
1 / 85



From
http://exploringdata.github.io/vis/

programming-languages-influence-network/

2 / 85

http://exploringdata.github.io/vis/programming-languages-influence-network/
http://exploringdata.github.io/vis/programming-languages-influence-network/


Introduction

In this part of the course we have:

• more on language families
• a detailed look at one family

3 / 85



More Language Families

We continue looking at general classes of languages, with less
emphasis on specific examples of each

You are expected to go and fill in the details yourself

In each class there are usually dozens of members: writing new
languages is easy these days

Designing good and useful languages is much harder

And usually unnecessary

4 / 85



More Language Families

We continue looking at general classes of languages, with less
emphasis on specific examples of each

You are expected to go and fill in the details yourself

In each class there are usually dozens of members: writing new
languages is easy these days

Designing good and useful languages is much harder

And usually unnecessary

5 / 85



More Language Families

We continue looking at general classes of languages, with less
emphasis on specific examples of each

You are expected to go and fill in the details yourself

In each class there are usually dozens of members: writing new
languages is easy these days

Designing good and useful languages is much harder

And usually unnecessary

6 / 85



More Language Families

We continue looking at general classes of languages, with less
emphasis on specific examples of each

You are expected to go and fill in the details yourself

In each class there are usually dozens of members: writing new
languages is easy these days

Designing good and useful languages is much harder

And usually unnecessary

7 / 85



More Language Families

We continue looking at general classes of languages, with less
emphasis on specific examples of each

You are expected to go and fill in the details yourself

In each class there are usually dozens of members: writing new
languages is easy these days

Designing good and useful languages is much harder

And usually unnecessary

8 / 85



Language Families

You have seen

• C: procedural
• Lisp: functional
• Python: scripting
• Java: procedural and object oriented
• etc.

Next semester you will see logic and declarative languages
(Prolog, ASP)

9 / 85



Language Families

You have seen

• C: procedural
• Lisp: functional
• Python: scripting
• Java: procedural and object oriented
• etc.

Next semester you will see logic and declarative languages
(Prolog, ASP)

10 / 85



Language Families
Feet

• C: you shoot yourself in the foot

• Lisp: You shoot yourself in the appendage which holds the
gun with which you shoot yourself in the appendage which
holds the gun with which you shoot yourself in the
appendage which holds. . .

• Prolog: You tell your program you want to be shot in the
foot. The program figures out how to do it, but the syntax
doesn’t allow it to explain

• Python: You try to shoot yourself in the foot but you just
keep hitting the whitespace between your toes

11 / 85



Language Families
Feet

• C: you shoot yourself in the foot
• Lisp: You shoot yourself in the appendage which holds the

gun with which you shoot yourself in the appendage which
holds the gun with which you shoot yourself in the
appendage which holds. . .

• Prolog: You tell your program you want to be shot in the
foot. The program figures out how to do it, but the syntax
doesn’t allow it to explain

• Python: You try to shoot yourself in the foot but you just
keep hitting the whitespace between your toes

12 / 85



Language Families
Feet

• C: you shoot yourself in the foot
• Lisp: You shoot yourself in the appendage which holds the

gun with which you shoot yourself in the appendage which
holds the gun with which you shoot yourself in the
appendage which holds. . .

• Prolog: You tell your program you want to be shot in the
foot. The program figures out how to do it, but the syntax
doesn’t allow it to explain

• Python: You try to shoot yourself in the foot but you just
keep hitting the whitespace between your toes

13 / 85



Language Families
Feet

• C: you shoot yourself in the foot
• Lisp: You shoot yourself in the appendage which holds the

gun with which you shoot yourself in the appendage which
holds the gun with which you shoot yourself in the
appendage which holds. . .

• Prolog: You tell your program you want to be shot in the
foot. The program figures out how to do it, but the syntax
doesn’t allow it to explain

• Python: You try to shoot yourself in the foot but you just
keep hitting the whitespace between your toes

14 / 85



Language Families
Feet

• Java: You locate the Gun class, but discover that the Bullet
class is abstract, so you extend it and write the missing
part of the implementation. Then you implement the
ShootAble interface for your foot, and recompile the Foot
class. The interface lets the bullet call the doDamage
method on the Foot, so the Foot can damage itself in the
most effective way. Now you run the program, and call the
doShoot method on the instance of the Gun class. First the
Gun creates an instance of Bullet, which calls the doFire
method on the Gun. The Gun calls the hit(Bullet) method
on the Foot, and the instance of Bullet is passed to the
Foot. But this causes an IllegalHitByBullet exception to be
thrown, and you die

15 / 85



Language Families
Feet

• Cobol: USEing a COLT 45 HANDGUN, AIM gun at
LEG.FOOT, THEN place ARM.HAND.FINGER on
HANDGUN.TRIGGER and SQUEEZE. THEN return
HANDGUN to HOLSTER. CHECK whether shoelace
needs to be retied

• Fortran: You shoot yourself in each toe, iteratively, until you
run out of toes, then you read in the next foot and repeat. If
you run out of bullets, you continue anyway because you
have no exception-handling facility

• APL: You hear a gunshot and there’s a hole in your foot,
but you don’t remember enough linear algebra to
understand what happened.

• Snobol: If you succeed, shoot yourself in the left foot. If
you fail, shoot yourself in the right foot

16 / 85



Language Families
Feet

• Cobol: USEing a COLT 45 HANDGUN, AIM gun at
LEG.FOOT, THEN place ARM.HAND.FINGER on
HANDGUN.TRIGGER and SQUEEZE. THEN return
HANDGUN to HOLSTER. CHECK whether shoelace
needs to be retied

• Fortran: You shoot yourself in each toe, iteratively, until you
run out of toes, then you read in the next foot and repeat. If
you run out of bullets, you continue anyway because you
have no exception-handling facility

• APL: You hear a gunshot and there’s a hole in your foot,
but you don’t remember enough linear algebra to
understand what happened.

• Snobol: If you succeed, shoot yourself in the left foot. If
you fail, shoot yourself in the right foot

17 / 85



Language Families
Feet

• Cobol: USEing a COLT 45 HANDGUN, AIM gun at
LEG.FOOT, THEN place ARM.HAND.FINGER on
HANDGUN.TRIGGER and SQUEEZE. THEN return
HANDGUN to HOLSTER. CHECK whether shoelace
needs to be retied

• Fortran: You shoot yourself in each toe, iteratively, until you
run out of toes, then you read in the next foot and repeat. If
you run out of bullets, you continue anyway because you
have no exception-handling facility

• APL: You hear a gunshot and there’s a hole in your foot,
but you don’t remember enough linear algebra to
understand what happened.

• Snobol: If you succeed, shoot yourself in the left foot. If
you fail, shoot yourself in the right foot

18 / 85



Language Families
Feet

• Cobol: USEing a COLT 45 HANDGUN, AIM gun at
LEG.FOOT, THEN place ARM.HAND.FINGER on
HANDGUN.TRIGGER and SQUEEZE. THEN return
HANDGUN to HOLSTER. CHECK whether shoelace
needs to be retied

• Fortran: You shoot yourself in each toe, iteratively, until you
run out of toes, then you read in the next foot and repeat. If
you run out of bullets, you continue anyway because you
have no exception-handling facility

• APL: You hear a gunshot and there’s a hole in your foot,
but you don’t remember enough linear algebra to
understand what happened.

• Snobol: If you succeed, shoot yourself in the left foot. If
you fail, shoot yourself in the right foot

19 / 85



Language Families
Feet

Continuing exercise: go and read further around these (and
other) languages to discover why they have these descriptions

Exercise for advanced students: make up jokes for the missing
ones and funnier versions for existing ones

20 / 85



Language Families
Feet

Continuing exercise: go and read further around these (and
other) languages to discover why they have these descriptions

Exercise for advanced students: make up jokes for the missing
ones and funnier versions for existing ones

21 / 85



Language Families

There are hundreds of languages out there

How do we choose which to use?

Sometimes we are told by the boss, or have to fit with an
existing project

Sometimes we only have a restricted choice

22 / 85



Language Families

There are hundreds of languages out there

How do we choose which to use?

Sometimes we are told by the boss, or have to fit with an
existing project

Sometimes we only have a restricted choice

23 / 85



Language Families

There are hundreds of languages out there

How do we choose which to use?

Sometimes we are told by the boss, or have to fit with an
existing project

Sometimes we only have a restricted choice

24 / 85



Language Families

There are hundreds of languages out there

How do we choose which to use?

Sometimes we are told by the boss, or have to fit with an
existing project

Sometimes we only have a restricted choice

25 / 85



Language Families

If we have any choice we need to have some criteria to guide
the choice

We need to able to

• identify and assess characteristics of a given language
• recognise similarities between languages
• recognise if a feature is unique to a language
• take concepts from one language to another (learn one,

learn ’em all)

26 / 85



Language Families

If we have any choice we need to have some criteria to guide
the choice

We need to able to

• identify and assess characteristics of a given language

• recognise similarities between languages
• recognise if a feature is unique to a language
• take concepts from one language to another (learn one,

learn ’em all)

27 / 85



Language Families

If we have any choice we need to have some criteria to guide
the choice

We need to able to

• identify and assess characteristics of a given language
• recognise similarities between languages

• recognise if a feature is unique to a language
• take concepts from one language to another (learn one,

learn ’em all)

28 / 85



Language Families

If we have any choice we need to have some criteria to guide
the choice

We need to able to

• identify and assess characteristics of a given language
• recognise similarities between languages
• recognise if a feature is unique to a language

• take concepts from one language to another (learn one,
learn ’em all)

29 / 85



Language Families

If we have any choice we need to have some criteria to guide
the choice

We need to able to

• identify and assess characteristics of a given language
• recognise similarities between languages
• recognise if a feature is unique to a language
• take concepts from one language to another (learn one,

learn ’em all)

30 / 85



Language Families

“If you can’t say it you can’t think it” (Orwell/Wittgenstein)

Having more concepts allows more flexibility: if there is no array
construct in the language, you are restricted in what you can do
easily

“Those who cannot remember the past are condemned to
repeat it” (George Santayana)

Avoid re-implementation and old mistakes: wise people learn
from the mistakes of others

31 / 85



Language Families

“If you can’t say it you can’t think it” (Orwell/Wittgenstein)

Having more concepts allows more flexibility: if there is no array
construct in the language, you are restricted in what you can do
easily

“Those who cannot remember the past are condemned to
repeat it” (George Santayana)

Avoid re-implementation and old mistakes: wise people learn
from the mistakes of others

32 / 85



Language Families

“If you can’t say it you can’t think it” (Orwell/Wittgenstein)

Having more concepts allows more flexibility: if there is no array
construct in the language, you are restricted in what you can do
easily

“Those who cannot remember the past are condemned to
repeat it” (George Santayana)

Avoid re-implementation and old mistakes: wise people learn
from the mistakes of others

33 / 85



Language Families

“If you can’t say it you can’t think it” (Orwell/Wittgenstein)

Having more concepts allows more flexibility: if there is no array
construct in the language, you are restricted in what you can do
easily

“Those who cannot remember the past are condemned to
repeat it” (George Santayana)

Avoid re-implementation and old mistakes: wise people learn
from the mistakes of others

34 / 85



Language Families

So to do this we classify language into families

Members of a family have some things in common

This is possible because language designers rarely have new
ideas, they just borrow from other languages

Families are not exclusive, a language can sit comfortably in
more than one family

35 / 85



Language Families

So to do this we classify language into families

Members of a family have some things in common

This is possible because language designers rarely have new
ideas, they just borrow from other languages

Families are not exclusive, a language can sit comfortably in
more than one family

36 / 85



Language Families

So to do this we classify language into families

Members of a family have some things in common

This is possible because language designers rarely have new
ideas, they just borrow from other languages

Families are not exclusive, a language can sit comfortably in
more than one family

37 / 85



Language Families

So to do this we classify language into families

Members of a family have some things in common

This is possible because language designers rarely have new
ideas, they just borrow from other languages

Families are not exclusive, a language can sit comfortably in
more than one family

38 / 85



Language Families

We shall be going through some popular families and for each
we will look at:

Purpose: what these languages are generally used for

Of course, you can do pretty much anything computable in any
language, but certain languages make certain things easier

Or harder, if you are trying to avoid errors

39 / 85



Language Families

We shall be going through some popular families and for each
we will look at:

Purpose: what these languages are generally used for

Of course, you can do pretty much anything computable in any
language, but certain languages make certain things easier

Or harder, if you are trying to avoid errors

40 / 85



Language Families

We shall be going through some popular families and for each
we will look at:

Purpose: what these languages are generally used for

Of course, you can do pretty much anything computable in any
language, but certain languages make certain things easier

Or harder, if you are trying to avoid errors

41 / 85



Language Families

We shall be going through some popular families and for each
we will look at:

Purpose: what these languages are generally used for

Of course, you can do pretty much anything computable in any
language, but certain languages make certain things easier

Or harder, if you are trying to avoid errors

42 / 85



Language Families

Examples: some languages that are generally regarded as
being in this family

Again, many languages can live in more than one family

Some people would be upset if we called Java procedural (it is),
but its main distinguishing feature is being object oriented

43 / 85



Language Families

Examples: some languages that are generally regarded as
being in this family

Again, many languages can live in more than one family

Some people would be upset if we called Java procedural (it is),
but its main distinguishing feature is being object oriented

44 / 85



Language Families

Examples: some languages that are generally regarded as
being in this family

Again, many languages can live in more than one family

Some people would be upset if we called Java procedural (it is),
but its main distinguishing feature is being object oriented

45 / 85



Languages Families

Notable features: general comments

Many languages were designed for a purpose; some were not
really designed

What designers think as important has changed over the years,
as knowledge of CS has increased and computers have
developed

Older languages tend to have different domains of competence
than newer languages

Often the aim of a language is control of complexity : how can I
write a bigger program that is still correct?

46 / 85



Languages Families

Notable features: general comments

Many languages were designed for a purpose; some were not
really designed

What designers think as important has changed over the years,
as knowledge of CS has increased and computers have
developed

Older languages tend to have different domains of competence
than newer languages

Often the aim of a language is control of complexity : how can I
write a bigger program that is still correct?

47 / 85



Languages Families

Notable features: general comments

Many languages were designed for a purpose; some were not
really designed

What designers think as important has changed over the years,
as knowledge of CS has increased and computers have
developed

Older languages tend to have different domains of competence
than newer languages

Often the aim of a language is control of complexity : how can I
write a bigger program that is still correct?

48 / 85



Languages Families

Notable features: general comments

Many languages were designed for a purpose; some were not
really designed

What designers think as important has changed over the years,
as knowledge of CS has increased and computers have
developed

Older languages tend to have different domains of competence
than newer languages

Often the aim of a language is control of complexity : how can I
write a bigger program that is still correct?

49 / 85



Languages Families

Notable features: general comments

Many languages were designed for a purpose; some were not
really designed

What designers think as important has changed over the years,
as knowledge of CS has increased and computers have
developed

Older languages tend to have different domains of competence
than newer languages

Often the aim of a language is control of complexity : how can I
write a bigger program that is still correct?

50 / 85



Language Families

Sometimes the aim is to solve a particular problem or class of
problems

For example: symbolic algebra; logic; business; string
manipulation; drawing pictures; manipulating Web pages

The number of general purpose languages is relatively small

We start by looking at the earlier, unstructured, languages

51 / 85



Language Families

Sometimes the aim is to solve a particular problem or class of
problems

For example: symbolic algebra; logic; business; string
manipulation; drawing pictures; manipulating Web pages

The number of general purpose languages is relatively small

We start by looking at the earlier, unstructured, languages

52 / 85



Language Families

Sometimes the aim is to solve a particular problem or class of
problems

For example: symbolic algebra; logic; business; string
manipulation; drawing pictures; manipulating Web pages

The number of general purpose languages is relatively small

We start by looking at the earlier, unstructured, languages

53 / 85



Language Families

Sometimes the aim is to solve a particular problem or class of
problems

For example: symbolic algebra; logic; business; string
manipulation; drawing pictures; manipulating Web pages

The number of general purpose languages is relatively small

We start by looking at the earlier, unstructured, languages

54 / 85



Unstructured Languages

Purpose: general programming

Examples: assembler, early Basic, . . .

Notable features: lack of language features to help structure
large programs

55 / 85



Unstructured Languages
Feet

• Assembly: You try to shoot yourself in the foot only to
discover you must first reinvent the gun, the bullet, and
your foot. After that’s done, you pull the trigger, the gun
beeps several times, then crashes.

• Basic: Shoot yourself in the foot with a water pistol. On big
systems, continue until entire lower body is waterlogged

56 / 85



Unstructured Languages
Feet

• Assembly: You try to shoot yourself in the foot only to
discover you must first reinvent the gun, the bullet, and
your foot. After that’s done, you pull the trigger, the gun
beeps several times, then crashes.

• Basic: Shoot yourself in the foot with a water pistol. On big
systems, continue until entire lower body is waterlogged

57 / 85



Unstructured Languages

These languages (it is arguable whether assembly is even a
language) were used before there were any clear ideas in CS
on what was needed to write a large, correct program

The programs written in such languages tended to be small, as
computers were small, and so they were manageable

Up to a point

It was soon discovered that you can’t write bigger programs in
this way

A language needed structure to help the programmer

To some extent, the history of computing languages is the
history of the varied attempts to provide that structure

58 / 85



Unstructured Languages

These languages (it is arguable whether assembly is even a
language) were used before there were any clear ideas in CS
on what was needed to write a large, correct program

The programs written in such languages tended to be small, as
computers were small, and so they were manageable

Up to a point

It was soon discovered that you can’t write bigger programs in
this way

A language needed structure to help the programmer

To some extent, the history of computing languages is the
history of the varied attempts to provide that structure

59 / 85



Unstructured Languages

These languages (it is arguable whether assembly is even a
language) were used before there were any clear ideas in CS
on what was needed to write a large, correct program

The programs written in such languages tended to be small, as
computers were small, and so they were manageable

Up to a point

It was soon discovered that you can’t write bigger programs in
this way

A language needed structure to help the programmer

To some extent, the history of computing languages is the
history of the varied attempts to provide that structure

60 / 85



Unstructured Languages

These languages (it is arguable whether assembly is even a
language) were used before there were any clear ideas in CS
on what was needed to write a large, correct program

The programs written in such languages tended to be small, as
computers were small, and so they were manageable

Up to a point

It was soon discovered that you can’t write bigger programs in
this way

A language needed structure to help the programmer

To some extent, the history of computing languages is the
history of the varied attempts to provide that structure

61 / 85



Unstructured Languages

These languages (it is arguable whether assembly is even a
language) were used before there were any clear ideas in CS
on what was needed to write a large, correct program

The programs written in such languages tended to be small, as
computers were small, and so they were manageable

Up to a point

It was soon discovered that you can’t write bigger programs in
this way

A language needed structure to help the programmer

To some extent, the history of computing languages is the
history of the varied attempts to provide that structure

62 / 85



Unstructured Languages

These languages (it is arguable whether assembly is even a
language) were used before there were any clear ideas in CS
on what was needed to write a large, correct program

The programs written in such languages tended to be small, as
computers were small, and so they were manageable

Up to a point

It was soon discovered that you can’t write bigger programs in
this way

A language needed structure to help the programmer

To some extent, the history of computing languages is the
history of the varied attempts to provide that structure

63 / 85



Procedural Languages

Purpose: general programming

Examples: C, Fortran, Cobol, Pascal, Algol, later Basic,
Maple, . . .

Notable features: use of functions (procedures) to provide
structure and control complexity

64 / 85



Procedural Languages
Feet

• Pascal: The compiler won’t let you shoot yourself in the
foot

• Algol: You shoot yourself in the foot with a musket. The
musket is aesthetically fascinating and the wound baffles
the adolescent medic in the emergency room

• Algol 68: You mildly deprocedure the gun, the bullet gets
firmly dereferenced, and your foot is strongly coerced to
void

• Maple: A ShootFoot function was not implemented in
Release n, but will be included in Release n+1. Meanwhile,
you may purchase Release n at the Release n+1 price

65 / 85



Procedural Languages
Feet

• Pascal: The compiler won’t let you shoot yourself in the
foot

• Algol: You shoot yourself in the foot with a musket. The
musket is aesthetically fascinating and the wound baffles
the adolescent medic in the emergency room

• Algol 68: You mildly deprocedure the gun, the bullet gets
firmly dereferenced, and your foot is strongly coerced to
void

• Maple: A ShootFoot function was not implemented in
Release n, but will be included in Release n+1. Meanwhile,
you may purchase Release n at the Release n+1 price

66 / 85



Procedural Languages
Feet

• Pascal: The compiler won’t let you shoot yourself in the
foot

• Algol: You shoot yourself in the foot with a musket. The
musket is aesthetically fascinating and the wound baffles
the adolescent medic in the emergency room

• Algol 68: You mildly deprocedure the gun, the bullet gets
firmly dereferenced, and your foot is strongly coerced to
void

• Maple: A ShootFoot function was not implemented in
Release n, but will be included in Release n+1. Meanwhile,
you may purchase Release n at the Release n+1 price

67 / 85



Procedural Languages
Feet

• Pascal: The compiler won’t let you shoot yourself in the
foot

• Algol: You shoot yourself in the foot with a musket. The
musket is aesthetically fascinating and the wound baffles
the adolescent medic in the emergency room

• Algol 68: You mildly deprocedure the gun, the bullet gets
firmly dereferenced, and your foot is strongly coerced to
void

• Maple: A ShootFoot function was not implemented in
Release n, but will be included in Release n+1. Meanwhile,
you may purchase Release n at the Release n+1 price

68 / 85



Procedural Languages

Procedures, subroutines and functions were soon invented as
they encapsulate an idea in a localised chunk of code

If done correctly

Procedural languages came very early (Fortran) and are still
used widely today (C)

They are very successful and many large systems have been
written using them

69 / 85



Procedural Languages

Procedures, subroutines and functions were soon invented as
they encapsulate an idea in a localised chunk of code

If done correctly

Procedural languages came very early (Fortran) and are still
used widely today (C)

They are very successful and many large systems have been
written using them

70 / 85



Procedural Languages

Procedures, subroutines and functions were soon invented as
they encapsulate an idea in a localised chunk of code

If done correctly

Procedural languages came very early (Fortran) and are still
used widely today (C)

They are very successful and many large systems have been
written using them

71 / 85



Procedural Languages

Procedures, subroutines and functions were soon invented as
they encapsulate an idea in a localised chunk of code

If done correctly

Procedural languages came very early (Fortran) and are still
used widely today (C)

They are very successful and many large systems have been
written using them

72 / 85



Logic Languages

Purpose: Logic programming

Examples: Prolog, ASP, . . .

Notable features: don’t describe how to do something, just
what you want as an answer

73 / 85



Logic Languages

Logic languages have also been around a long time, but are
much less popular than other families

Many people have difficulty using them for general purpose
programming

For logic problems, of course, they are excellent

74 / 85



Logic Languages

Logic languages have also been around a long time, but are
much less popular than other families

Many people have difficulty using them for general purpose
programming

For logic problems, of course, they are excellent

75 / 85



Logic Languages

Logic languages have also been around a long time, but are
much less popular than other families

Many people have difficulty using them for general purpose
programming

For logic problems, of course, they are excellent

76 / 85



Functional Languages

Purpose: general programming, symbolic programming

Examples: Lisp, Haskell, ML, Erlang, Scala, . . .

Notable features: use of higher order functions to provide
structure and control complexity

77 / 85



Functional Languages
Feet

• Haskell: You spend several hours creating a new copy of
the Universe which is identical to the existing one except
your foot has a hole in it. You then hear that it can be done
more elegantly with Dyadic Functile Hyper-Arrows, but the
very act of reading some of the included sample code
causes one of your metatarsals to explode

• Haskell (2): You appear to have successfully shot yourself
in the foot, but you feel no pain. Until you look at your foot

• Erlang: whenever you shoot your foot off, you just grow
more feet

• Scala: You can’t find anyone who knows how to shoot you
in the foot

78 / 85



Functional Languages
Feet

• Haskell: You spend several hours creating a new copy of
the Universe which is identical to the existing one except
your foot has a hole in it. You then hear that it can be done
more elegantly with Dyadic Functile Hyper-Arrows, but the
very act of reading some of the included sample code
causes one of your metatarsals to explode

• Haskell (2): You appear to have successfully shot yourself
in the foot, but you feel no pain. Until you look at your foot

• Erlang: whenever you shoot your foot off, you just grow
more feet

• Scala: You can’t find anyone who knows how to shoot you
in the foot

79 / 85



Functional Languages
Feet

• Haskell: You spend several hours creating a new copy of
the Universe which is identical to the existing one except
your foot has a hole in it. You then hear that it can be done
more elegantly with Dyadic Functile Hyper-Arrows, but the
very act of reading some of the included sample code
causes one of your metatarsals to explode

• Haskell (2): You appear to have successfully shot yourself
in the foot, but you feel no pain. Until you look at your foot

• Erlang: whenever you shoot your foot off, you just grow
more feet

• Scala: You can’t find anyone who knows how to shoot you
in the foot

80 / 85



Functional Languages
Feet

• Haskell: You spend several hours creating a new copy of
the Universe which is identical to the existing one except
your foot has a hole in it. You then hear that it can be done
more elegantly with Dyadic Functile Hyper-Arrows, but the
very act of reading some of the included sample code
causes one of your metatarsals to explode

• Haskell (2): You appear to have successfully shot yourself
in the foot, but you feel no pain. Until you look at your foot

• Erlang: whenever you shoot your foot off, you just grow
more feet

• Scala: You can’t find anyone who knows how to shoot you
in the foot

81 / 85



Functional Languages
Feet

• ML: You program a structure for your foot, the gun, and the
bullet, complete with associated signatures and function
definitions. After two hours of laborious typing, forgetting of
semicolons, and searching old Comp Sci textbooks for the
definition of such phrases as “polymorphic dynamic
objective typing system”, as well as an additional hour for
brushing up on the lambda calculus, you run the program
and the interpreter tells you that the pattern-match
between your foot and the bullet is nonexhaustive. You feel
a slight tingling pain, but no bullethole appears in your foot
because your program did not allow for side-effecting
statements

82 / 85



Functional Languages

While functional languages themselves have yet to gain
widespread use, the ideas they have generated are used daily

As parallel computers become more popular there may well be
a re-examination of functional style programming as it naturally
supports (implicit) parallelism

And mainstream languages like Java and C++ are adopting
functional concepts like lambdas and iterators

83 / 85



Functional Languages

While functional languages themselves have yet to gain
widespread use, the ideas they have generated are used daily

As parallel computers become more popular there may well be
a re-examination of functional style programming as it naturally
supports (implicit) parallelism

And mainstream languages like Java and C++ are adopting
functional concepts like lambdas and iterators

84 / 85



Functional Languages

While functional languages themselves have yet to gain
widespread use, the ideas they have generated are used daily

As parallel computers become more popular there may well be
a re-examination of functional style programming as it naturally
supports (implicit) parallelism

And mainstream languages like Java and C++ are adopting
functional concepts like lambdas and iterators

85 / 85


