not simply
functions

And lambdas are said to capture the environment

Each lambda has its own separate environment part

But they tend to share the common code part

Note that we are often lazy and use the word “function” when
we ought to use the word “closure”

This is because in Lisp, closures are the fundamental objects
we use all the time

177 / 181



Lisp
Closures

Thus: lambdas actually create new closures, not simply
functions

And lambdas are said to capture the environment

Each lambda has its own separate environment part

But they tend to share the common code part

Note that we are often lazy and use the word “function” when
we ought to use the word “closure”

This is because in Lisp, closures are the fundamental objects
we use all the time

178 / 181



Lisp
Closures

Thus: lambdas actually create new closures, not simply
functions

And lambdas are said to capture the environment

Each lambda has its own separate environment part

But they tend to share the common code part

Note that we are often lazy and use the word “function” when
we ought to use the word “closure”

This is because in Lisp, closures are the fundamental objects
we use all the time

179 / 181



Lisp
Closures

Thus: lambdas actually create new closures, not simply
functions

And lambdas are said to capture the environment

Each lambda has its own separate environment part

But they tend to share the common code part

Note that we are often lazy and use the word “function” when
we ought to use the word “closure”

This is because in Lisp, closures are the fundamental objects
we use all the time

180 / 181



Lisp
Closures

Thus: lambdas actually create new closures, not simply
functions

And lambdas are said to capture the environment

Each lambda has its own separate environment part

But they tend to share the common code part

Note that we are often lazy and use the word “function” when
we ought to use the word “closure”

This is because in Lisp, closures are the fundamental objects
we use all the time

181 / 181



Lisp
Closures

Thus: lambdas actually create new closures, not simply
functions

And lambdas are said to capture the environment

Each lambda has its own separate environment part

But they tend to share the common code part

Note that we are often lazy and use the word “function” when
we ought to use the word “closure”

This is because in Lisp, closures are the fundamental objects
we use all the time

182 / 181


