
Haskell
Lazy

Haskell, on the other hand, is lazy

It never evaluates anything until it is needed

In the assignment ints = from 0 it does not evaluate the
from

In a sense it provides a “promise” (also called a “thunk”, the
same as the technique of delayed evaluation in Lisp using
lambdas) that it will evaluate the elements of ints if you ever
need them

If not, it doesn’t bother

1 / 97

Haskell
Lazy

Haskell, on the other hand, is lazy

It never evaluates anything until it is needed

In the assignment ints = from 0 it does not evaluate the
from

In a sense it provides a “promise” (also called a “thunk”, the
same as the technique of delayed evaluation in Lisp using
lambdas) that it will evaluate the elements of ints if you ever
need them

If not, it doesn’t bother

2 / 97

Haskell
Lazy

Haskell, on the other hand, is lazy

It never evaluates anything until it is needed

In the assignment ints = from 0 it does not evaluate the
from

In a sense it provides a “promise” (also called a “thunk”, the
same as the technique of delayed evaluation in Lisp using
lambdas) that it will evaluate the elements of ints if you ever
need them

If not, it doesn’t bother

3 / 97

Haskell
Lazy

Haskell, on the other hand, is lazy

It never evaluates anything until it is needed

In the assignment ints = from 0 it does not evaluate the
from

In a sense it provides a “promise” (also called a “thunk”, the
same as the technique of delayed evaluation in Lisp using
lambdas) that it will evaluate the elements of ints if you ever
need them

If not, it doesn’t bother

4 / 97

Haskell
Lazy

Haskell, on the other hand, is lazy

It never evaluates anything until it is needed

In the assignment ints = from 0 it does not evaluate the
from

In a sense it provides a “promise” (also called a “thunk”, the
same as the technique of delayed evaluation in Lisp using
lambdas) that it will evaluate the elements of ints if you ever
need them

If not, it doesn’t bother

5 / 97

Haskell
Lazy

If you ask head ints it will evaluate the from just enough to
get you the head, namely 0

If you ask head (tail ints) it will evaluate the from just a
little bit further to get you the head of the tail, namely 1

6 / 97

Haskell
Lazy

If you ask head ints it will evaluate the from just enough to
get you the head, namely 0

If you ask head (tail ints) it will evaluate the from just a
little bit further to get you the head of the tail, namely 1

7 / 97

Haskell
Syntax

Note that Haskell does not require () around the argument to a
function call, but be careful as “head tail ints” is interpreted
as
“(head tail) ints” and so is rejected as an error

> head tail ints

ERROR - Type error in application

*** Expression : head tail ints

*** Term : tail

*** Type : [b] -> [b]

*** Does not match : [[Integer] -> a]

tail is of type [b] -> [b] (here b is a type variable different
from the a below it), but Haskell was expecting something of
type [[Integer] -> a], a list of functions

8 / 97

Haskell
Syntax

Exercise. Explain why Haskell was expecting a list of functions
each of which takes a list of integers and returns some object of
unknown type a

So you need to have head(tail ints) in this case

9 / 97

Haskell
Syntax

Exercise. Explain why Haskell was expecting a list of functions
each of which takes a list of integers and returns some object of
unknown type a

So you need to have head(tail ints) in this case

10 / 97

Haskell
Lazy

Now try

sqs = map (\n -> n*n) ints

> head(tail(tail sqs))

= 4 :: Integer

We can manipulate this lazy structure as much as we wish:
things only get evaluated if we need them

One way of expressing the need for a value is to ask Haskell to
print it

11 / 97

Haskell
Lazy

Now try

sqs = map (\n -> n*n) ints

> head(tail(tail sqs))

= 4 :: Integer

We can manipulate this lazy structure as much as we wish:
things only get evaluated if we need them

One way of expressing the need for a value is to ask Haskell to
print it

12 / 97

Haskell
Lazy

Now try

sqs = map (\n -> n*n) ints

> head(tail(tail sqs))

= 4 :: Integer

We can manipulate this lazy structure as much as we wish:
things only get evaluated if we need them

One way of expressing the need for a value is to ask Haskell to
print it

13 / 97

Haskell
Lazy

Infinite loops:

loopy n = loopy n

> :t loopy

= loopy :: a -> b

k x y = x

> :t k

= k :: a -> b -> a

Here k is a function that ignores its second argument (for the
type of k see later)

14 / 97

Haskell
Lazy

Now

> k 1 (loopy 0)

= 1 :: Integer

But

> k (loopy 0) 1

goes into a busy loop. Hit ^ C to interrupt

15 / 97

Haskell
Lazy

Now

> k 1 (loopy 0)

= 1 :: Integer

But

> k (loopy 0) 1

goes into a busy loop. Hit ^ C to interrupt

16 / 97

Haskell
Strictness

In the first k 1 (loopy 0) Haskell doesn’t bother trying to
evaluate the infinite loop as it’s not needed for the answer

In the second k (loopy 0) 1 you’ve asked to see the value of
the first argument, so it has to try to evaluate the infinite loop

Exercise. What happens with length [loopy 0,loopy 0]?

Haskell is non-strict in its arguments of functions

Lisp, like most languages, is strict

17 / 97

Haskell
Strictness

In the first k 1 (loopy 0) Haskell doesn’t bother trying to
evaluate the infinite loop as it’s not needed for the answer

In the second k (loopy 0) 1 you’ve asked to see the value of
the first argument, so it has to try to evaluate the infinite loop

Exercise. What happens with length [loopy 0,loopy 0]?

Haskell is non-strict in its arguments of functions

Lisp, like most languages, is strict

18 / 97

Haskell
Strictness

In the first k 1 (loopy 0) Haskell doesn’t bother trying to
evaluate the infinite loop as it’s not needed for the answer

In the second k (loopy 0) 1 you’ve asked to see the value of
the first argument, so it has to try to evaluate the infinite loop

Exercise. What happens with length [loopy 0,loopy 0]?

Haskell is non-strict in its arguments of functions

Lisp, like most languages, is strict

19 / 97

Haskell
Strictness

In the first k 1 (loopy 0) Haskell doesn’t bother trying to
evaluate the infinite loop as it’s not needed for the answer

In the second k (loopy 0) 1 you’ve asked to see the value of
the first argument, so it has to try to evaluate the infinite loop

Exercise. What happens with length [loopy 0,loopy 0]?

Haskell is non-strict in its arguments of functions

Lisp, like most languages, is strict

20 / 97

Haskell
Strictness

In the first k 1 (loopy 0) Haskell doesn’t bother trying to
evaluate the infinite loop as it’s not needed for the answer

In the second k (loopy 0) 1 you’ve asked to see the value of
the first argument, so it has to try to evaluate the infinite loop

Exercise. What happens with length [loopy 0,loopy 0]?

Haskell is non-strict in its arguments of functions

Lisp, like most languages, is strict

21 / 97

Haskell
Strictness

A function is strict in an argument if it requires it to be evaluated
before the function itself can be evaluated

If not, it is non-strict

Non-strictness is naturally associated with laziness, but they
are slightly different concepts

Most languages are mostly strict

22 / 97

Haskell
Strictness

A function is strict in an argument if it requires it to be evaluated
before the function itself can be evaluated

If not, it is non-strict

Non-strictness is naturally associated with laziness, but they
are slightly different concepts

Most languages are mostly strict

23 / 97

Haskell
Strictness

A function is strict in an argument if it requires it to be evaluated
before the function itself can be evaluated

If not, it is non-strict

Non-strictness is naturally associated with laziness, but they
are slightly different concepts

Most languages are mostly strict

24 / 97

Haskell
Strictness

A function is strict in an argument if it requires it to be evaluated
before the function itself can be evaluated

If not, it is non-strict

Non-strictness is naturally associated with laziness, but they
are slightly different concepts

Most languages are mostly strict

25 / 97

Haskell
Strictness

But most languages have significant non-strict exceptions

or and and are typically non-strict in most languages

(or (= x 0.0) (= (/ 1.0 x) 2.0))

if (x == 0.0 || 1.0/x == 2.0) ...

Are valid Lisp and C/Java

We expect or only to evaluate as much as it needs to secure
an answer

In most languages, or is non-strict in its arguments, which is
why it is a special form in Lisp and a syntactic form in other
languages

26 / 97

Haskell
Strictness

But most languages have significant non-strict exceptions

or and and are typically non-strict in most languages

(or (= x 0.0) (= (/ 1.0 x) 2.0))

if (x == 0.0 || 1.0/x == 2.0) ...

Are valid Lisp and C/Java

We expect or only to evaluate as much as it needs to secure
an answer

In most languages, or is non-strict in its arguments, which is
why it is a special form in Lisp and a syntactic form in other
languages

27 / 97

Haskell
Strictness

But most languages have significant non-strict exceptions

or and and are typically non-strict in most languages

(or (= x 0.0) (= (/ 1.0 x) 2.0))

if (x == 0.0 || 1.0/x == 2.0) ...

Are valid Lisp and C/Java

We expect or only to evaluate as much as it needs to secure
an answer

In most languages, or is non-strict in its arguments, which is
why it is a special form in Lisp and a syntactic form in other
languages

28 / 97

Haskell
Strictness

But most languages have significant non-strict exceptions

or and and are typically non-strict in most languages

(or (= x 0.0) (= (/ 1.0 x) 2.0))

if (x == 0.0 || 1.0/x == 2.0) ...

Are valid Lisp and C/Java

We expect or only to evaluate as much as it needs to secure
an answer

In most languages, or is non-strict in its arguments, which is
why it is a special form in Lisp and a syntactic form in other
languages

29 / 97

Haskell
Strictness

But most languages have significant non-strict exceptions

or and and are typically non-strict in most languages

(or (= x 0.0) (= (/ 1.0 x) 2.0))

if (x == 0.0 || 1.0/x == 2.0) ...

Are valid Lisp and C/Java

We expect or only to evaluate as much as it needs to secure
an answer

In most languages, or is non-strict in its arguments, which is
why it is a special form in Lisp and a syntactic form in other
languages

30 / 97

Haskell
Lazy and Non-Strict

Haskell chooses to be lazy for a few reasons

• it follows certain theoretical considerations from the
Lambda Calculus (Exercise: look up normal form and
applicative and normal order evaluation) that means
Haskell can evaluate some expressions that other
languages can’t

• it is claimed to be more efficient: you don’t evaluate stuff
you don’t need. However, in practice this is often offset by
the extra mechanisms you need to support lazy evaluation:
using promises rather than simple values

• it allows whackiness like infinite lists

31 / 97

Haskell
Lazy and Non-Strict

Haskell chooses to be lazy for a few reasons

• it follows certain theoretical considerations from the
Lambda Calculus (Exercise: look up normal form and
applicative and normal order evaluation) that means
Haskell can evaluate some expressions that other
languages can’t

• it is claimed to be more efficient: you don’t evaluate stuff
you don’t need. However, in practice this is often offset by
the extra mechanisms you need to support lazy evaluation:
using promises rather than simple values

• it allows whackiness like infinite lists

32 / 97

Haskell
Lazy and Non-Strict

Haskell chooses to be lazy for a few reasons

• it follows certain theoretical considerations from the
Lambda Calculus (Exercise: look up normal form and
applicative and normal order evaluation) that means
Haskell can evaluate some expressions that other
languages can’t

• it is claimed to be more efficient: you don’t evaluate stuff
you don’t need. However, in practice this is often offset by
the extra mechanisms you need to support lazy evaluation:
using promises rather than simple values

• it allows whackiness like infinite lists

33 / 97

Haskell
Lazy and Non-Strict

Haskell chooses to be lazy for a few reasons

• it follows certain theoretical considerations from the
Lambda Calculus (Exercise: look up normal form and
applicative and normal order evaluation) that means
Haskell can evaluate some expressions that other
languages can’t

• it is claimed to be more efficient: you don’t evaluate stuff
you don’t need. However, in practice this is often offset by
the extra mechanisms you need to support lazy evaluation:
using promises rather than simple values

• it allows whackiness like infinite lists

34 / 97

Haskell
Eager and Strict

Most languages are eager and strict

• those expressions that Haskell can do but an eager
language can’t rarely turn up in real programs (but often
turn up in papers about Haskell)

• it is easy and efficient to implement and compile eager
languages as modern hardware supports them well

• most programmers don’t expect their language to be that
clever and they can barely cope with finite datastructures

But eager languages still want non-strictness when it suits them

35 / 97

Haskell
Eager and Strict

Most languages are eager and strict

• those expressions that Haskell can do but an eager
language can’t rarely turn up in real programs (but often
turn up in papers about Haskell)

• it is easy and efficient to implement and compile eager
languages as modern hardware supports them well

• most programmers don’t expect their language to be that
clever and they can barely cope with finite datastructures

But eager languages still want non-strictness when it suits them

36 / 97

Haskell
Eager and Strict

Most languages are eager and strict

• those expressions that Haskell can do but an eager
language can’t rarely turn up in real programs (but often
turn up in papers about Haskell)

• it is easy and efficient to implement and compile eager
languages as modern hardware supports them well

• most programmers don’t expect their language to be that
clever and they can barely cope with finite datastructures

But eager languages still want non-strictness when it suits them

37 / 97

Haskell
Eager and Strict

Most languages are eager and strict

• those expressions that Haskell can do but an eager
language can’t rarely turn up in real programs (but often
turn up in papers about Haskell)

• it is easy and efficient to implement and compile eager
languages as modern hardware supports them well

• most programmers don’t expect their language to be that
clever and they can barely cope with finite datastructures

But eager languages still want non-strictness when it suits them

38 / 97

Haskell
Eager and Strict

Most languages are eager and strict

• those expressions that Haskell can do but an eager
language can’t rarely turn up in real programs (but often
turn up in papers about Haskell)

• it is easy and efficient to implement and compile eager
languages as modern hardware supports them well

• most programmers don’t expect their language to be that
clever and they can barely cope with finite datastructures

But eager languages still want non-strictness when it suits them

39 / 97

Haskell

“We will encourage you to develop the three great
virtues of a programmer: Laziness, Impatience, and
Hubris.”

Larry Wall

40 / 97

Haskell
Functions

Before we move on from Haskell there is one more item of note

All functions in Haskell take exactly one argument

On the face of it this seems wrong: what about +?

What about the example earlier: k x y = x?

41 / 97

Haskell
Functions

Before we move on from Haskell there is one more item of note

All functions in Haskell take exactly one argument

On the face of it this seems wrong: what about +?

What about the example earlier: k x y = x?

42 / 97

Haskell
Functions

Before we move on from Haskell there is one more item of note

All functions in Haskell take exactly one argument

On the face of it this seems wrong: what about +?

What about the example earlier: k x y = x?

43 / 97

Haskell
Functions

Before we move on from Haskell there is one more item of note

All functions in Haskell take exactly one argument

On the face of it this seems wrong: what about +?

What about the example earlier: k x y = x?

44 / 97

Haskell
Functions

The type of k is a clue

k :: a -> b -> a

We should read this as a -> (b -> a)

45 / 97

Haskell
Functions

The type of k is a clue

k :: a -> b -> a

We should read this as a -> (b -> a)

46 / 97

Haskell
Functions

The type of k is a clue

k :: a -> b -> a

We should read this as a -> (b -> a)

47 / 97

Haskell
Functions

Slightly confusingly (at first), the association of function
application k x y is (k x) y but the association of type
signatures a -> b -> a is a -> (b -> a). You can always
put brackets in if you are uncertain

After a while you realise it has got to be like this as it’s an
artifact of the way we write functions!

48 / 97

Haskell
Functions

Slightly confusingly (at first), the association of function
application k x y is (k x) y but the association of type
signatures a -> b -> a is a -> (b -> a). You can always
put brackets in if you are uncertain

After a while you realise it has got to be like this as it’s an
artifact of the way we write functions!

49 / 97

Haskell
Functions

Thus: k :: a -> (b -> a) is a function of one argument and
it returns a function of type b -> a

50 / 97

Haskell
Functions

So k 1 is a valid thing to write and it returns a function of type
a -> Integer

Then k 1 1.0, which we read as (k 1) 1.0, applies that
function to the argument 1.0

Returning 1 in this case

k 1 returns a function that takes an argument, ignores it and
returns 1

51 / 97

Haskell
Functions

So k 1 is a valid thing to write and it returns a function of type
a -> Integer

Then k 1 1.0, which we read as (k 1) 1.0, applies that
function to the argument 1.0

Returning 1 in this case

k 1 returns a function that takes an argument, ignores it and
returns 1

52 / 97

Haskell
Functions

So k 1 is a valid thing to write and it returns a function of type
a -> Integer

Then k 1 1.0, which we read as (k 1) 1.0, applies that
function to the argument 1.0

Returning 1 in this case

k 1 returns a function that takes an argument, ignores it and
returns 1

53 / 97

Haskell
Functions

So k 1 is a valid thing to write and it returns a function of type
a -> Integer

Then k 1 1.0, which we read as (k 1) 1.0, applies that
function to the argument 1.0

Returning 1 in this case

k 1 returns a function that takes an argument, ignores it and
returns 1

54 / 97

Haskell
Functions

In Haskell, wrapping + in parentheses makes it a non-infix
function

(+) :: Num a => a -> a -> a

(+) 2 :: Num a => a -> a

(2 +) :: Num a => a -> a

(+ 2) :: Num a => a -> a

Exercise. Why is (+) 2 :: Num a => a -> a and not
Integer -> Integer?

Exercise. Find out what Haskell actually says for the last

55 / 97

Haskell
Functions

In Haskell, wrapping + in parentheses makes it a non-infix
function

(+) :: Num a => a -> a -> a

(+) 2 :: Num a => a -> a

(2 +) :: Num a => a -> a

(+ 2) :: Num a => a -> a

Exercise. Why is (+) 2 :: Num a => a -> a and not
Integer -> Integer?

Exercise. Find out what Haskell actually says for the last

56 / 97

Haskell
Functions

In Haskell, wrapping + in parentheses makes it a non-infix
function

(+) :: Num a => a -> a -> a

(+) 2 :: Num a => a -> a

(2 +) :: Num a => a -> a

(+ 2) :: Num a => a -> a

Exercise. Why is (+) 2 :: Num a => a -> a and not
Integer -> Integer?

Exercise. Find out what Haskell actually says for the last

57 / 97

Haskell
Functions

In Haskell, wrapping + in parentheses makes it a non-infix
function

(+) :: Num a => a -> a -> a

(+) 2 :: Num a => a -> a

(2 +) :: Num a => a -> a

(+ 2) :: Num a => a -> a

Exercise. Why is (+) 2 :: Num a => a -> a and not
Integer -> Integer?

Exercise. Find out what Haskell actually says for the last

58 / 97

Haskell
Functions

In Haskell, wrapping + in parentheses makes it a non-infix
function

(+) :: Num a => a -> a -> a

(+) 2 :: Num a => a -> a

(2 +) :: Num a => a -> a

(+ 2) :: Num a => a -> a

Exercise. Why is (+) 2 :: Num a => a -> a and not
Integer -> Integer?

Exercise. Find out what Haskell actually says for the last

59 / 97

Haskell
Functions

In Haskell, wrapping + in parentheses makes it a non-infix
function

(+) :: Num a => a -> a -> a

(+) 2 :: Num a => a -> a

(2 +) :: Num a => a -> a

(+ 2) :: Num a => a -> a

Exercise. Why is (+) 2 :: Num a => a -> a and not
Integer -> Integer?

Exercise. Find out what Haskell actually says for the last

60 / 97

Haskell
Functions

In Haskell, wrapping + in parentheses makes it a non-infix
function

(+) :: Num a => a -> a -> a

(+) 2 :: Num a => a -> a

(2 +) :: Num a => a -> a

(+ 2) :: Num a => a -> a

Exercise. Why is (+) 2 :: Num a => a -> a and not
Integer -> Integer?

Exercise. Find out what Haskell actually says for the last

61 / 97

Haskell
Functions

Confusingly, you might see Haskell code like f(1,2)

f is not a function of two arguments

It is a function of one argument of type (Integer, Integer)

Here (Integer, Integer) is a product type, often written
Integer × Integer

Much like a structure in C that contains two integers

62 / 97

Haskell
Functions

Confusingly, you might see Haskell code like f(1,2)

f is not a function of two arguments

It is a function of one argument of type (Integer, Integer)

Here (Integer, Integer) is a product type, often written
Integer × Integer

Much like a structure in C that contains two integers

63 / 97

Haskell
Functions

Confusingly, you might see Haskell code like f(1,2)

f is not a function of two arguments

It is a function of one argument of type (Integer, Integer)

Here (Integer, Integer) is a product type, often written
Integer × Integer

Much like a structure in C that contains two integers

64 / 97

Haskell
Functions

Confusingly, you might see Haskell code like f(1,2)

f is not a function of two arguments

It is a function of one argument of type (Integer, Integer)

Here (Integer, Integer) is a product type, often written
Integer × Integer

Much like a structure in C that contains two integers

65 / 97

Haskell
Functions

Confusingly, you might see Haskell code like f(1,2)

f is not a function of two arguments

It is a function of one argument of type (Integer, Integer)

Here (Integer, Integer) is a product type, often written
Integer × Integer

Much like a structure in C that contains two integers

66 / 97

Haskell
Functions

The syntax “(,)” is a constructor function that makes an object
of the appropriate product type from the two elements

(1,2) :: (Integer,Integer)
((1, 2.0), "hello") :: ((Integer,Double),[Char])

fst and snd extract the elements

fst :: (a,b) -> a
snd :: (a,b) -> b

N.B. (,) is about constructing elements of new types and has
nothing to do with arrays []

67 / 97

Haskell
Functions

The syntax “(,)” is a constructor function that makes an object
of the appropriate product type from the two elements

(1,2) :: (Integer,Integer)
((1, 2.0), "hello") :: ((Integer,Double),[Char])

fst and snd extract the elements

fst :: (a,b) -> a
snd :: (a,b) -> b

N.B. (,) is about constructing elements of new types and has
nothing to do with arrays []

68 / 97

Haskell
Functions

The syntax “(,)” is a constructor function that makes an object
of the appropriate product type from the two elements

(1,2) :: (Integer,Integer)
((1, 2.0), "hello") :: ((Integer,Double),[Char])

fst and snd extract the elements

fst :: (a,b) -> a
snd :: (a,b) -> b

N.B. (,) is about constructing elements of new types and has
nothing to do with arrays []

69 / 97

Haskell
Functions

The syntax “(,)” is a constructor function that makes an object
of the appropriate product type from the two elements

(1,2) :: (Integer,Integer)
((1, 2.0), "hello") :: ((Integer,Double),[Char])

fst and snd extract the elements

fst :: (a,b) -> a
snd :: (a,b) -> b

N.B. (,) is about constructing elements of new types and has
nothing to do with arrays []

70 / 97

Haskell
Functions

The syntax “(,)” is a constructor function that makes an object
of the appropriate product type from the two elements

(1,2) :: (Integer,Integer)
((1, 2.0), "hello") :: ((Integer,Double),[Char])

fst and snd extract the elements

fst :: (a,b) -> a
snd :: (a,b) -> b

N.B. (,) is about constructing elements of new types and has
nothing to do with arrays []

71 / 97

Haskell
Functions

Product types are extremely common in computer languages,
often called structure types

struct pairint {

int fst;

int snd;

};

struct pairint foo;

foo.fst = 1;

foo.snd = 2;

72 / 97

Haskell
Functions

Or classes

class pairint {

int fst;

int snd;

};

pairint foo = new pairint(1,2);

Whatever the construction, they take two types and produce a
new single type that is a composite of the two types: a product
type in Haskell terms

73 / 97

Haskell
Functions

Or classes

class pairint {

int fst;

int snd;

};

pairint foo = new pairint(1,2);

Whatever the construction, they take two types and produce a
new single type that is a composite of the two types: a product
type in Haskell terms

74 / 97

Haskell
Functions

Sometimes it helps to think of a -> b -> a as the type of a
function that takes something of type a, then something of type
b and then returns something of type a

While (a,b) -> a is the type of a function that takes a single
object of type (a,b) and then returns something of type a

Very different functions

Correct use of parentheses is essential here

k2(x,y) = x has type (a,b) -> a

75 / 97

Haskell
Functions

Sometimes it helps to think of a -> b -> a as the type of a
function that takes something of type a, then something of type
b and then returns something of type a

While (a,b) -> a is the type of a function that takes a single
object of type (a,b) and then returns something of type a

Very different functions

Correct use of parentheses is essential here

k2(x,y) = x has type (a,b) -> a

76 / 97

Haskell
Functions

Sometimes it helps to think of a -> b -> a as the type of a
function that takes something of type a, then something of type
b and then returns something of type a

While (a,b) -> a is the type of a function that takes a single
object of type (a,b) and then returns something of type a

Very different functions

Correct use of parentheses is essential here

k2(x,y) = x has type (a,b) -> a

77 / 97

Haskell
Functions

Sometimes it helps to think of a -> b -> a as the type of a
function that takes something of type a, then something of type
b and then returns something of type a

While (a,b) -> a is the type of a function that takes a single
object of type (a,b) and then returns something of type a

Very different functions

Correct use of parentheses is essential here

k2(x,y) = x has type (a,b) -> a

78 / 97

Haskell
Functions

Sometimes it helps to think of a -> b -> a as the type of a
function that takes something of type a, then something of type
b and then returns something of type a

While (a,b) -> a is the type of a function that takes a single
object of type (a,b) and then returns something of type a

Very different functions

Correct use of parentheses is essential here

k2(x,y) = x has type (a,b) -> a

79 / 97

Haskell
Functions

Why one argument?

• again theoretical considerations from the Lambda Calculus
• it allows more factoring of code: e.g., inc = (+) 1

• it makes analysis of code easier

Most importantly, there is a process called currying (after its
inventor, Curry) that converts functions of multiple arguments
into a nest of functions of a single argument

So a function of type (a,b) -> c can be converted into an
equivalent function of type a -> b -> c

80 / 97

Haskell
Functions

Why one argument?

• again theoretical considerations from the Lambda Calculus

• it allows more factoring of code: e.g., inc = (+) 1

• it makes analysis of code easier

Most importantly, there is a process called currying (after its
inventor, Curry) that converts functions of multiple arguments
into a nest of functions of a single argument

So a function of type (a,b) -> c can be converted into an
equivalent function of type a -> b -> c

81 / 97

Haskell
Functions

Why one argument?

• again theoretical considerations from the Lambda Calculus
• it allows more factoring of code: e.g., inc = (+) 1

• it makes analysis of code easier

Most importantly, there is a process called currying (after its
inventor, Curry) that converts functions of multiple arguments
into a nest of functions of a single argument

So a function of type (a,b) -> c can be converted into an
equivalent function of type a -> b -> c

82 / 97

Haskell
Functions

Why one argument?

• again theoretical considerations from the Lambda Calculus
• it allows more factoring of code: e.g., inc = (+) 1

• it makes analysis of code easier

Most importantly, there is a process called currying (after its
inventor, Curry) that converts functions of multiple arguments
into a nest of functions of a single argument

So a function of type (a,b) -> c can be converted into an
equivalent function of type a -> b -> c

83 / 97

Haskell
Functions

Why one argument?

• again theoretical considerations from the Lambda Calculus
• it allows more factoring of code: e.g., inc = (+) 1

• it makes analysis of code easier

Most importantly, there is a process called currying (after its
inventor, Curry) that converts functions of multiple arguments
into a nest of functions of a single argument

So a function of type (a,b) -> c can be converted into an
equivalent function of type a -> b -> c

84 / 97

Haskell
Functions

Why one argument?

• again theoretical considerations from the Lambda Calculus
• it allows more factoring of code: e.g., inc = (+) 1

• it makes analysis of code easier

Most importantly, there is a process called currying (after its
inventor, Curry) that converts functions of multiple arguments
into a nest of functions of a single argument

So a function of type (a,b) -> c can be converted into an
equivalent function of type a -> b -> c

85 / 97

Haskell
Functions

And uncurrying for the other direction

A function of type a -> b -> c can be converted into an
equivalent function of type (a,b) -> c

There is no loss of expressiveness: everything you can do with
multiple argument functions you can do with single argument
functions; and vice versa

Exercise. Write functions kurry and unkurry in Haskell that
do the above (curry and uncurry are actually already
defined). Hint: what are the types of kurry and unkurry?

86 / 97

Haskell
Functions

And uncurrying for the other direction

A function of type a -> b -> c can be converted into an
equivalent function of type (a,b) -> c

There is no loss of expressiveness: everything you can do with
multiple argument functions you can do with single argument
functions; and vice versa

Exercise. Write functions kurry and unkurry in Haskell that
do the above (curry and uncurry are actually already
defined). Hint: what are the types of kurry and unkurry?

87 / 97

Haskell
Functions

And uncurrying for the other direction

A function of type a -> b -> c can be converted into an
equivalent function of type (a,b) -> c

There is no loss of expressiveness: everything you can do with
multiple argument functions you can do with single argument
functions; and vice versa

Exercise. Write functions kurry and unkurry in Haskell that
do the above (curry and uncurry are actually already
defined). Hint: what are the types of kurry and unkurry?

88 / 97

Haskell
Functions

And uncurrying for the other direction

A function of type a -> b -> c can be converted into an
equivalent function of type (a,b) -> c

There is no loss of expressiveness: everything you can do with
multiple argument functions you can do with single argument
functions; and vice versa

Exercise. Write functions kurry and unkurry in Haskell that
do the above (curry and uncurry are actually already
defined). Hint: what are the types of kurry and unkurry?

89 / 97

Haskell

There is a huge amount of Haskell we have omitted to describe:
modules for structuring programs, monads (special structures
that facilitate programming kinds of things that are traditionally
difficult in pure functional languages, like state and I/O),
abstract datatypes, object orientation and classes of types, and
more

90 / 97

Haskell

It is claimed that some compilers for Haskell produce code that
is equal in speed to that from a C program even though you
have the power of functional programming. It doesn’t seem to
be about to replace traditional languages, though

Another functional language with similar principles is Erlang,
and this is used is real life situations

91 / 97

Haskell

It is claimed that some compilers for Haskell produce code that
is equal in speed to that from a C program even though you
have the power of functional programming. It doesn’t seem to
be about to replace traditional languages, though

Another functional language with similar principles is Erlang,
and this is used is real life situations

92 / 97

Haskell

Exercise. What is the type of +? And /?

Exercise. What is the type of map?

Exercise. What is the type of s where
s x y z = x z(y z)?

Exercise. Array [] and pairing (,) are essentially type
constructors in Haskell, i.e., functions on types returning types.
What is the type of ((,))? Investigate other type constructors

93 / 97

Haskell

Exercise. Some languages have a sum type constructor as well
as a product type constructor. For example, union in C.
Investigate, and find out why they are called sums and products

Exercise. Is there anything like C’s union types in Haskell?

94 / 97

Haskell

A product type α× β is a type that contains an α and a β. A
sum type α+ β is a type that contains an α or a β

There is a strong connection between types and logic

95 / 97

Haskell

A product type α× β is a type that contains an α and a β. A
sum type α+ β is a type that contains an α or a β

There is a strong connection between types and logic

96 / 97

Haskell

Exercise. Look up Curry-Howard Correspondence. It explains
how the types of functions are related to theorems in logic

Exercise. From this correspondence, explain while we can have
a function of type α→ (β → α) there cannot exist a function of
type (α→ β)→ α

Exercise. Learn about the functional language Erlang

Exercise. Think about how the functional style can help with
parallel programming: see Google’s MapReduce

97 / 97

