
Macro languages

Purpose: to improve readability of other code, abstraction,
textual manipulation

Examples: Cpp, LATEX, M4, macros in Lisp

Notable features: usually lexical (character or text) based, with
some exceptions (Lisp, Rust)

1 / 103

Macro languages
Feet

• LATEX:
\documentclass[12pt]{article}

\usepackage{latexgun,latexshoot}

\begin{document}

See how easy it is to shoot yourself in the foot? \\

\gun[leftfoot]{shoot} \\

\pain

\end{document}

2 / 103

Macro languages

These are used widely, in a huge variety of contexts

Often used in conjunction with another language, e.g., the C
preprocessor

So not often thought about in great detail, but are used to great
effect

Particularly conditional macros whose expansion depends on
other factors

3 / 103

Macro languages

These are used widely, in a huge variety of contexts

Often used in conjunction with another language, e.g., the C
preprocessor

So not often thought about in great detail, but are used to great
effect

Particularly conditional macros whose expansion depends on
other factors

4 / 103

Macro languages

These are used widely, in a huge variety of contexts

Often used in conjunction with another language, e.g., the C
preprocessor

So not often thought about in great detail, but are used to great
effect

Particularly conditional macros whose expansion depends on
other factors

5 / 103

Macro languages

These are used widely, in a huge variety of contexts

Often used in conjunction with another language, e.g., the C
preprocessor

So not often thought about in great detail, but are used to great
effect

Particularly conditional macros whose expansion depends on
other factors

6 / 103

Macro languages

So, in C, we can write code like

#ifdef SMALLINT

#define NUMBER short

#else

#define NUMBER int

#endif

Then if we use NUMBER everywhere in our code
NUMBER x;
...
it takes only a single change to make our code use short rather
than int: very useful for source code portability between
architectures

7 / 103

Macro languages

So, in C, we can write code like

#ifdef SMALLINT

#define NUMBER short

#else

#define NUMBER int

#endif

Then if we use NUMBER everywhere in our code
NUMBER x;
...
it takes only a single change to make our code use short rather
than int: very useful for source code portability between
architectures

8 / 103

C
#define _ F-->00||-F-OO--;

int F=00,OO=00;main(){F_OO();printf("%1.3f\n",4.*-F/OO/OO);}F_OO()

{

--_-_

--_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_-_-_-_-_

--_-_-_-_-_-_

--_-_

}

An enthusiastic use of C macros by Brian Westley

9 / 103

Macro languages

In contrast to most languages, Lisp macros are not text based,
but expression based

And the macro language is Lisp itself, not a separate language:
recall that programs are data!

(defmacro head (l) (list ’car l))

defmacro defines the code to be executed (in the compiler or
interpreter) when expanding the macro named head

When compiling (head x), the compiler first expands the
macro head by executing (list ’car l), where l has the
value x, to get (car x)

The compiler then compiles (car x)

10 / 103

Macro languages

In contrast to most languages, Lisp macros are not text based,
but expression based

And the macro language is Lisp itself, not a separate language:
recall that programs are data!

(defmacro head (l) (list ’car l))

defmacro defines the code to be executed (in the compiler or
interpreter) when expanding the macro named head

When compiling (head x), the compiler first expands the
macro head by executing (list ’car l), where l has the
value x, to get (car x)

The compiler then compiles (car x)

11 / 103

Macro languages

In contrast to most languages, Lisp macros are not text based,
but expression based

And the macro language is Lisp itself, not a separate language:
recall that programs are data!

(defmacro head (l) (list ’car l))

defmacro defines the code to be executed (in the compiler or
interpreter) when expanding the macro named head

When compiling (head x), the compiler first expands the
macro head by executing (list ’car l), where l has the
value x, to get (car x)

The compiler then compiles (car x)

12 / 103

Macro languages

In contrast to most languages, Lisp macros are not text based,
but expression based

And the macro language is Lisp itself, not a separate language:
recall that programs are data!

(defmacro head (l) (list ’car l))

defmacro defines the code to be executed (in the compiler or
interpreter) when expanding the macro named head

When compiling (head x), the compiler first expands the
macro head by executing (list ’car l), where l has the
value x, to get (car x)

The compiler then compiles (car x)

13 / 103

Macro languages

In contrast to most languages, Lisp macros are not text based,
but expression based

And the macro language is Lisp itself, not a separate language:
recall that programs are data!

(defmacro head (l) (list ’car l))

defmacro defines the code to be executed (in the compiler or
interpreter) when expanding the macro named head

When compiling (head x), the compiler first expands the
macro head by executing (list ’car l), where l has the
value x, to get (car x)

The compiler then compiles (car x)

14 / 103

Macro languages

In contrast to most languages, Lisp macros are not text based,
but expression based

And the macro language is Lisp itself, not a separate language:
recall that programs are data!

(defmacro head (l) (list ’car l))

defmacro defines the code to be executed (in the compiler or
interpreter) when expanding the macro named head

When compiling (head x), the compiler first expands the
macro head by executing (list ’car l), where l has the
value x, to get (car x)

The compiler then compiles (car x)

15 / 103

Macro languages

The full power of Lisp applies to macroexpansion

(defmacro baz (l m)

(if (> m 0)

(list ’car l)

(list ’cdr l)))

Will expand baz at compile time to a car or a cdr

16 / 103

Macro languages

The full power of Lisp applies to macroexpansion

(defmacro baz (l m)

(if (> m 0)

(list ’car l)

(list ’cdr l)))

Will expand baz at compile time to a car or a cdr

17 / 103

Macro languages
LATEX

Sometimes macros are used in their own right, e.g., LATEX, the
typesetting language is macro based

These slides are written in LATEX

\begin{frame}

\frametitle{Macro languages}

\framesubtitle{\LaTeX}

Sometimes macros are used in their own right, e.g.,

\LaTeX, the typesetting language is macro based

\paruncover2{These slides are written in \LaTeX}

\end{frame}

18 / 103

Macro languages
LATEX

Sometimes macros are used in their own right, e.g., LATEX, the
typesetting language is macro based

These slides are written in LATEX

\begin{frame}

\frametitle{Macro languages}

\framesubtitle{\LaTeX}

Sometimes macros are used in their own right, e.g.,

\LaTeX, the typesetting language is macro based

\paruncover2{These slides are written in \LaTeX}

\end{frame}

19 / 103

Macro languages
LATEX

Sometimes macros are used in their own right, e.g., LATEX, the
typesetting language is macro based

These slides are written in LATEX

\begin{frame}

\frametitle{Macro languages}

\framesubtitle{\LaTeX}

Sometimes macros are used in their own right, e.g.,

\LaTeX, the typesetting language is macro based

\paruncover2{These slides are written in \LaTeX}

\end{frame}

20 / 103

Macro languages
LATEX

The basic datatype is text and you define macros as convenient
shorthands for things you like to do to that text

For example, a new chapter needs a new page, a big heading,
lots of space before the next text

So you define a macro, say \chapter, that does all this

Usually, someone else has created an entire macro package so
you don’t have to

21 / 103

Macro languages
LATEX

The basic datatype is text and you define macros as convenient
shorthands for things you like to do to that text

For example, a new chapter needs a new page, a big heading,
lots of space before the next text

So you define a macro, say \chapter, that does all this

Usually, someone else has created an entire macro package so
you don’t have to

22 / 103

Macro languages
LATEX

The basic datatype is text and you define macros as convenient
shorthands for things you like to do to that text

For example, a new chapter needs a new page, a big heading,
lots of space before the next text

So you define a macro, say \chapter, that does all this

Usually, someone else has created an entire macro package so
you don’t have to

23 / 103

Macro languages
LATEX

The basic datatype is text and you define macros as convenient
shorthands for things you like to do to that text

For example, a new chapter needs a new page, a big heading,
lots of space before the next text

So you define a macro, say \chapter, that does all this

Usually, someone else has created an entire macro package so
you don’t have to

24 / 103

Scripting Languages

Purpose: control of other elements of a system, e.g., programs,
“glue” to join elements together

Examples: DOS batch, sh, Python, Sed, Perl, Ruby,
JavaScript . . .

Notable features: not particularly good at classical number
crunching; generally lots of string processing and process
manipulation

They are called “scripts” as they are (were originally) lists of
things to be done

Often, but not exclusively, interpreted rather than compiled

25 / 103

Scripting Languages

Purpose: control of other elements of a system, e.g., programs,
“glue” to join elements together

Examples: DOS batch, sh, Python, Sed, Perl, Ruby,
JavaScript . . .

Notable features: not particularly good at classical number
crunching; generally lots of string processing and process
manipulation

They are called “scripts” as they are (were originally) lists of
things to be done

Often, but not exclusively, interpreted rather than compiled

26 / 103

Scripting Languages

Purpose: control of other elements of a system, e.g., programs,
“glue” to join elements together

Examples: DOS batch, sh, Python, Sed, Perl, Ruby,
JavaScript . . .

Notable features: not particularly good at classical number
crunching; generally lots of string processing and process
manipulation

They are called “scripts” as they are (were originally) lists of
things to be done

Often, but not exclusively, interpreted rather than compiled

27 / 103

Scripting Languages
Feet

• DOS batch: You aim the gun at your foot and pull the
trigger, but only a weak gust of warm air hits your foot

• Sh, csh, bash: You can’t remember the syntax for anything
so you spend five hours reading man pages then your foot
falls asleep. You then shoot the computer and switch to
Perl

• Perl: You shoot yourself in the foot, but nobody can
understand how you did it. Six months later, neither can
you

• Ruby: Your foot is ready to be shot in roughly five minutes,
but you just can’t find anywhere to shoot it

• JavaScript: You’ve perfected a robust, rich user experience
for shooting yourself in the foot. You then find that bullets
are disabled on your gun

28 / 103

Scripting Languages
Feet

• DOS batch: You aim the gun at your foot and pull the
trigger, but only a weak gust of warm air hits your foot

• Sh, csh, bash: You can’t remember the syntax for anything
so you spend five hours reading man pages then your foot
falls asleep. You then shoot the computer and switch to
Perl

• Perl: You shoot yourself in the foot, but nobody can
understand how you did it. Six months later, neither can
you

• Ruby: Your foot is ready to be shot in roughly five minutes,
but you just can’t find anywhere to shoot it

• JavaScript: You’ve perfected a robust, rich user experience
for shooting yourself in the foot. You then find that bullets
are disabled on your gun

29 / 103

Scripting Languages
Feet

• DOS batch: You aim the gun at your foot and pull the
trigger, but only a weak gust of warm air hits your foot

• Sh, csh, bash: You can’t remember the syntax for anything
so you spend five hours reading man pages then your foot
falls asleep. You then shoot the computer and switch to
Perl

• Perl: You shoot yourself in the foot, but nobody can
understand how you did it. Six months later, neither can
you

• Ruby: Your foot is ready to be shot in roughly five minutes,
but you just can’t find anywhere to shoot it

• JavaScript: You’ve perfected a robust, rich user experience
for shooting yourself in the foot. You then find that bullets
are disabled on your gun

30 / 103

Scripting Languages
Feet

• DOS batch: You aim the gun at your foot and pull the
trigger, but only a weak gust of warm air hits your foot

• Sh, csh, bash: You can’t remember the syntax for anything
so you spend five hours reading man pages then your foot
falls asleep. You then shoot the computer and switch to
Perl

• Perl: You shoot yourself in the foot, but nobody can
understand how you did it. Six months later, neither can
you

• Ruby: Your foot is ready to be shot in roughly five minutes,
but you just can’t find anywhere to shoot it

• JavaScript: You’ve perfected a robust, rich user experience
for shooting yourself in the foot. You then find that bullets
are disabled on your gun

31 / 103

Scripting Languages
Feet

• DOS batch: You aim the gun at your foot and pull the
trigger, but only a weak gust of warm air hits your foot

• Sh, csh, bash: You can’t remember the syntax for anything
so you spend five hours reading man pages then your foot
falls asleep. You then shoot the computer and switch to
Perl

• Perl: You shoot yourself in the foot, but nobody can
understand how you did it. Six months later, neither can
you

• Ruby: Your foot is ready to be shot in roughly five minutes,
but you just can’t find anywhere to shoot it

• JavaScript: You’ve perfected a robust, rich user experience
for shooting yourself in the foot. You then find that bullets
are disabled on your gun

32 / 103

Scripting Languages

Also widely used

The original scripts were the job control languages for the early
mainframes

For example, IBM’s JCL was used to describe a list of programs
to be loaded and run: recall batch processing

33 / 103

Scripting Languages

Also widely used

The original scripts were the job control languages for the early
mainframes

For example, IBM’s JCL was used to describe a list of programs
to be loaded and run: recall batch processing

34 / 103

Scripting Languages

Also widely used

The original scripts were the job control languages for the early
mainframes

For example, IBM’s JCL was used to describe a list of programs
to be loaded and run: recall batch processing

35 / 103

Scripting Languages
Feet

• JCL: You send your foot down to MIS with a 4000-page
document explaining how you want it to be shot. Three
years later, your foot comes back deep-fried

36 / 103

Scripting Languages
Sh

The Unix command line language, originally sh (the Bourne
Shell), lately bash (the Bourne Again shell)

Simple textual lists of things (programs) to be done

#!/bin/sh

setxkbmap -option "compose:menu" -option "ctrl:nocaps"

dispwin -L

["$XAUTHORITY"] && cp -f "$XAUTHORITY" ~/.Xauthority

37 / 103

Scripting Languages
Sh

The Unix command line language, originally sh (the Bourne
Shell), lately bash (the Bourne Again shell)

Simple textual lists of things (programs) to be done

#!/bin/sh

setxkbmap -option "compose:menu" -option "ctrl:nocaps"

dispwin -L

["$XAUTHORITY"] && cp -f "$XAUTHORITY" ~/.Xauthority

38 / 103

Scripting Languages
Sh

The Unix command line language, originally sh (the Bourne
Shell), lately bash (the Bourne Again shell)

Simple textual lists of things (programs) to be done

#!/bin/sh

setxkbmap -option "compose:menu" -option "ctrl:nocaps"

dispwin -L

["$XAUTHORITY"] && cp -f "$XAUTHORITY" ~/.Xauthority

39 / 103

Scripting Languages
Sh

Shell scripts are widely used to automate repetitive and
complex tasks

Originally reasonably simple but they have grown more
complex over time

Crucially, they do not require a GUI so can be deployed
automatically over large numbers of machines

Somewhat low-level, so not so good for more complex tasks, or
less complex programmers

40 / 103

Scripting Languages
Sh

Shell scripts are widely used to automate repetitive and
complex tasks

Originally reasonably simple but they have grown more
complex over time

Crucially, they do not require a GUI so can be deployed
automatically over large numbers of machines

Somewhat low-level, so not so good for more complex tasks, or
less complex programmers

41 / 103

Scripting Languages
Sh

Shell scripts are widely used to automate repetitive and
complex tasks

Originally reasonably simple but they have grown more
complex over time

Crucially, they do not require a GUI so can be deployed
automatically over large numbers of machines

Somewhat low-level, so not so good for more complex tasks, or
less complex programmers

42 / 103

Scripting Languages
Sh

Shell scripts are widely used to automate repetitive and
complex tasks

Originally reasonably simple but they have grown more
complex over time

Crucially, they do not require a GUI so can be deployed
automatically over large numbers of machines

Somewhat low-level, so not so good for more complex tasks, or
less complex programmers

43 / 103

Scripting Languages
Sed

Example: Sed. A very simple scripting language, capable of
just one task

String manipulation: sed is a stream editor

Reads files one line at a time (as a stream) and edits them, one
line at a time, according to given rules

sed -e ’s/hello/goodbye/’
Substitutes goodbye for occurrences of hello in its input

44 / 103

Scripting Languages
Sed

Example: Sed. A very simple scripting language, capable of
just one task

String manipulation: sed is a stream editor

Reads files one line at a time (as a stream) and edits them, one
line at a time, according to given rules

sed -e ’s/hello/goodbye/’
Substitutes goodbye for occurrences of hello in its input

45 / 103

Scripting Languages
Sed

Example: Sed. A very simple scripting language, capable of
just one task

String manipulation: sed is a stream editor

Reads files one line at a time (as a stream) and edits them, one
line at a time, according to given rules

sed -e ’s/hello/goodbye/’
Substitutes goodbye for occurrences of hello in its input

46 / 103

Scripting Languages
Sed

Example: Sed. A very simple scripting language, capable of
just one task

String manipulation: sed is a stream editor

Reads files one line at a time (as a stream) and edits them, one
line at a time, according to given rules

sed -e ’s/hello/goodbye/’
Substitutes goodbye for occurrences of hello in its input

47 / 103

Scripting Languages
Sed

Uses regular expressions for patterns

Can edit files too large to fit into memory all at once

Usually used as a component in shell scripts

Limited to line-by-line editing

More general is awk, but better is Perl

48 / 103

Scripting Languages
Sed

Uses regular expressions for patterns

Can edit files too large to fit into memory all at once

Usually used as a component in shell scripts

Limited to line-by-line editing

More general is awk, but better is Perl

49 / 103

Scripting Languages
Sed

Uses regular expressions for patterns

Can edit files too large to fit into memory all at once

Usually used as a component in shell scripts

Limited to line-by-line editing

More general is awk, but better is Perl

50 / 103

Scripting Languages
Sed

Uses regular expressions for patterns

Can edit files too large to fit into memory all at once

Usually used as a component in shell scripts

Limited to line-by-line editing

More general is awk, but better is Perl

51 / 103

Scripting Languages
Sed

Uses regular expressions for patterns

Can edit files too large to fit into memory all at once

Usually used as a component in shell scripts

Limited to line-by-line editing

More general is awk, but better is Perl

52 / 103

Scripting Languages
Perl

Perl is/was used a lot in Web page creation and manipulation,
amongst many other things

The basic datatype is the string

The basic operation is pattern matching

It is also procedural, has first class functions, has objects and
so on

The syntax is the usual C/Java/whatever, but with a few features

53 / 103

Scripting Languages
Perl

Perl is/was used a lot in Web page creation and manipulation,
amongst many other things

The basic datatype is the string

The basic operation is pattern matching

It is also procedural, has first class functions, has objects and
so on

The syntax is the usual C/Java/whatever, but with a few features

54 / 103

Scripting Languages
Perl

Perl is/was used a lot in Web page creation and manipulation,
amongst many other things

The basic datatype is the string

The basic operation is pattern matching

It is also procedural, has first class functions, has objects and
so on

The syntax is the usual C/Java/whatever, but with a few features

55 / 103

Scripting Languages
Perl

Perl is/was used a lot in Web page creation and manipulation,
amongst many other things

The basic datatype is the string

The basic operation is pattern matching

It is also procedural, has first class functions, has objects and
so on

The syntax is the usual C/Java/whatever, but with a few features

56 / 103

Scripting Languages
Perl

Perl is/was used a lot in Web page creation and manipulation,
amongst many other things

The basic datatype is the string

The basic operation is pattern matching

It is also procedural, has first class functions, has objects and
so on

The syntax is the usual C/Java/whatever, but with a few features

57 / 103

Scripting Languages
Perl

open IN, ’<’, ’infile’;

open OUT, ’>outfile’;

$count = 0;

while (<IN>) {

s/world/everybody/ if (/hello/);

print OUT;

$count++;

}

close IN;

close OUT;

print "$count lines\n";

58 / 103

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name

• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $

• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called

• and false at end of file
• it assigns to the variable $

59 / 103

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name

• or joined onto the filename

• IN: filestream variables are syntactically different from
normal variables

• $count: scalar (single value) variable names are prefixed
by $

• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called

• and false at end of file
• it assigns to the variable $

60 / 103

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name

• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables

• $count: scalar (single value) variable names are prefixed
by $

• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called

• and false at end of file
• it assigns to the variable $

61 / 103

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name

• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $

• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called

• and false at end of file
• it assigns to the variable $

62 / 103

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name

• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $

• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called

• and false at end of file
• it assigns to the variable $

63 / 103

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name

• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $

• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called

• and false at end of file
• it assigns to the variable $

64 / 103

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name

• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $

• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called

• and false at end of file
• it assigns to the variable $

65 / 103

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name

• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $

• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called

• and false at end of file
• it assigns to the variable $

66 / 103

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name

• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $

• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called

• and false at end of file

• it assigns to the variable $

67 / 103

Scripting Languages
Perl

• open: takes strings ’<’ to indicate input and ’>’ to
indicate output; then a file name

• or joined onto the filename
• IN: filestream variables are syntactically different from

normal variables
• $count: scalar (single value) variable names are prefixed

by $

• array variable names are prefixed by @

• function variable names are prefixed by &

• $f is separate from @f and &f

• <>: operator returns a single line of the file each time it is
called

• and false at end of file
• it assigns to the variable $

68 / 103

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)

• // for pattern matching; in this case it looks to see if the
default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)

• $count++; lots of C-like features
• untyped variables: a variable can hold numbers and strings

and other types; so ++ has first to check if the value is a
number or a string containing a number, which it then
converts to a number

• flexibility over () around function arguments

69 / 103

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)

• // for pattern matching; in this case it looks to see if the
default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)

• $count++; lots of C-like features
• untyped variables: a variable can hold numbers and strings

and other types; so ++ has first to check if the value is a
number or a string containing a number, which it then
converts to a number

• flexibility over () around function arguments

70 / 103

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)

• // for pattern matching; in this case it looks to see if the
default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)

• $count++; lots of C-like features
• untyped variables: a variable can hold numbers and strings

and other types; so ++ has first to check if the value is a
number or a string containing a number, which it then
converts to a number

• flexibility over () around function arguments

71 / 103

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)

• // for pattern matching; in this case it looks to see if the
default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)

• $count++; lots of C-like features
• untyped variables: a variable can hold numbers and strings

and other types; so ++ has first to check if the value is a
number or a string containing a number, which it then
converts to a number

• flexibility over () around function arguments

72 / 103

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)

• // for pattern matching; in this case it looks to see if the
default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)

• $count++; lots of C-like features

• untyped variables: a variable can hold numbers and strings
and other types; so ++ has first to check if the value is a
number or a string containing a number, which it then
converts to a number

• flexibility over () around function arguments

73 / 103

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)

• // for pattern matching; in this case it looks to see if the
default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)

• $count++; lots of C-like features
• untyped variables: a variable can hold numbers and strings

and other types; so ++ has first to check if the value is a
number or a string containing a number, which it then
converts to a number

• flexibility over () around function arguments

74 / 103

Scripting Languages
Perl

• $ is a default argument and can be left out of many
places, e.g., print; is equivalent to print $;

• statement if (test); as well as the usual
if (test) { statements; } (and with else)

• // for pattern matching; in this case it looks to see if the
default $ contains the string hello

• s///: if the string contains world, replace it by the string
everybody (again, using the default $)

• $count++; lots of C-like features
• untyped variables: a variable can hold numbers and strings

and other types; so ++ has first to check if the value is a
number or a string containing a number, which it then
converts to a number

• flexibility over () around function arguments
75 / 103

Scripting Languages
Perl

• strings are both single and double quoted

• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline

• "The count is $count" sticks the current value of
$count into the string at that point

There are several very fat books on Perl

Its flexibility means it is used in a lot of places

And it is easy to write unreadable code in Perl

76 / 103

Scripting Languages
Perl

• strings are both single and double quoted
• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline

• "The count is $count" sticks the current value of
$count into the string at that point

There are several very fat books on Perl

Its flexibility means it is used in a lot of places

And it is easy to write unreadable code in Perl

77 / 103

Scripting Languages
Perl

• strings are both single and double quoted
• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline

• "The count is $count" sticks the current value of
$count into the string at that point

There are several very fat books on Perl

Its flexibility means it is used in a lot of places

And it is easy to write unreadable code in Perl

78 / 103

Scripting Languages
Perl

• strings are both single and double quoted
• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline

• "The count is $count" sticks the current value of
$count into the string at that point

There are several very fat books on Perl

Its flexibility means it is used in a lot of places

And it is easy to write unreadable code in Perl

79 / 103

Scripting Languages
Perl

• strings are both single and double quoted
• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline

• "The count is $count" sticks the current value of
$count into the string at that point

There are several very fat books on Perl

Its flexibility means it is used in a lot of places

And it is easy to write unreadable code in Perl

80 / 103

Scripting Languages
Perl

• strings are both single and double quoted
• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline

• "The count is $count" sticks the current value of
$count into the string at that point

There are several very fat books on Perl

Its flexibility means it is used in a lot of places

And it is easy to write unreadable code in Perl

81 / 103

Scripting Languages
Perl

• strings are both single and double quoted
• single quote is unevaluated: ’hello\n’ prints as hello\n

• double quote is interpolated: "hello\n" prints as hello
with a newline

• "The count is $count" sticks the current value of
$count into the string at that point

There are several very fat books on Perl

Its flexibility means it is used in a lot of places

And it is easy to write unreadable code in Perl

82 / 103

Scripting Languages
JavaScript

JavaScript is an interesting case

Originally designed to be a scripting language to manage Web
page content, it is now more likely to be thought of as a
special-purpose language to enable dynamic Web content

Web applications like Google Maps are coded using JavaScript

In Firefox, the browser’s appearance, i.e., the buttons, toolbars
and so on (the “chrome”), are programmed in JavaScript

This allows easy modification and extension (using “add-ons”)

83 / 103

Scripting Languages
JavaScript

JavaScript is an interesting case

Originally designed to be a scripting language to manage Web
page content, it is now more likely to be thought of as a
special-purpose language to enable dynamic Web content

Web applications like Google Maps are coded using JavaScript

In Firefox, the browser’s appearance, i.e., the buttons, toolbars
and so on (the “chrome”), are programmed in JavaScript

This allows easy modification and extension (using “add-ons”)

84 / 103

Scripting Languages
JavaScript

JavaScript is an interesting case

Originally designed to be a scripting language to manage Web
page content, it is now more likely to be thought of as a
special-purpose language to enable dynamic Web content

Web applications like Google Maps are coded using JavaScript

In Firefox, the browser’s appearance, i.e., the buttons, toolbars
and so on (the “chrome”), are programmed in JavaScript

This allows easy modification and extension (using “add-ons”)

85 / 103

Scripting Languages
JavaScript

JavaScript is an interesting case

Originally designed to be a scripting language to manage Web
page content, it is now more likely to be thought of as a
special-purpose language to enable dynamic Web content

Web applications like Google Maps are coded using JavaScript

In Firefox, the browser’s appearance, i.e., the buttons, toolbars
and so on (the “chrome”), are programmed in JavaScript

This allows easy modification and extension (using “add-ons”)

86 / 103

Scripting Languages
JavaScript

JavaScript is an interesting case

Originally designed to be a scripting language to manage Web
page content, it is now more likely to be thought of as a
special-purpose language to enable dynamic Web content

Web applications like Google Maps are coded using JavaScript

In Firefox, the browser’s appearance, i.e., the buttons, toolbars
and so on (the “chrome”), are programmed in JavaScript

This allows easy modification and extension (using “add-ons”)

87 / 103

Scripting Languages
JavaScript

Standard warning:

Java and JavaScript are different languages

The name is unfortunate: their syntax is broadly similar but
their semantics are wildly different

The name was originally chosen as JavaScript was intended to
be “reminiscent” of Java, but now it’s just a source of confusion

It can be argued that JavaScript is more like Scheme/Lisp than
Java in the way it behaves (first-class functions, etc.)

But you shouldn’t take this analogy too far

88 / 103

Scripting Languages
JavaScript

Standard warning:

Java and JavaScript are different languages

The name is unfortunate: their syntax is broadly similar but
their semantics are wildly different

The name was originally chosen as JavaScript was intended to
be “reminiscent” of Java, but now it’s just a source of confusion

It can be argued that JavaScript is more like Scheme/Lisp than
Java in the way it behaves (first-class functions, etc.)

But you shouldn’t take this analogy too far

89 / 103

Scripting Languages
JavaScript

Standard warning:

Java and JavaScript are different languages

The name is unfortunate: their syntax is broadly similar but
their semantics are wildly different

The name was originally chosen as JavaScript was intended to
be “reminiscent” of Java, but now it’s just a source of confusion

It can be argued that JavaScript is more like Scheme/Lisp than
Java in the way it behaves (first-class functions, etc.)

But you shouldn’t take this analogy too far

90 / 103

Scripting Languages
JavaScript

Standard warning:

Java and JavaScript are different languages

The name is unfortunate: their syntax is broadly similar but
their semantics are wildly different

The name was originally chosen as JavaScript was intended to
be “reminiscent” of Java, but now it’s just a source of confusion

It can be argued that JavaScript is more like Scheme/Lisp than
Java in the way it behaves (first-class functions, etc.)

But you shouldn’t take this analogy too far

91 / 103

Scripting Languages
JavaScript

Standard warning:

Java and JavaScript are different languages

The name is unfortunate: their syntax is broadly similar but
their semantics are wildly different

The name was originally chosen as JavaScript was intended to
be “reminiscent” of Java, but now it’s just a source of confusion

It can be argued that JavaScript is more like Scheme/Lisp than
Java in the way it behaves (first-class functions, etc.)

But you shouldn’t take this analogy too far

92 / 103

Scripting Languages
JavaScript

JavaScript is more properly called ECMAScript and there are
several close-but-not-perfectly-compatible versions around

• JavaScript: Sun/Mozilla/etc.
• JScript: Microsoft
• ActionScript: Adobe

Ecma: formerly European Computer Manufacturers
Association, now just “Ecma International”, is a standards body

93 / 103

Scripting Languages
JavaScript

JavaScript is more properly called ECMAScript and there are
several close-but-not-perfectly-compatible versions around

• JavaScript: Sun/Mozilla/etc.
• JScript: Microsoft
• ActionScript: Adobe

Ecma: formerly European Computer Manufacturers
Association, now just “Ecma International”, is a standards body

94 / 103

Scripting Languages
JavaScript

JavaScript is more properly called ECMAScript and there are
several close-but-not-perfectly-compatible versions around

• JavaScript: Sun/Mozilla/etc.
• JScript: Microsoft
• ActionScript: Adobe

Ecma: formerly European Computer Manufacturers
Association, now just “Ecma International”, is a standards body

95 / 103

Scripting Languages
JavaScript

function getdoc()

{

var input = document.getElementById("num");

var num = input.value;

if (parseInt(num) == num && num > 0 && num < 5000) {

document.location = "http://www.rfc-editor.org/rfc/rfc"

+ num + ".txt";

}

else {

alert("Not a valid RFC number!");

input.value = "";

}

return false;

}

96 / 103

Scripting Languages
JavaScript

• functions declared by function, no type declarations

• variables declared by var, no type declarations
• a variable can hold items of any type
• syntax reminiscent of Java (and C and so on)

97 / 103

Scripting Languages
JavaScript

• functions declared by function, no type declarations
• variables declared by var, no type declarations

• a variable can hold items of any type
• syntax reminiscent of Java (and C and so on)

98 / 103

Scripting Languages
JavaScript

• functions declared by function, no type declarations
• variables declared by var, no type declarations
• a variable can hold items of any type

• syntax reminiscent of Java (and C and so on)

99 / 103

Scripting Languages
JavaScript

• functions declared by function, no type declarations
• variables declared by var, no type declarations
• a variable can hold items of any type
• syntax reminiscent of Java (and C and so on)

100 / 103

Scripting Languages
JavaScript

JavaScript is easy to learn and use, good for prototyping

It is OO, but in a very different way from other languages,
particularly Java

We shall be talking more about JavaScript when we examine
OO in detail

101 / 103

Scripting Languages
JavaScript

JavaScript is easy to learn and use, good for prototyping

It is OO, but in a very different way from other languages,
particularly Java

We shall be talking more about JavaScript when we examine
OO in detail

102 / 103

Scripting Languages
JavaScript

JavaScript is easy to learn and use, good for prototyping

It is OO, but in a very different way from other languages,
particularly Java

We shall be talking more about JavaScript when we examine
OO in detail

103 / 103

