
Haskell

We now turn to look at another functional language, Haskell

Haskell has many things in common with Lisp, so we don’t
need to spend so much time on it

You should get used to moving concepts between languages
and not get hung up on things like syntax

1 / 116

Haskell

We now turn to look at another functional language, Haskell

Haskell has many things in common with Lisp, so we don’t
need to spend so much time on it

You should get used to moving concepts between languages
and not get hung up on things like syntax

2 / 116

Haskell

We now turn to look at another functional language, Haskell

Haskell has many things in common with Lisp, so we don’t
need to spend so much time on it

You should get used to moving concepts between languages
and not get hung up on things like syntax

3 / 116

Haskell

Haskell is a language that was designed from scratch to be
functional

It

• is strongly functional
• has first class functions
• has first class classes
• does not have variable update
• has lambdas (anonymous functions)
• has closures
• has a garbage collector

4 / 116

Haskell

Haskell is a language that was designed from scratch to be
functional

It

• is strongly functional

• has first class functions
• has first class classes
• does not have variable update
• has lambdas (anonymous functions)
• has closures
• has a garbage collector

5 / 116

Haskell

Haskell is a language that was designed from scratch to be
functional

It

• is strongly functional
• has first class functions

• has first class classes
• does not have variable update
• has lambdas (anonymous functions)
• has closures
• has a garbage collector

6 / 116

Haskell

Haskell is a language that was designed from scratch to be
functional

It

• is strongly functional
• has first class functions
• has first class classes

• does not have variable update
• has lambdas (anonymous functions)
• has closures
• has a garbage collector

7 / 116

Haskell

Haskell is a language that was designed from scratch to be
functional

It

• is strongly functional
• has first class functions
• has first class classes
• does not have variable update

• has lambdas (anonymous functions)
• has closures
• has a garbage collector

8 / 116

Haskell

Haskell is a language that was designed from scratch to be
functional

It

• is strongly functional
• has first class functions
• has first class classes
• does not have variable update
• has lambdas (anonymous functions)

• has closures
• has a garbage collector

9 / 116

Haskell

Haskell is a language that was designed from scratch to be
functional

It

• is strongly functional
• has first class functions
• has first class classes
• does not have variable update
• has lambdas (anonymous functions)
• has closures

• has a garbage collector

10 / 116

Haskell

Haskell is a language that was designed from scratch to be
functional

It

• is strongly functional
• has first class functions
• has first class classes
• does not have variable update
• has lambdas (anonymous functions)
• has closures
• has a garbage collector

11 / 116

Haskell

But in a couple of ways it is very different from Lisp

It differs from Lisp in

1. its syntax

2. its type system
3. and it is lazy

12 / 116

Haskell

But in a couple of ways it is very different from Lisp

It differs from Lisp in

1. its syntax
2. its type system

3. and it is lazy

13 / 116

Haskell

But in a couple of ways it is very different from Lisp

It differs from Lisp in

1. its syntax
2. its type system
3. and it is lazy

14 / 116

Haskell

There are a couple of implementations of the Haskell standard.
The important ones being:

• GHC: Glasgow Haskell Compiler. This compiles to C,
which can then be compiled to native code

• Hugs: Haskell User’s Gofer System. Compiles to an
interpreted bytecode, so is very portable

15 / 116

Haskell
Running Haskell

On BUCS machines lcpu

% ~masrjb/bin/hugs

__ __ __ __ ____ ___ ___

|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2005

||---|| ___|| World Wide Web: http://haskell.org/hugs

|| || Bugs: http://hackage.haskell.org/trac/hugs

|| || Version: September 2006 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help

Hugs> ^D

[Leaving Hugs]

%

16 / 116

Haskell
Syntax

This is Haskell User’s Gofer System, a Haskell interpreter

If we add the argument +t
˜masrjb/bin/hugs +t
this makes Hugs give us interesting type information

> 1+2

3 :: Integer

> :1uit

Command not recognised. Type :? for help

> :quit

[Leaving Hugs]

17 / 116

Haskell
Syntax

This is Haskell User’s Gofer System, a Haskell interpreter

If we add the argument +t
˜masrjb/bin/hugs +t
this makes Hugs give us interesting type information

> 1+2

3 :: Integer

> :1uit

Command not recognised. Type :? for help

> :quit

[Leaving Hugs]

18 / 116

Haskell
Syntax

Hugs requires definitions to be in modules. In a file Egs.hs put

module Egs where

{- this is a comment -}

inc x = x+1

and load into Hugs by

> :load Egs.hs

The ’E’ in module Egs where must be upper case

19 / 116

Haskell
Syntax

Hugs requires definitions to be in modules. In a file Egs.hs put

module Egs where

{- this is a comment -}

inc x = x+1

and load into Hugs by

> :load Egs.hs

The ’E’ in module Egs where must be upper case

20 / 116

Haskell
Syntax

Hugs requires definitions to be in modules. In a file Egs.hs put

module Egs where

{- this is a comment -}

inc x = x+1

and load into Hugs by

> :load Egs.hs

The ’E’ in module Egs where must be upper case

21 / 116

Haskell
Syntax

You can reload a module after changing it by

> :reload Egs.hs

or simply

> :reload

will reload the last loaded module again

Definitions must be in modules, but we must type expressions
to be evaluated at the prompt. In the examples below we shall
mix definitions and evaluations, but you must separate them
when actually using Hugs

22 / 116

Haskell
Syntax

You can reload a module after changing it by

> :reload Egs.hs

or simply

> :reload

will reload the last loaded module again

Definitions must be in modules, but we must type expressions
to be evaluated at the prompt. In the examples below we shall
mix definitions and evaluations, but you must separate them
when actually using Hugs

23 / 116

Haskell
Syntax

Functions are defined by equations

inc x = x+1 -- definition in a module

> inc 3 -- typed in at prompt

= 4 :: Integer -- result

which is short for

inc = \x -> x+1

with \ for λ

24 / 116

Haskell
Syntax

Functions are defined by equations

inc x = x+1 -- definition in a module

> inc 3 -- typed in at prompt

= 4 :: Integer -- result

which is short for

inc = \x -> x+1

with \ for λ

25 / 116

Haskell
Syntax

Using +t we see the types of objects

> 5

5 :: Integer

> "hello"

"hello" :: String

We can also directly query expressions for their type using :t

26 / 116

Haskell
Syntax

Using +t we see the types of objects

> 5

5 :: Integer

> "hello"

"hello" :: String

We can also directly query expressions for their type using :t

27 / 116

Haskell
Syntax

> :t 2

2 :: Num a => a

We read this in two parts: before and after the =>

The “a” after the => stands for an arbitrary type

It is a type variable; normally read as “alpha”, written as “α” in
text

Before the => we have the restriction Num a, meaning a is a
numerical type

Haskell has classes of types, which are types of types, i.e.,
second order types

28 / 116

Haskell
Syntax

> :t 2

2 :: Num a => a

We read this in two parts: before and after the =>

The “a” after the => stands for an arbitrary type

It is a type variable; normally read as “alpha”, written as “α” in
text

Before the => we have the restriction Num a, meaning a is a
numerical type

Haskell has classes of types, which are types of types, i.e.,
second order types

29 / 116

Haskell
Syntax

> :t 2

2 :: Num a => a

We read this in two parts: before and after the =>

The “a” after the => stands for an arbitrary type

It is a type variable; normally read as “alpha”, written as “α” in
text

Before the => we have the restriction Num a, meaning a is a
numerical type

Haskell has classes of types, which are types of types, i.e.,
second order types

30 / 116

Haskell
Syntax

> :t 2

2 :: Num a => a

We read this in two parts: before and after the =>

The “a” after the => stands for an arbitrary type

It is a type variable; normally read as “alpha”, written as “α” in
text

Before the => we have the restriction Num a, meaning a is a
numerical type

Haskell has classes of types, which are types of types, i.e.,
second order types

31 / 116

Haskell
Syntax

> :t 2

2 :: Num a => a

We read this in two parts: before and after the =>

The “a” after the => stands for an arbitrary type

It is a type variable; normally read as “alpha”, written as “α” in
text

Before the => we have the restriction Num a, meaning a is a
numerical type

Haskell has classes of types, which are types of types, i.e.,
second order types

32 / 116

Haskell
Syntax

> :t 2

2 :: Num a => a

We read this in two parts: before and after the =>

The “a” after the => stands for an arbitrary type

It is a type variable; normally read as “alpha”, written as “α” in
text

Before the => we have the restriction Num a, meaning a is a
numerical type

Haskell has classes of types, which are types of types, i.e.,
second order types

33 / 116

Haskell
Syntax

So why is 2 some unspecified numerical type, rather than the
more obvious Integer?

Because the type of this particular expression depends on the
context in which it is used

In 2 + 1.0 the value 2 is automatically assumed to be a
Double

So Num a => a is saying the expression “2” can be used
anywhere we expect a number, of any type

Exercise. What do you expect from :t 2.0?

34 / 116

Haskell
Syntax

So why is 2 some unspecified numerical type, rather than the
more obvious Integer?

Because the type of this particular expression depends on the
context in which it is used

In 2 + 1.0 the value 2 is automatically assumed to be a
Double

So Num a => a is saying the expression “2” can be used
anywhere we expect a number, of any type

Exercise. What do you expect from :t 2.0?

35 / 116

Haskell
Syntax

So why is 2 some unspecified numerical type, rather than the
more obvious Integer?

Because the type of this particular expression depends on the
context in which it is used

In 2 + 1.0 the value 2 is automatically assumed to be a
Double

So Num a => a is saying the expression “2” can be used
anywhere we expect a number, of any type

Exercise. What do you expect from :t 2.0?

36 / 116

Haskell
Syntax

So why is 2 some unspecified numerical type, rather than the
more obvious Integer?

Because the type of this particular expression depends on the
context in which it is used

In 2 + 1.0 the value 2 is automatically assumed to be a
Double

So Num a => a is saying the expression “2” can be used
anywhere we expect a number, of any type

Exercise. What do you expect from :t 2.0?

37 / 116

Haskell
Syntax

So why is 2 some unspecified numerical type, rather than the
more obvious Integer?

Because the type of this particular expression depends on the
context in which it is used

In 2 + 1.0 the value 2 is automatically assumed to be a
Double

So Num a => a is saying the expression “2” can be used
anywhere we expect a number, of any type

Exercise. What do you expect from :t 2.0?

38 / 116

Haskell
Syntax

inc x = x+1

> :t inc

= inc :: Num a => a -> a

The a -> a means a function that takes an argument of type a
and returns a value of type a

And a must be a Num type

39 / 116

Haskell
Syntax

inc x = x+1

> :t inc

= inc :: Num a => a -> a

The a -> a means a function that takes an argument of type a
and returns a value of type a

And a must be a Num type

40 / 116

Haskell
Syntax

inc x = x+1

> :t inc

= inc :: Num a => a -> a

The a -> a means a function that takes an argument of type a
and returns a value of type a

And a must be a Num type

41 / 116

Haskell
Syntax

Num a => a -> a can be read as ∀α ∈ Num.α→ α, which is to
say “for all numerical types . . . ”

inc 2 → 3 :: Integer

inc 2.0 → 3.0 :: Double

The function inc takes an argument of any numerical type and
returns a value of the same type

So: Num a => a -> a

inc is sometimes called a polymorphic function: the same
function works on many types

42 / 116

Haskell
Syntax

Num a => a -> a can be read as ∀α ∈ Num.α→ α, which is to
say “for all numerical types . . . ”

inc 2 → 3 :: Integer

inc 2.0 → 3.0 :: Double

The function inc takes an argument of any numerical type and
returns a value of the same type

So: Num a => a -> a

inc is sometimes called a polymorphic function: the same
function works on many types

43 / 116

Haskell
Syntax

Num a => a -> a can be read as ∀α ∈ Num.α→ α, which is to
say “for all numerical types . . . ”

inc 2 → 3 :: Integer

inc 2.0 → 3.0 :: Double

The function inc takes an argument of any numerical type and
returns a value of the same type

So: Num a => a -> a

inc is sometimes called a polymorphic function: the same
function works on many types

44 / 116

Haskell
Syntax

Num a => a -> a can be read as ∀α ∈ Num.α→ α, which is to
say “for all numerical types . . . ”

inc 2 → 3 :: Integer

inc 2.0 → 3.0 :: Double

The function inc takes an argument of any numerical type and
returns a value of the same type

So: Num a => a -> a

inc is sometimes called a polymorphic function: the same
function works on many types

45 / 116

Haskell
Syntax

Num a => a -> a can be read as ∀α ∈ Num.α→ α, which is to
say “for all numerical types . . . ”

inc 2 → 3 :: Integer

inc 2.0 → 3.0 :: Double

The function inc takes an argument of any numerical type and
returns a value of the same type

So: Num a => a -> a

inc is sometimes called a polymorphic function: the same
function works on many types

46 / 116

Haskell
Syntax

Num a => a -> a can be read as ∀α ∈ Num.α→ α, which is to
say “for all numerical types . . . ”

inc 2 → 3 :: Integer

inc 2.0 → 3.0 :: Double

The function inc takes an argument of any numerical type and
returns a value of the same type

So: Num a => a -> a

inc is sometimes called a polymorphic function: the same
function works on many types

47 / 116

Haskell
Type Inference

Haskell manages to figure out the type of this function itself: the
programmer didn’t need to put type information in themselves

It can figure this out by type inference

In this case (inc x = x+1) it sees that x is an argument to the
function +

But + takes numerical arguments

Thus x must be numerical

And the result of the inc is the result of the +

And the result of + is the same as the type of its argument,
namely numerical

48 / 116

Haskell
Type Inference

Haskell manages to figure out the type of this function itself: the
programmer didn’t need to put type information in themselves

It can figure this out by type inference

In this case (inc x = x+1) it sees that x is an argument to the
function +

But + takes numerical arguments

Thus x must be numerical

And the result of the inc is the result of the +

And the result of + is the same as the type of its argument,
namely numerical

49 / 116

Haskell
Type Inference

Haskell manages to figure out the type of this function itself: the
programmer didn’t need to put type information in themselves

It can figure this out by type inference

In this case (inc x = x+1) it sees that x is an argument to the
function +

But + takes numerical arguments

Thus x must be numerical

And the result of the inc is the result of the +

And the result of + is the same as the type of its argument,
namely numerical

50 / 116

Haskell
Type Inference

Haskell manages to figure out the type of this function itself: the
programmer didn’t need to put type information in themselves

It can figure this out by type inference

In this case (inc x = x+1) it sees that x is an argument to the
function +

But + takes numerical arguments

Thus x must be numerical

And the result of the inc is the result of the +

And the result of + is the same as the type of its argument,
namely numerical

51 / 116

Haskell
Type Inference

Haskell manages to figure out the type of this function itself: the
programmer didn’t need to put type information in themselves

It can figure this out by type inference

In this case (inc x = x+1) it sees that x is an argument to the
function +

But + takes numerical arguments

Thus x must be numerical

And the result of the inc is the result of the +

And the result of + is the same as the type of its argument,
namely numerical

52 / 116

Haskell
Type Inference

Haskell manages to figure out the type of this function itself: the
programmer didn’t need to put type information in themselves

It can figure this out by type inference

In this case (inc x = x+1) it sees that x is an argument to the
function +

But + takes numerical arguments

Thus x must be numerical

And the result of the inc is the result of the +

And the result of + is the same as the type of its argument,
namely numerical

53 / 116

Haskell
Type Inference

Haskell manages to figure out the type of this function itself: the
programmer didn’t need to put type information in themselves

It can figure this out by type inference

In this case (inc x = x+1) it sees that x is an argument to the
function +

But + takes numerical arguments

Thus x must be numerical

And the result of the inc is the result of the +

And the result of + is the same as the type of its argument,
namely numerical

54 / 116

Haskell
Type Inference

Some things do not make sense:

> 2+"a"

ERROR - Cannot infer instance

*** Instance : Num [Char]

*** Expression : 2 + "a"

Type inference is a important subject in CS, particularly in
compilers

Exercise. In Haskell, putting () around an infix operator makes
it into a normal function (not infix). Try :t (+)

55 / 116

Haskell
Type Inference

Some things do not make sense:

> 2+"a"

ERROR - Cannot infer instance

*** Instance : Num [Char]

*** Expression : 2 + "a"

Type inference is a important subject in CS, particularly in
compilers

Exercise. In Haskell, putting () around an infix operator makes
it into a normal function (not infix). Try :t (+)

56 / 116

Haskell
Type Inference

Some things do not make sense:

> 2+"a"

ERROR - Cannot infer instance

*** Instance : Num [Char]

*** Expression : 2 + "a"

Type inference is a important subject in CS, particularly in
compilers

Exercise. In Haskell, putting () around an infix operator makes
it into a normal function (not infix). Try :t (+)

57 / 116

Haskell
Syntax

The class Num contains the types Integer, Float and Double
amongst others

These numerical types are also members of the class Ord of
objects that support comparison, i.e., <

For example, strings can be ordered, but they are not numbers

And complexes are numbers that don’t have a natural order

Use, e.g., :info Ord to see details of a class or any other
object

58 / 116

Haskell
Syntax

The class Num contains the types Integer, Float and Double
amongst others

These numerical types are also members of the class Ord of
objects that support comparison, i.e., <

For example, strings can be ordered, but they are not numbers

And complexes are numbers that don’t have a natural order

Use, e.g., :info Ord to see details of a class or any other
object

59 / 116

Haskell
Syntax

The class Num contains the types Integer, Float and Double
amongst others

These numerical types are also members of the class Ord of
objects that support comparison, i.e., <

For example, strings can be ordered, but they are not numbers

And complexes are numbers that don’t have a natural order

Use, e.g., :info Ord to see details of a class or any other
object

60 / 116

Haskell
Syntax

The class Num contains the types Integer, Float and Double
amongst others

These numerical types are also members of the class Ord of
objects that support comparison, i.e., <

For example, strings can be ordered, but they are not numbers

And complexes are numbers that don’t have a natural order

Use, e.g., :info Ord to see details of a class or any other
object

61 / 116

Haskell
Syntax

The class Num contains the types Integer, Float and Double
amongst others

These numerical types are also members of the class Ord of
objects that support comparison, i.e., <

For example, strings can be ordered, but they are not numbers

And complexes are numbers that don’t have a natural order

Use, e.g., :info Ord to see details of a class or any other
object

62 / 116

Haskell
Syntax

Exercise. Strings in Haskell are actually arrays of characters:
find out what Haskell does for Ord and arrays

Exercise. Think about writing a polymorphic sort function that
works on any list whose elements admit an ordering, i.e., a
function of type Ord => [a] -> [a]

63 / 116

Haskell
Syntax

For the function definition

positive x = if x > 0 then True else False

or, less clumsily,

positive x = x > 0

We get

> :t positive

= positive :: (Ord a, Num a) => a -> Bool

64 / 116

Haskell
Syntax

(Ord a, Num a) => a -> Bool

This is type ∀α ∈ Ord ∩ Num.α→ Bool

A function that takes an argument of type a and returns a
Boolean (true/false) value

And the type a must be both of class Num (numerical) and class
Ord (have comparison)

So this works for any numeric type that also has comparison
(recall that complex numbers don’t have comparison)

Exercise. Work through the type inference of this for yourself

65 / 116

Haskell
Syntax

(Ord a, Num a) => a -> Bool

This is type ∀α ∈ Ord ∩ Num.α→ Bool

A function that takes an argument of type a and returns a
Boolean (true/false) value

And the type a must be both of class Num (numerical) and class
Ord (have comparison)

So this works for any numeric type that also has comparison
(recall that complex numbers don’t have comparison)

Exercise. Work through the type inference of this for yourself

66 / 116

Haskell
Syntax

(Ord a, Num a) => a -> Bool

This is type ∀α ∈ Ord ∩ Num.α→ Bool

A function that takes an argument of type a and returns a
Boolean (true/false) value

And the type a must be both of class Num (numerical) and class
Ord (have comparison)

So this works for any numeric type that also has comparison
(recall that complex numbers don’t have comparison)

Exercise. Work through the type inference of this for yourself

67 / 116

Haskell
Syntax

(Ord a, Num a) => a -> Bool

This is type ∀α ∈ Ord ∩ Num.α→ Bool

A function that takes an argument of type a and returns a
Boolean (true/false) value

And the type a must be both of class Num (numerical) and class
Ord (have comparison)

So this works for any numeric type that also has comparison
(recall that complex numbers don’t have comparison)

Exercise. Work through the type inference of this for yourself

68 / 116

Haskell
Syntax

(Ord a, Num a) => a -> Bool

This is type ∀α ∈ Ord ∩ Num.α→ Bool

A function that takes an argument of type a and returns a
Boolean (true/false) value

And the type a must be both of class Num (numerical) and class
Ord (have comparison)

So this works for any numeric type that also has comparison
(recall that complex numbers don’t have comparison)

Exercise. Work through the type inference of this for yourself

69 / 116

Haskell
Syntax

Haskell can define functions by case:

len :: [a] -> Integer

len [] = 0

len (x:xs) = 1 + len xs

We start by declaring the type of the function len

Why? Explanation in a moment

Then there are two equations that define the behaviour of len
on

(a) the empty list []
(b) a non-empty list that has car x and cdr xs

70 / 116

Haskell
Syntax

Haskell can define functions by case:

len :: [a] -> Integer

len [] = 0

len (x:xs) = 1 + len xs

We start by declaring the type of the function len

Why? Explanation in a moment

Then there are two equations that define the behaviour of len
on

(a) the empty list []
(b) a non-empty list that has car x and cdr xs

71 / 116

Haskell
Syntax

Haskell can define functions by case:

len :: [a] -> Integer

len [] = 0

len (x:xs) = 1 + len xs

We start by declaring the type of the function len

Why? Explanation in a moment

Then there are two equations that define the behaviour of len
on

(a) the empty list []
(b) a non-empty list that has car x and cdr xs

72 / 116

Haskell
Syntax

Haskell can define functions by case:

len :: [a] -> Integer

len [] = 0

len (x:xs) = 1 + len xs

We start by declaring the type of the function len

Why? Explanation in a moment

Then there are two equations that define the behaviour of len
on

(a) the empty list []
(b) a non-empty list that has car x and cdr xs

73 / 116

Haskell
Syntax

This is very similar to the standard way of writing recursive
functions, but the cases are split out and the interpreter can
pick the right case by pattern matching

The pattern “len []” only matches len called on the empty list

The pattern “len (x:xs)” matches the case when the
argument is a cons. The Haskell version of cons is an infix :

So x:xs is a list with car (head) x and cdr (tail) xs

74 / 116

Haskell
Syntax

This is very similar to the standard way of writing recursive
functions, but the cases are split out and the interpreter can
pick the right case by pattern matching

The pattern “len []” only matches len called on the empty list

The pattern “len (x:xs)” matches the case when the
argument is a cons. The Haskell version of cons is an infix :

So x:xs is a list with car (head) x and cdr (tail) xs

75 / 116

Haskell
Syntax

This is very similar to the standard way of writing recursive
functions, but the cases are split out and the interpreter can
pick the right case by pattern matching

The pattern “len []” only matches len called on the empty list

The pattern “len (x:xs)” matches the case when the
argument is a cons. The Haskell version of cons is an infix :

So x:xs is a list with car (head) x and cdr (tail) xs

76 / 116

Haskell
Syntax

This is very similar to the standard way of writing recursive
functions, but the cases are split out and the interpreter can
pick the right case by pattern matching

The pattern “len []” only matches len called on the empty list

The pattern “len (x:xs)” matches the case when the
argument is a cons. The Haskell version of cons is an infix :

So x:xs is a list with car (head) x and cdr (tail) xs

77 / 116

Haskell
Syntax

This kind of definition by cases specified by patterns is common
in non-Lispy functional languages

It can be added to Lisp, but most Lispers don’t care for this style

:t len
len :: [a] -> Integer

A function that takes an argument of type list of a and returns
an integer

Elements in a list in Haskell are all the same type, unlike Lisp
where we can mix as we please

Haskell has to do this to get type inference to work

78 / 116

Haskell
Syntax

This kind of definition by cases specified by patterns is common
in non-Lispy functional languages

It can be added to Lisp, but most Lispers don’t care for this style

:t len
len :: [a] -> Integer

A function that takes an argument of type list of a and returns
an integer

Elements in a list in Haskell are all the same type, unlike Lisp
where we can mix as we please

Haskell has to do this to get type inference to work

79 / 116

Haskell
Syntax

This kind of definition by cases specified by patterns is common
in non-Lispy functional languages

It can be added to Lisp, but most Lispers don’t care for this style

:t len
len :: [a] -> Integer

A function that takes an argument of type list of a and returns
an integer

Elements in a list in Haskell are all the same type, unlike Lisp
where we can mix as we please

Haskell has to do this to get type inference to work

80 / 116

Haskell
Syntax

This kind of definition by cases specified by patterns is common
in non-Lispy functional languages

It can be added to Lisp, but most Lispers don’t care for this style

:t len
len :: [a] -> Integer

A function that takes an argument of type list of a and returns
an integer

Elements in a list in Haskell are all the same type, unlike Lisp
where we can mix as we please

Haskell has to do this to get type inference to work

81 / 116

Haskell
Syntax

This kind of definition by cases specified by patterns is common
in non-Lispy functional languages

It can be added to Lisp, but most Lispers don’t care for this style

:t len
len :: [a] -> Integer

A function that takes an argument of type list of a and returns
an integer

Elements in a list in Haskell are all the same type, unlike Lisp
where we can mix as we please

Haskell has to do this to get type inference to work

82 / 116

Haskell
Syntax

This kind of definition by cases specified by patterns is common
in non-Lispy functional languages

It can be added to Lisp, but most Lispers don’t care for this style

:t len
len :: [a] -> Integer

A function that takes an argument of type list of a and returns
an integer

Elements in a list in Haskell are all the same type, unlike Lisp
where we can mix as we please

Haskell has to do this to get type inference to work

83 / 116

Haskell
Syntax

Why did we start with the declaration of the type of len?

Mostly to show we can do it if we wish

Without the declaration Haskell infers the type of len to be
Num a => [b] -> a

(Haskell uses type variables α, then β, etc.)

This is less precise: it can only conclude that the length will be
some numerical type

We know that the length will be actually an integer, so we can
help Haskell by declaring the type ourselves

84 / 116

Haskell
Syntax

Why did we start with the declaration of the type of len?

Mostly to show we can do it if we wish

Without the declaration Haskell infers the type of len to be
Num a => [b] -> a

(Haskell uses type variables α, then β, etc.)

This is less precise: it can only conclude that the length will be
some numerical type

We know that the length will be actually an integer, so we can
help Haskell by declaring the type ourselves

85 / 116

Haskell
Syntax

Why did we start with the declaration of the type of len?

Mostly to show we can do it if we wish

Without the declaration Haskell infers the type of len to be
Num a => [b] -> a

(Haskell uses type variables α, then β, etc.)

This is less precise: it can only conclude that the length will be
some numerical type

We know that the length will be actually an integer, so we can
help Haskell by declaring the type ourselves

86 / 116

Haskell
Syntax

Why did we start with the declaration of the type of len?

Mostly to show we can do it if we wish

Without the declaration Haskell infers the type of len to be
Num a => [b] -> a

(Haskell uses type variables α, then β, etc.)

This is less precise: it can only conclude that the length will be
some numerical type

We know that the length will be actually an integer, so we can
help Haskell by declaring the type ourselves

87 / 116

Haskell
Syntax

Why did we start with the declaration of the type of len?

Mostly to show we can do it if we wish

Without the declaration Haskell infers the type of len to be
Num a => [b] -> a

(Haskell uses type variables α, then β, etc.)

This is less precise: it can only conclude that the length will be
some numerical type

We know that the length will be actually an integer, so we can
help Haskell by declaring the type ourselves

88 / 116

Haskell
Syntax

So we can give help if we want, or want to restrict how a
function is used

It also allows Haskell to typecheck our code, making sure the
types of the functions we define match the types we have
declared

If we declare
len :: [a] -> Integer
len [] = 0.0
then Haskell produces an error

89 / 116

Haskell
Syntax

So we can give help if we want, or want to restrict how a
function is used

It also allows Haskell to typecheck our code, making sure the
types of the functions we define match the types we have
declared

If we declare
len :: [a] -> Integer
len [] = 0.0
then Haskell produces an error

90 / 116

Haskell
Syntax

So we can give help if we want, or want to restrict how a
function is used

It also allows Haskell to typecheck our code, making sure the
types of the functions we define match the types we have
declared

If we declare
len :: [a] -> Integer
len [] = 0.0
then Haskell produces an error

91 / 116

Haskell
Syntax

Exercise. What are the types of

• head [1,2]

• head [1.0, 2.0]

• tail [1, 2]

• tail [1.0, 2.0]

• tail [1]

• tail [1.0]

• []

92 / 116

Haskell
Syntax

Types are central to Haskell

Through type inference Haskell can figure out precisely what a
function is supposed to be doing

It can sometimes produce compiled code equal or better than C

More information leads to better compilation

By restricting what code we can write, we supposedly write
better code (this was the idea behind Java, too)

Lisp is freewheeling on types: they are there but they don’t try
to stop you doing what you want

93 / 116

Haskell
Syntax

Types are central to Haskell

Through type inference Haskell can figure out precisely what a
function is supposed to be doing

It can sometimes produce compiled code equal or better than C

More information leads to better compilation

By restricting what code we can write, we supposedly write
better code (this was the idea behind Java, too)

Lisp is freewheeling on types: they are there but they don’t try
to stop you doing what you want

94 / 116

Haskell
Syntax

Types are central to Haskell

Through type inference Haskell can figure out precisely what a
function is supposed to be doing

It can sometimes produce compiled code equal or better than C

More information leads to better compilation

By restricting what code we can write, we supposedly write
better code (this was the idea behind Java, too)

Lisp is freewheeling on types: they are there but they don’t try
to stop you doing what you want

95 / 116

Haskell
Syntax

Types are central to Haskell

Through type inference Haskell can figure out precisely what a
function is supposed to be doing

It can sometimes produce compiled code equal or better than C

More information leads to better compilation

By restricting what code we can write, we supposedly write
better code (this was the idea behind Java, too)

Lisp is freewheeling on types: they are there but they don’t try
to stop you doing what you want

96 / 116

Haskell
Syntax

Types are central to Haskell

Through type inference Haskell can figure out precisely what a
function is supposed to be doing

It can sometimes produce compiled code equal or better than C

More information leads to better compilation

By restricting what code we can write, we supposedly write
better code (this was the idea behind Java, too)

Lisp is freewheeling on types: they are there but they don’t try
to stop you doing what you want

97 / 116

Haskell
Syntax

Types are central to Haskell

Through type inference Haskell can figure out precisely what a
function is supposed to be doing

It can sometimes produce compiled code equal or better than C

More information leads to better compilation

By restricting what code we can write, we supposedly write
better code (this was the idea behind Java, too)

Lisp is freewheeling on types: they are there but they don’t try
to stop you doing what you want

98 / 116

Haskell
Syntax

The functions in Haskell are much like those of Lisp: you just
need to discover their names

For example, map

map (\n -> n*n) [1, 2, 3]

→
[1, 4, 9] :: [Integer]

99 / 116

Haskell
Syntax

The functions in Haskell are much like those of Lisp: you just
need to discover their names

For example, map

map (\n -> n*n) [1, 2, 3]

→
[1, 4, 9] :: [Integer]

100 / 116

Haskell
Syntax

Once given a value, a symbol cannot be reassigned (within a
module)

x = 1

x = 2

ERROR haskell.hs:17 - "x" multiply defined

though it can be locally rebound

> let { x = 1; y = 2 } in 2*x+y

= 4 :: Integer

The only way to change an assignment is to edit the module
and reload it. This is so Haskell can have referential
transparency

101 / 116

Haskell
Syntax

Once given a value, a symbol cannot be reassigned (within a
module)

x = 1

x = 2

ERROR haskell.hs:17 - "x" multiply defined

though it can be locally rebound

> let { x = 1; y = 2 } in 2*x+y

= 4 :: Integer

The only way to change an assignment is to edit the module
and reload it. This is so Haskell can have referential
transparency

102 / 116

Haskell
Syntax

Once given a value, a symbol cannot be reassigned (within a
module)

x = 1

x = 2

ERROR haskell.hs:17 - "x" multiply defined

though it can be locally rebound

> let { x = 1; y = 2 } in 2*x+y

= 4 :: Integer

The only way to change an assignment is to edit the module
and reload it. This is so Haskell can have referential
transparency

103 / 116

Haskell
Syntax

There’s no way to update a variable once it has a value

Haskell is described as a single assignment language

104 / 116

Haskell
Syntax

There’s no way to update a variable once it has a value

Haskell is described as a single assignment language

105 / 116

Haskell
Lazy

The other important difference between Lisp and Haskell is that
Haskell is lazy:

from n = n : from(n+1)

> :t from

= from :: Num a => a -> [a]

This defines from as a function returning an infinite list of
numbers starting from n

106 / 116

Haskell
Lazy

ints = from 0

> :t ints

= ints :: [Integer]

> head ints

= 0 :: Integer

> head(tail ints)

= 1 :: Integer

Don’t type in “ints” unless you have a lot of spare time!

107 / 116

Haskell
Lazy

ints = from 0

> :t ints

= ints :: [Integer]

> head ints

= 0 :: Integer

> head(tail ints)

= 1 :: Integer

Don’t type in “ints” unless you have a lot of spare time!

108 / 116

Haskell
Lazy

ints = from 0

> :t ints

= ints :: [Integer]

> head ints

= 0 :: Integer

> head(tail ints)

= 1 :: Integer

Don’t type in “ints” unless you have a lot of spare time!

109 / 116

Haskell
Lazy

ints = from 0

> :t ints

= ints :: [Integer]

> head ints

= 0 :: Integer

> head(tail ints)

= 1 :: Integer

Don’t type in “ints” unless you have a lot of spare time!

110 / 116

Haskell
Lazy

We can do as many tails as we wish and get the appropriate
integer as the head

ints is acting like an infinite list of integers

Try this is Lisp (and most other languages) and you never get
past the call to (from 0)

Most languages are eager and try to evaluate everything as
soon as they can

If we try to evaluate (from 0) they eagerly go into a infinite
loop of evaluating (from 1) then (from 2) and so on

In practice they soon run out of memory

111 / 116

Haskell
Lazy

We can do as many tails as we wish and get the appropriate
integer as the head

ints is acting like an infinite list of integers

Try this is Lisp (and most other languages) and you never get
past the call to (from 0)

Most languages are eager and try to evaluate everything as
soon as they can

If we try to evaluate (from 0) they eagerly go into a infinite
loop of evaluating (from 1) then (from 2) and so on

In practice they soon run out of memory

112 / 116

Haskell
Lazy

We can do as many tails as we wish and get the appropriate
integer as the head

ints is acting like an infinite list of integers

Try this is Lisp (and most other languages) and you never get
past the call to (from 0)

Most languages are eager and try to evaluate everything as
soon as they can

If we try to evaluate (from 0) they eagerly go into a infinite
loop of evaluating (from 1) then (from 2) and so on

In practice they soon run out of memory

113 / 116

Haskell
Lazy

We can do as many tails as we wish and get the appropriate
integer as the head

ints is acting like an infinite list of integers

Try this is Lisp (and most other languages) and you never get
past the call to (from 0)

Most languages are eager and try to evaluate everything as
soon as they can

If we try to evaluate (from 0) they eagerly go into a infinite
loop of evaluating (from 1) then (from 2) and so on

In practice they soon run out of memory

114 / 116

Haskell
Lazy

We can do as many tails as we wish and get the appropriate
integer as the head

ints is acting like an infinite list of integers

Try this is Lisp (and most other languages) and you never get
past the call to (from 0)

Most languages are eager and try to evaluate everything as
soon as they can

If we try to evaluate (from 0) they eagerly go into a infinite
loop of evaluating (from 1) then (from 2) and so on

In practice they soon run out of memory

115 / 116

Haskell
Lazy

We can do as many tails as we wish and get the appropriate
integer as the head

ints is acting like an infinite list of integers

Try this is Lisp (and most other languages) and you never get
past the call to (from 0)

Most languages are eager and try to evaluate everything as
soon as they can

If we try to evaluate (from 0) they eagerly go into a infinite
loop of evaluating (from 1) then (from 2) and so on

In practice they soon run out of memory

116 / 116

