
Lisp

Skip past closure example

1 / 57



Lisp
Closures

Closures are very useful

(defun make-account ()

(let ((balance 0))

(list

(lambda () balance)

(lambda (n) (setq balance (+ balance n))))))

(let ((acct (make-account)))

(setq current (car acct))

(setq deposit (cadr acct)))

Adapted from Abelson & Sussman; they use setq to
destructively update a variable, so this is not pure functional
style code

2 / 57



Lisp
Closures

Now we have an account object (balance) which we can only
manipulate using the accessor closures current and deposit

(current) → 0

(deposit 10) → 10

(current) → 10

The closures current and deposit have captured the
(shared) environment balance

And the environment is mutable

Note that current is not referentially transparent

This is to emphasise that closures and the functional style are
separate concepts (though often used together)

3 / 57



Lisp
Closures

Now we have an account object (balance) which we can only
manipulate using the accessor closures current and deposit

(current) → 0

(deposit 10) → 10

(current) → 10

The closures current and deposit have captured the
(shared) environment balance

And the environment is mutable

Note that current is not referentially transparent

This is to emphasise that closures and the functional style are
separate concepts (though often used together)

4 / 57



Lisp
Closures

Now we have an account object (balance) which we can only
manipulate using the accessor closures current and deposit

(current) → 0

(deposit 10) → 10

(current) → 10

The closures current and deposit have captured the
(shared) environment balance

And the environment is mutable

Note that current is not referentially transparent

This is to emphasise that closures and the functional style are
separate concepts (though often used together)

5 / 57



Lisp
Closures

Now we have an account object (balance) which we can only
manipulate using the accessor closures current and deposit

(current) → 0

(deposit 10) → 10

(current) → 10

The closures current and deposit have captured the
(shared) environment balance

And the environment is mutable

Note that current is not referentially transparent

This is to emphasise that closures and the functional style are
separate concepts (though often used together)

6 / 57



Lisp
Closures

Now we have an account object (balance) which we can only
manipulate using the accessor closures current and deposit

(current) → 0

(deposit 10) → 10

(current) → 10

The closures current and deposit have captured the
(shared) environment balance

And the environment is mutable

Note that current is not referentially transparent

This is to emphasise that closures and the functional style are
separate concepts (though often used together)

7 / 57



Lisp
Closures

Now we have an account object (balance) which we can only
manipulate using the accessor closures current and deposit

(current) → 0

(deposit 10) → 10

(current) → 10

The closures current and deposit have captured the
(shared) environment balance

And the environment is mutable

Note that current is not referentially transparent

This is to emphasise that closures and the functional style are
separate concepts (though often used together)

8 / 57



Lisp
Closures

Now we have an account object (balance) which we can only
manipulate using the accessor closures current and deposit

(current) → 0

(deposit 10) → 10

(current) → 10

The closures current and deposit have captured the
(shared) environment balance

And the environment is mutable

Note that current is not referentially transparent

This is to emphasise that closures and the functional style are
separate concepts (though often used together)

9 / 57



Lisp
Closures

Now we have an account object (balance) which we can only
manipulate using the accessor closures current and deposit

(current) → 0

(deposit 10) → 10

(current) → 10

The closures current and deposit have captured the
(shared) environment balance

And the environment is mutable

Note that current is not referentially transparent

This is to emphasise that closures and the functional style are
separate concepts (though often used together)

10 / 57



Lisp
Closures

And separate accounts have separate balances

(let ((acct (make-account)))

(setq current2 (car acct))

(setq deposit2 (cadr acct)))

(deposit2 100) → 100

(current) → 10

(current2) → 100

The closure concept predates object orientation

See “Structure and Interpretation of Computer Programs” for
more on this

11 / 57



Lisp
Closures

And separate accounts have separate balances

(let ((acct (make-account)))

(setq current2 (car acct))

(setq deposit2 (cadr acct)))

(deposit2 100) → 100

(current) → 10

(current2) → 100

The closure concept predates object orientation

See “Structure and Interpretation of Computer Programs” for
more on this

12 / 57



Lisp
Closures

And separate accounts have separate balances

(let ((acct (make-account)))

(setq current2 (car acct))

(setq deposit2 (cadr acct)))

(deposit2 100) → 100

(current) → 10

(current2) → 100

The closure concept predates object orientation

See “Structure and Interpretation of Computer Programs” for
more on this

13 / 57



Lisp
Closures

Closures are powerful and can be used for all kinds of things

They are used for capturing information (like objects in OO
languages): the example above

They can be used for data hiding: the example above

They can be used to delay evaluation: make a closure at some
point, then only execute the code later in the knowledge that
the code will be executed in the environment of creation

14 / 57



Lisp
Closures

Closures are powerful and can be used for all kinds of things

They are used for capturing information (like objects in OO
languages): the example above

They can be used for data hiding: the example above

They can be used to delay evaluation: make a closure at some
point, then only execute the code later in the knowledge that
the code will be executed in the environment of creation

15 / 57



Lisp
Closures

Closures are powerful and can be used for all kinds of things

They are used for capturing information (like objects in OO
languages): the example above

They can be used for data hiding: the example above

They can be used to delay evaluation: make a closure at some
point, then only execute the code later in the knowledge that
the code will be executed in the environment of creation

16 / 57



Lisp
Closures

Closures are powerful and can be used for all kinds of things

They are used for capturing information (like objects in OO
languages): the example above

They can be used for data hiding: the example above

They can be used to delay evaluation: make a closure at some
point, then only execute the code later in the knowledge that
the code will be executed in the environment of creation

17 / 57



Lisp
Closures

(let* ((n 0)

(m 1)

(lazy (lambda () (foo n m))))

...

(lazy) ; now call foo

...

)

18 / 57



Lisp
Closures

Exercise. Look up thunks and delay and force in Scheme

In the context of functional style programming, closures “do the
right thing”

They capture elements of computation

19 / 57



Lisp
Closures

Exercise. Look up thunks and delay and force in Scheme

In the context of functional style programming, closures “do the
right thing”

They capture elements of computation

20 / 57



Lisp
Closures

Exercise. Look up thunks and delay and force in Scheme

In the context of functional style programming, closures “do the
right thing”

They capture elements of computation

21 / 57



Lisp
Closures

In MacOS X Snow Leopard closures are used as a device to
structure parallelism

It takes C and extends it with a new construct:

int n;

...

x = ^(int m){ printf("n is %d m is %d\n", n, m); };

...

x(4);

makes the value of x a closure

Closures can then be scheduled to run in parallel

22 / 57



Lisp
Closures

In MacOS X Snow Leopard closures are used as a device to
structure parallelism

It takes C and extends it with a new construct:

int n;

...

x = ^(int m){ printf("n is %d m is %d\n", n, m); };

...

x(4);

makes the value of x a closure

Closures can then be scheduled to run in parallel

23 / 57



Lisp
Closures

In MacOS X Snow Leopard closures are used as a device to
structure parallelism

It takes C and extends it with a new construct:

int n;

...

x = ^(int m){ printf("n is %d m is %d\n", n, m); };

...

x(4);

makes the value of x a closure

Closures can then be scheduled to run in parallel

24 / 57



General Remark

You have encountered several different kinds of “executable”
object:

• function
• closure
• method
• (generic function)

Make sure you understand the difference between these

They are all different kinds of things

25 / 57



General Remark

You have encountered several different kinds of “executable”
object:

• function
• closure
• method
• (generic function)

Make sure you understand the difference between these

They are all different kinds of things

26 / 57



General Remark

You have encountered several different kinds of “executable”
object:

• function
• closure
• method
• (generic function)

Make sure you understand the difference between these

They are all different kinds of things

27 / 57



Functional Style

Perhaps this is a good point to reflect on the functional style: it
is characterised by:

• Use of recursion: operate on a small part, do the rest by
recursion

• Thus no iterative loops
• No global state. Globals variables are bad news in all

styles of programming
• Thus only use local variables
• No modification of variables, in particular no use of setq,
set, setf, set!, push and so on

• Variables don’t vary; referential transparency
• Use binding of local variables

28 / 57



Functional Style

Perhaps this is a good point to reflect on the functional style: it
is characterised by:

• Use of recursion: operate on a small part, do the rest by
recursion

• Thus no iterative loops
• No global state. Globals variables are bad news in all

styles of programming
• Thus only use local variables
• No modification of variables, in particular no use of setq,
set, setf, set!, push and so on

• Variables don’t vary; referential transparency
• Use binding of local variables

29 / 57



Functional Style

Perhaps this is a good point to reflect on the functional style: it
is characterised by:

• Use of recursion: operate on a small part, do the rest by
recursion

• Thus no iterative loops

• No global state. Globals variables are bad news in all
styles of programming

• Thus only use local variables
• No modification of variables, in particular no use of setq,
set, setf, set!, push and so on

• Variables don’t vary; referential transparency
• Use binding of local variables

30 / 57



Functional Style

Perhaps this is a good point to reflect on the functional style: it
is characterised by:

• Use of recursion: operate on a small part, do the rest by
recursion

• Thus no iterative loops
• No global state. Globals variables are bad news in all

styles of programming

• Thus only use local variables
• No modification of variables, in particular no use of setq,
set, setf, set!, push and so on

• Variables don’t vary; referential transparency
• Use binding of local variables

31 / 57



Functional Style

Perhaps this is a good point to reflect on the functional style: it
is characterised by:

• Use of recursion: operate on a small part, do the rest by
recursion

• Thus no iterative loops
• No global state. Globals variables are bad news in all

styles of programming
• Thus only use local variables

• No modification of variables, in particular no use of setq,
set, setf, set!, push and so on

• Variables don’t vary; referential transparency
• Use binding of local variables

32 / 57



Functional Style

Perhaps this is a good point to reflect on the functional style: it
is characterised by:

• Use of recursion: operate on a small part, do the rest by
recursion

• Thus no iterative loops
• No global state. Globals variables are bad news in all

styles of programming
• Thus only use local variables
• No modification of variables, in particular no use of setq,
set, setf, set!, push and so on

• Variables don’t vary; referential transparency
• Use binding of local variables

33 / 57



Functional Style

Perhaps this is a good point to reflect on the functional style: it
is characterised by:

• Use of recursion: operate on a small part, do the rest by
recursion

• Thus no iterative loops
• No global state. Globals variables are bad news in all

styles of programming
• Thus only use local variables
• No modification of variables, in particular no use of setq,
set, setf, set!, push and so on

• Variables don’t vary; referential transparency

• Use binding of local variables

34 / 57



Functional Style

Perhaps this is a good point to reflect on the functional style: it
is characterised by:

• Use of recursion: operate on a small part, do the rest by
recursion

• Thus no iterative loops
• No global state. Globals variables are bad news in all

styles of programming
• Thus only use local variables
• No modification of variables, in particular no use of setq,
set, setf, set!, push and so on

• Variables don’t vary; referential transparency
• Use binding of local variables

35 / 57



Functional Style

• No modification of datastructures

• Make a new one if you want something changed
• This allows safe sharing of datastructures; referential

transparency
• Use higher order functions
• Use mapping
• Separate the traversal of a datastructure from the

operations on it
• Think of datastructures as a whole
• Keep state in closures

36 / 57



Functional Style

• No modification of datastructures
• Make a new one if you want something changed

• This allows safe sharing of datastructures; referential
transparency

• Use higher order functions
• Use mapping
• Separate the traversal of a datastructure from the

operations on it
• Think of datastructures as a whole
• Keep state in closures

37 / 57



Functional Style

• No modification of datastructures
• Make a new one if you want something changed
• This allows safe sharing of datastructures; referential

transparency

• Use higher order functions
• Use mapping
• Separate the traversal of a datastructure from the

operations on it
• Think of datastructures as a whole
• Keep state in closures

38 / 57



Functional Style

• No modification of datastructures
• Make a new one if you want something changed
• This allows safe sharing of datastructures; referential

transparency
• Use higher order functions

• Use mapping
• Separate the traversal of a datastructure from the

operations on it
• Think of datastructures as a whole
• Keep state in closures

39 / 57



Functional Style

• No modification of datastructures
• Make a new one if you want something changed
• This allows safe sharing of datastructures; referential

transparency
• Use higher order functions
• Use mapping

• Separate the traversal of a datastructure from the
operations on it

• Think of datastructures as a whole
• Keep state in closures

40 / 57



Functional Style

• No modification of datastructures
• Make a new one if you want something changed
• This allows safe sharing of datastructures; referential

transparency
• Use higher order functions
• Use mapping
• Separate the traversal of a datastructure from the

operations on it

• Think of datastructures as a whole
• Keep state in closures

41 / 57



Functional Style

• No modification of datastructures
• Make a new one if you want something changed
• This allows safe sharing of datastructures; referential

transparency
• Use higher order functions
• Use mapping
• Separate the traversal of a datastructure from the

operations on it
• Think of datastructures as a whole

• Keep state in closures

42 / 57



Functional Style

• No modification of datastructures
• Make a new one if you want something changed
• This allows safe sharing of datastructures; referential

transparency
• Use higher order functions
• Use mapping
• Separate the traversal of a datastructure from the

operations on it
• Think of datastructures as a whole
• Keep state in closures

43 / 57



Functional Style

Keeping to the functional style is hard if you have been trained
in the procedural style

But the benefits in the long run are well worth the effort

Even in non-functional languages

The training in the way you think improves your coding in the
procedural and object-oriented styles

44 / 57



Functional Style

Keeping to the functional style is hard if you have been trained
in the procedural style

But the benefits in the long run are well worth the effort

Even in non-functional languages

The training in the way you think improves your coding in the
procedural and object-oriented styles

45 / 57



Functional Style

Keeping to the functional style is hard if you have been trained
in the procedural style

But the benefits in the long run are well worth the effort

Even in non-functional languages

The training in the way you think improves your coding in the
procedural and object-oriented styles

46 / 57



Functional Style

Keeping to the functional style is hard if you have been trained
in the procedural style

But the benefits in the long run are well worth the effort

Even in non-functional languages

The training in the way you think improves your coding in the
procedural and object-oriented styles

47 / 57



Lisp
Garbage Collection

Lisp makes it very easy to make a lots of lists: we need to be a
little careful in what we do

In evaluating (let ((x (list ’a ’b))) 42) we create a
new list (a b), then discard it

As the binding of x disappears when we exit the let, the list is
no longer accessible by our program

The cons cells (pairs) are now garbage occupying memory to
no purpose

48 / 57



Lisp
Garbage Collection

Lisp makes it very easy to make a lots of lists: we need to be a
little careful in what we do

In evaluating (let ((x (list ’a ’b))) 42) we create a
new list (a b), then discard it

As the binding of x disappears when we exit the let, the list is
no longer accessible by our program

The cons cells (pairs) are now garbage occupying memory to
no purpose

49 / 57



Lisp
Garbage Collection

Lisp makes it very easy to make a lots of lists: we need to be a
little careful in what we do

In evaluating (let ((x (list ’a ’b))) 42) we create a
new list (a b), then discard it

As the binding of x disappears when we exit the let, the list is
no longer accessible by our program

The cons cells (pairs) are now garbage occupying memory to
no purpose

50 / 57



Lisp
Garbage Collection

Lisp makes it very easy to make a lots of lists: we need to be a
little careful in what we do

In evaluating (let ((x (list ’a ’b))) 42) we create a
new list (a b), then discard it

As the binding of x disappears when we exit the let, the list is
no longer accessible by our program

The cons cells (pairs) are now garbage occupying memory to
no purpose

51 / 57



Lisp
Garbage Collection

We have seen in Java there is a similar problem: objects are
often allocated and then dropped (sometimes intentionally)

{ foo x = new foo();

...

x = y;

...

}

This bad code — don’t do this

52 / 57



Lisp
Garbage Collection

Or C

{ char *x = (char*)malloc(10);

...

x = y;

...

}

This bad code — don’t do this

53 / 57



Lisp
Garbage Collection

The locations of the objects are no longer known by the
program: the program can no longer refer to them: they are
garbage

So Lisp pioneered automatic garbage collection

This means you can cons without regard to memory use: but
you should also be aware there is the associated cost

Memory management is never free

54 / 57



Lisp
Garbage Collection

The locations of the objects are no longer known by the
program: the program can no longer refer to them: they are
garbage

So Lisp pioneered automatic garbage collection

This means you can cons without regard to memory use: but
you should also be aware there is the associated cost

Memory management is never free

55 / 57



Lisp
Garbage Collection

The locations of the objects are no longer known by the
program: the program can no longer refer to them: they are
garbage

So Lisp pioneered automatic garbage collection

This means you can cons without regard to memory use: but
you should also be aware there is the associated cost

Memory management is never free

56 / 57



Lisp
Garbage Collection

The locations of the objects are no longer known by the
program: the program can no longer refer to them: they are
garbage

So Lisp pioneered automatic garbage collection

This means you can cons without regard to memory use: but
you should also be aware there is the associated cost

Memory management is never free

57 / 57


