
Event Driven Languages

Purpose: interactive systems

Examples: Visual Basic, JavaScript, Java Swing, Tcl/Tk, Qt,
GTK, . . .

NB: most of these are event-driven libraries used by existing
languages

Notable features: based on the idea of having code executed
as a consequence of something (an event) happening, rather
than in some pre-specified order

1 / 90

Event Driven Languages
Feet

• Visual Basic: You do a Google search on how to shoot
yourself in the foot. You find seventeen completely different
ways to do it, none of which are properly structured. You
paste the first example into the IDE and compile. It
brushes your teeth

2 / 90

Event Driven Languages

Perhaps more of a style of programming, rather than a family of
languages

Lots of general purpose languages can be used in the event
driven style, though there are a few languages specifically
designed for this, e.g., Simula

Widely used to support GUIs and other interfaces and control
systems, e.g., embedded controllers

3 / 90

Event Driven Languages

Perhaps more of a style of programming, rather than a family of
languages

Lots of general purpose languages can be used in the event
driven style, though there are a few languages specifically
designed for this, e.g., Simula

Widely used to support GUIs and other interfaces and control
systems, e.g., embedded controllers

4 / 90

Event Driven Languages

Perhaps more of a style of programming, rather than a family of
languages

Lots of general purpose languages can be used in the event
driven style, though there are a few languages specifically
designed for this, e.g., Simula

Widely used to support GUIs and other interfaces and control
systems, e.g., embedded controllers

5 / 90

Event Driven Languages

Typically the code contains a main loop that waits for events
(key presses, mouse clicks, temperature limits reached, data
packets arriving, clock timeouts, etc.) which then chooses
which chunk of code (event handler) to run in response

while (FAMNextEvent(&fc, &fe)) {

if (fe.code == FAMExists || fe.code == FAMEndExist)

continue;

t = time(NULL);

tm = localtime(&t);

strftime(buf, 32, "%H:%M:%S", tm);

printf("%s %s: %s\n", buf, trim(fe.filename),

event[fe.code]);

}

6 / 90

Event Driven Languages

Typically the code contains a main loop that waits for events
(key presses, mouse clicks, temperature limits reached, data
packets arriving, clock timeouts, etc.) which then chooses
which chunk of code (event handler) to run in response

while (FAMNextEvent(&fc, &fe)) {

if (fe.code == FAMExists || fe.code == FAMEndExist)

continue;

t = time(NULL);

tm = localtime(&t);

strftime(buf, 32, "%H:%M:%S", tm);

printf("%s %s: %s\n", buf, trim(fe.filename),

event[fe.code]);

}

7 / 90

Event Driven Languages

The style is very much like interrupt processing

Code has to be written with the understanding that you don’t
know in what order the parts of the code will be executed

Widely used in interactive applications

Also very important in simulation

8 / 90

Event Driven Languages

The style is very much like interrupt processing

Code has to be written with the understanding that you don’t
know in what order the parts of the code will be executed

Widely used in interactive applications

Also very important in simulation

9 / 90

Event Driven Languages

The style is very much like interrupt processing

Code has to be written with the understanding that you don’t
know in what order the parts of the code will be executed

Widely used in interactive applications

Also very important in simulation

10 / 90

Event Driven Languages

The style is very much like interrupt processing

Code has to be written with the understanding that you don’t
know in what order the parts of the code will be executed

Widely used in interactive applications

Also very important in simulation

11 / 90

Simulation

This is where you simulate some situation, e.g., molecules in a
gas, tanks on a battlefield, to discover its properties

Objects interact by events, e.g., a molecule has hit another, a
tank has fired a missile

These events trigger some behaviour, e.g., molecules change
direction of travel, tanks explode

Widely used in a huge variety of situations

So there are lots of simulation specific languages, e.g., Simula,
SPICE, and so on

12 / 90

Simulation

This is where you simulate some situation, e.g., molecules in a
gas, tanks on a battlefield, to discover its properties

Objects interact by events, e.g., a molecule has hit another, a
tank has fired a missile

These events trigger some behaviour, e.g., molecules change
direction of travel, tanks explode

Widely used in a huge variety of situations

So there are lots of simulation specific languages, e.g., Simula,
SPICE, and so on

13 / 90

Simulation

This is where you simulate some situation, e.g., molecules in a
gas, tanks on a battlefield, to discover its properties

Objects interact by events, e.g., a molecule has hit another, a
tank has fired a missile

These events trigger some behaviour, e.g., molecules change
direction of travel, tanks explode

Widely used in a huge variety of situations

So there are lots of simulation specific languages, e.g., Simula,
SPICE, and so on

14 / 90

Simulation

This is where you simulate some situation, e.g., molecules in a
gas, tanks on a battlefield, to discover its properties

Objects interact by events, e.g., a molecule has hit another, a
tank has fired a missile

These events trigger some behaviour, e.g., molecules change
direction of travel, tanks explode

Widely used in a huge variety of situations

So there are lots of simulation specific languages, e.g., Simula,
SPICE, and so on

15 / 90

Simulation

This is where you simulate some situation, e.g., molecules in a
gas, tanks on a battlefield, to discover its properties

Objects interact by events, e.g., a molecule has hit another, a
tank has fired a missile

These events trigger some behaviour, e.g., molecules change
direction of travel, tanks explode

Widely used in a huge variety of situations

So there are lots of simulation specific languages, e.g., Simula,
SPICE, and so on

16 / 90

Markup Languages

Purpose: description of objects

Examples: HTML, XML, SGML, CSS, nroff, LATEX, . . .

Notable features: use of notation, usually within a document, to
describe elements of the document (often, but not exclusively,
visual); generally not “executed” in the usual sense

17 / 90

Markup Languages

• HTML: HyperText Markup Language
• XML: Extensible Markup Language
• SGML: Standard Generalized Markup Language
• CSS: Cascading Style Sheets
• nroff: new roff (roff: runoff)
• LATEX: Lamport’s TEX (TEX: from “technology”)

18 / 90

Markup Languages
Feet

• HTML: You cut a bullethole in your foot with nothing more
than a small penknife, but you realize that to make it look
convincing, you need to be using Dreamweaver

• XML: You can’t actually shoot yourself in the foot; all you
can do is describe the gun in painful detail

• nroff:
troff -ms -Hdrwp | lpr -Pwp2 & .*place

bullet in footer .B .NR FT +3i .in 4 .bu Shoot!

.br .sp .in -4 .br .bp NR HD -2i .*

• CSS: Everyone can now shoot themselves in the foot, but
all their feet come out looking identical and attached to
their ears

19 / 90

Markup Languages
Feet

• HTML: You cut a bullethole in your foot with nothing more
than a small penknife, but you realize that to make it look
convincing, you need to be using Dreamweaver

• XML: You can’t actually shoot yourself in the foot; all you
can do is describe the gun in painful detail

• nroff:
troff -ms -Hdrwp | lpr -Pwp2 & .*place

bullet in footer .B .NR FT +3i .in 4 .bu Shoot!

.br .sp .in -4 .br .bp NR HD -2i .*

• CSS: Everyone can now shoot themselves in the foot, but
all their feet come out looking identical and attached to
their ears

20 / 90

Markup Languages
Feet

• HTML: You cut a bullethole in your foot with nothing more
than a small penknife, but you realize that to make it look
convincing, you need to be using Dreamweaver

• XML: You can’t actually shoot yourself in the foot; all you
can do is describe the gun in painful detail

• nroff:
troff -ms -Hdrwp | lpr -Pwp2 & .*place

bullet in footer .B .NR FT +3i .in 4 .bu Shoot!

.br .sp .in -4 .br .bp NR HD -2i .*

• CSS: Everyone can now shoot themselves in the foot, but
all their feet come out looking identical and attached to
their ears

21 / 90

Markup Languages
Feet

• HTML: You cut a bullethole in your foot with nothing more
than a small penknife, but you realize that to make it look
convincing, you need to be using Dreamweaver

• XML: You can’t actually shoot yourself in the foot; all you
can do is describe the gun in painful detail

• nroff:
troff -ms -Hdrwp | lpr -Pwp2 & .*place

bullet in footer .B .NR FT +3i .in 4 .bu Shoot!

.br .sp .in -4 .br .bp NR HD -2i .*

• CSS: Everyone can now shoot themselves in the foot, but
all their feet come out looking identical and attached to
their ears

22 / 90

Markup Languages

Very widely used

• HTML was originally used to describe the content and
appearance of Web pages. Usually poorly

• These days the accepted approach is to use HTML to
describe the content, and use CSS to describe the
appearance

• XML is used to markup the meaning of text. Currently seen
as the cure to all “Web 2.0” scenarios. Usually incorrectly

23 / 90

Markup Languages

Very widely used

• HTML was originally used to describe the content and
appearance of Web pages. Usually poorly

• These days the accepted approach is to use HTML to
describe the content, and use CSS to describe the
appearance

• XML is used to markup the meaning of text. Currently seen
as the cure to all “Web 2.0” scenarios. Usually incorrectly

24 / 90

Markup Languages

Very widely used

• HTML was originally used to describe the content and
appearance of Web pages. Usually poorly

• These days the accepted approach is to use HTML to
describe the content, and use CSS to describe the
appearance

• XML is used to markup the meaning of text. Currently seen
as the cure to all “Web 2.0” scenarios. Usually incorrectly

25 / 90

Markup Languages

Very widely used

• HTML was originally used to describe the content and
appearance of Web pages. Usually poorly

• These days the accepted approach is to use HTML to
describe the content, and use CSS to describe the
appearance

• XML is used to markup the meaning of text. Currently seen
as the cure to all “Web 2.0” scenarios. Usually incorrectly

26 / 90

Markup Languages
HTML

<html>

<head>

<title>CM20214/221: Programming II</title>

<link rel="stylesheet" type="text/css" href="notes.css">

</head>

<body>

<h2>CM20214/221: Programming II</h2>

<h4>Some texts</h4>

Books on Functional Languages

<p>

Lisp has been about since 1957,

27 / 90

Markup Languages
CSS

body {

font-family: Arial;

background: white url("bg.png") repeat-y;

}

tt {

font-size: larger;

}

.warn {

color: red;

}

28 / 90

Markup Languages
XML

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>

<m:OrderItemResponse xmlns:m="Some-URI">

<OrderNumber>561381</OrderNumber>

</m:OrderItemResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP is a standard data encoding for transfer of data between Web
services that uses XML

29 / 90

Markup Languages
HTML

HTML and XML are both derivatives of a more general
language, SGML

HTML is ubiquitous

Unfortunately, its design ignored a lot of useful earlier work on
hypertexts

HTML/CSS is about display of documents

30 / 90

Markup Languages
HTML

HTML and XML are both derivatives of a more general
language, SGML

HTML is ubiquitous

Unfortunately, its design ignored a lot of useful earlier work on
hypertexts

HTML/CSS is about display of documents

31 / 90

Markup Languages
HTML

HTML and XML are both derivatives of a more general
language, SGML

HTML is ubiquitous

Unfortunately, its design ignored a lot of useful earlier work on
hypertexts

HTML/CSS is about display of documents

32 / 90

Markup Languages
HTML

HTML and XML are both derivatives of a more general
language, SGML

HTML is ubiquitous

Unfortunately, its design ignored a lot of useful earlier work on
hypertexts

HTML/CSS is about display of documents

33 / 90

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces
• AML: Astronomical Markup Language, for controlling

astronomical instruments.

34 / 90

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces
• AML: Astronomical Markup Language, for controlling

astronomical instruments.

35 / 90

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces
• AML: Astronomical Markup Language, for controlling

astronomical instruments.

36 / 90

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics

• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces
• AML: Astronomical Markup Language, for controlling

astronomical instruments.

37 / 90

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data

• XUL: XML User-interface Language, a language for
describing user interfaces

• AML: Astronomical Markup Language, for controlling
astronomical instruments.

38 / 90

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces

• AML: Astronomical Markup Language, for controlling
astronomical instruments.

39 / 90

Markup Languages
XML

XML is about identifying information within documents

XML is widely used in Web 2.0 and Web services as data
communication protocols

Specifications exists for:

• MathML: mathematics
• OFX: Open Financial Exchange, financial data
• XUL: XML User-interface Language, a language for

describing user interfaces
• AML: Astronomical Markup Language, for controlling

astronomical instruments.

40 / 90

Markup Languages
XML

• RSS: Really Simple Syndication
• WML: Wireless Markup Language
• SVG: Scalable Vector Graphics
• MusicXML: music notation
• VoiceXML: Voice Extensible Markup Language
• PDML: Product Data Markup Language
• ODF: Open Document Format
• SMIL: Synchronized Multimedia Integration Language
• Gastro Intestinal Markup Language
• And hundreds of others

41 / 90

Markup Languages

Originally designed to be text based and therefore easily
debugged by sight, common usage of HTML and XML is so
complicated this is no longer possible

XML is being adopted everywhere for Web applications, often
without proper consideration of the alternatives, such as JSON

Also, increasingly it is being used to store information, which it
is very bad at

Use a database to store information!

If you ever have a project that uses an “XML database”, walk
away in disgust

42 / 90

Markup Languages

Originally designed to be text based and therefore easily
debugged by sight, common usage of HTML and XML is so
complicated this is no longer possible

XML is being adopted everywhere for Web applications, often
without proper consideration of the alternatives, such as JSON

Also, increasingly it is being used to store information, which it
is very bad at

Use a database to store information!

If you ever have a project that uses an “XML database”, walk
away in disgust

43 / 90

Markup Languages

Originally designed to be text based and therefore easily
debugged by sight, common usage of HTML and XML is so
complicated this is no longer possible

XML is being adopted everywhere for Web applications, often
without proper consideration of the alternatives, such as JSON

Also, increasingly it is being used to store information, which it
is very bad at

Use a database to store information!

If you ever have a project that uses an “XML database”, walk
away in disgust

44 / 90

Markup Languages

Originally designed to be text based and therefore easily
debugged by sight, common usage of HTML and XML is so
complicated this is no longer possible

XML is being adopted everywhere for Web applications, often
without proper consideration of the alternatives, such as JSON

Also, increasingly it is being used to store information, which it
is very bad at

Use a database to store information!

If you ever have a project that uses an “XML database”, walk
away in disgust

45 / 90

Markup Languages

Originally designed to be text based and therefore easily
debugged by sight, common usage of HTML and XML is so
complicated this is no longer possible

XML is being adopted everywhere for Web applications, often
without proper consideration of the alternatives, such as JSON

Also, increasingly it is being used to store information, which it
is very bad at

Use a database to store information!

If you ever have a project that uses an “XML database”, walk
away in disgust

46 / 90

Object Oriented Languages

Purpose: general programming

Examples: Java, C++, Objective C, Lisp, Perl, JavaScript,
Scala, . . .

Notable features: use of objects as a means to control
complexity

47 / 90

Object Oriented Languages
Feet

• C++: You accidentally create a dozen clones of yourself
and shoot them all in the foot. Emergency medical
assistance is impossible since you can’t tell which are
bitwise copies and which are just pointing at others and
saying, “That’s me, over there.”

• C++ (2): “C makes it easy to shoot yourself in the foot; C++
makes it harder, but when you do, it blows away your whole
leg” (Bjarne Stroustrup)

• “C++ is history repeated as tragedy. Java is history
repeated as farce” (Scott McKay)

48 / 90

Object Oriented Languages
Feet

• C++: You accidentally create a dozen clones of yourself
and shoot them all in the foot. Emergency medical
assistance is impossible since you can’t tell which are
bitwise copies and which are just pointing at others and
saying, “That’s me, over there.”

• C++ (2): “C makes it easy to shoot yourself in the foot; C++
makes it harder, but when you do, it blows away your whole
leg” (Bjarne Stroustrup)

• “C++ is history repeated as tragedy. Java is history
repeated as farce” (Scott McKay)

49 / 90

Object Oriented Languages
Feet

• C++: You accidentally create a dozen clones of yourself
and shoot them all in the foot. Emergency medical
assistance is impossible since you can’t tell which are
bitwise copies and which are just pointing at others and
saying, “That’s me, over there.”

• C++ (2): “C makes it easy to shoot yourself in the foot; C++
makes it harder, but when you do, it blows away your whole
leg” (Bjarne Stroustrup)

• “C++ is history repeated as tragedy. Java is history
repeated as farce” (Scott McKay)

50 / 90

Object Oriented Languages
Feet

• Objective C: You write a protocol for shooting yourself in
the foot so that all people can get shot in their feet

51 / 90

Other Classifications

We are going to look at OO in depth shortly, but there is more
to be said about language families before we move on

52 / 90

Other Classifications

There are many other classifications that cut across the families
we have described

Some more important than others

• Declarative and Imperative
• Parallel, Distributed
• GC and non-GC
• Strongly typed, weakly typed, statically typed, dynamically

typed and untyped
• Area of application: numeric, symbolic, business process,

graphical, database, . . .
• Interpreted and Compiled (byte code interpreted etc.)
• and so on

53 / 90

Other Classifications

There are many other classifications that cut across the families
we have described

Some more important than others

• Declarative and Imperative
• Parallel, Distributed
• GC and non-GC
• Strongly typed, weakly typed, statically typed, dynamically

typed and untyped
• Area of application: numeric, symbolic, business process,

graphical, database, . . .
• Interpreted and Compiled (byte code interpreted etc.)
• and so on

54 / 90

Other Classifications

There are many other classifications that cut across the families
we have described

Some more important than others

• Declarative and Imperative
• Parallel, Distributed
• GC and non-GC
• Strongly typed, weakly typed, statically typed, dynamically

typed and untyped
• Area of application: numeric, symbolic, business process,

graphical, database, . . .
• Interpreted and Compiled (byte code interpreted etc.)
• and so on

55 / 90

Declarative and Imperative

Imperative: the program is a list of the actions to be taken

Examples: C, Java, Lisp, Fortran, . . .

56 / 90

Declarative and Imperative

Declarative: the program is a description of the results we want

Examples: Prolog, ASP, Haskell (pattern matching),
Mathematica (pattern matching), SQL (the SQL engine must
find the best way of finding records that fit the query), . . .

57 / 90

Declarative and Imperative

• ASP: Answer Set Programming
• SQL: Structured Query Language

58 / 90

Declarative and Imperative
Feet

• Mathematica: You try to shoot yourself in the foot and then
have to figure out why it didn’t work

• Mathematica (2): Your code to shoot yourself in the foot
actually shoots someone else in the foot, but you think it
works because you still feel pain

• SQL: You cut your foot off, send it out to a service bureau
and when it returns, it has a hole in it but will no longer fit
the attachment at the end of your leg

59 / 90

Declarative and Imperative
Feet

• Mathematica: You try to shoot yourself in the foot and then
have to figure out why it didn’t work

• Mathematica (2): Your code to shoot yourself in the foot
actually shoots someone else in the foot, but you think it
works because you still feel pain

• SQL: You cut your foot off, send it out to a service bureau
and when it returns, it has a hole in it but will no longer fit
the attachment at the end of your leg

60 / 90

Declarative and Imperative
Feet

• Mathematica: You try to shoot yourself in the foot and then
have to figure out why it didn’t work

• Mathematica (2): Your code to shoot yourself in the foot
actually shoots someone else in the foot, but you think it
works because you still feel pain

• SQL: You cut your foot off, send it out to a service bureau
and when it returns, it has a hole in it but will no longer fit
the attachment at the end of your leg

61 / 90

Declarative and Imperative

Imperative languages are widely used

Purely declarative are fairly rare and specialist

SQL is hugely widely used (it’s in your browser; it’s in your
’phone!)

At a stretch, markup languages can be though of as declarative

Programmers have difficulty thinking in a declarative way,
unless the problem is already declarative

But declarative languages are naturally parallel as they don’t
describe sequences of operations

62 / 90

Declarative and Imperative

Imperative languages are widely used

Purely declarative are fairly rare and specialist

SQL is hugely widely used (it’s in your browser; it’s in your
’phone!)

At a stretch, markup languages can be though of as declarative

Programmers have difficulty thinking in a declarative way,
unless the problem is already declarative

But declarative languages are naturally parallel as they don’t
describe sequences of operations

63 / 90

Declarative and Imperative

Imperative languages are widely used

Purely declarative are fairly rare and specialist

SQL is hugely widely used (it’s in your browser; it’s in your
’phone!)

At a stretch, markup languages can be though of as declarative

Programmers have difficulty thinking in a declarative way,
unless the problem is already declarative

But declarative languages are naturally parallel as they don’t
describe sequences of operations

64 / 90

Declarative and Imperative

Imperative languages are widely used

Purely declarative are fairly rare and specialist

SQL is hugely widely used (it’s in your browser; it’s in your
’phone!)

At a stretch, markup languages can be though of as declarative

Programmers have difficulty thinking in a declarative way,
unless the problem is already declarative

But declarative languages are naturally parallel as they don’t
describe sequences of operations

65 / 90

Declarative and Imperative

Imperative languages are widely used

Purely declarative are fairly rare and specialist

SQL is hugely widely used (it’s in your browser; it’s in your
’phone!)

At a stretch, markup languages can be though of as declarative

Programmers have difficulty thinking in a declarative way,
unless the problem is already declarative

But declarative languages are naturally parallel as they don’t
describe sequences of operations

66 / 90

Declarative and Imperative

Imperative languages are widely used

Purely declarative are fairly rare and specialist

SQL is hugely widely used (it’s in your browser; it’s in your
’phone!)

At a stretch, markup languages can be though of as declarative

Programmers have difficulty thinking in a declarative way,
unless the problem is already declarative

But declarative languages are naturally parallel as they don’t
describe sequences of operations

67 / 90

Parallel

Parallel computers are becoming ever more important

Most programming languages were designed in a uniprocessor
world

Some languages families are naturally parallel

• Declarative
• Functional

As declarative languages don’t specify how to do something,
the system is free to do things in the most efficient way it can:
and this includes in parallel

68 / 90

Parallel

Parallel computers are becoming ever more important

Most programming languages were designed in a uniprocessor
world

Some languages families are naturally parallel

• Declarative
• Functional

As declarative languages don’t specify how to do something,
the system is free to do things in the most efficient way it can:
and this includes in parallel

69 / 90

Parallel

Parallel computers are becoming ever more important

Most programming languages were designed in a uniprocessor
world

Some languages families are naturally parallel

• Declarative
• Functional

As declarative languages don’t specify how to do something,
the system is free to do things in the most efficient way it can:
and this includes in parallel

70 / 90

Parallel

Parallel computers are becoming ever more important

Most programming languages were designed in a uniprocessor
world

Some languages families are naturally parallel

• Declarative
• Functional

As declarative languages don’t specify how to do something,
the system is free to do things in the most efficient way it can:
and this includes in parallel

71 / 90

Parallel

The nature of functional languages is such that it is relatively
easy to make parts run in parallel due to them having no global
state, so no possibility of unexpected interference between
different parts of the program

Unexpected interference is a major problem in parallel
programs

We all have had the experience of working on something with
other people where someone else changes something while
you are not looking, thereby messing up what you were trying
to do

Parallel programming is this a trillion times faster

Plus a lot of other less obvious problems

72 / 90

Parallel

The nature of functional languages is such that it is relatively
easy to make parts run in parallel due to them having no global
state, so no possibility of unexpected interference between
different parts of the program

Unexpected interference is a major problem in parallel
programs

We all have had the experience of working on something with
other people where someone else changes something while
you are not looking, thereby messing up what you were trying
to do

Parallel programming is this a trillion times faster

Plus a lot of other less obvious problems

73 / 90

Parallel

The nature of functional languages is such that it is relatively
easy to make parts run in parallel due to them having no global
state, so no possibility of unexpected interference between
different parts of the program

Unexpected interference is a major problem in parallel
programs

We all have had the experience of working on something with
other people where someone else changes something while
you are not looking, thereby messing up what you were trying
to do

Parallel programming is this a trillion times faster

Plus a lot of other less obvious problems

74 / 90

Parallel

The nature of functional languages is such that it is relatively
easy to make parts run in parallel due to them having no global
state, so no possibility of unexpected interference between
different parts of the program

Unexpected interference is a major problem in parallel
programs

We all have had the experience of working on something with
other people where someone else changes something while
you are not looking, thereby messing up what you were trying
to do

Parallel programming is this a trillion times faster

Plus a lot of other less obvious problems

75 / 90

Parallel

The nature of functional languages is such that it is relatively
easy to make parts run in parallel due to them having no global
state, so no possibility of unexpected interference between
different parts of the program

Unexpected interference is a major problem in parallel
programs

We all have had the experience of working on something with
other people where someone else changes something while
you are not looking, thereby messing up what you were trying
to do

Parallel programming is this a trillion times faster

Plus a lot of other less obvious problems

76 / 90

Parallel

There have been many attempt to take sequential languages
and tweak them to support parallelism

OpenMP is C with a few hints added, e.g., “do this block in
parallel”

CUDA is C lightly modified to make programming of GPU
(graphics) cards possible

OpenCL is C with a parallel library

All of these take advantage of the programmer’s familiarity with
the legacy language (often C)

Which may lure them into a false sense that they understand
what they are doing

77 / 90

Parallel

There have been many attempt to take sequential languages
and tweak them to support parallelism

OpenMP is C with a few hints added, e.g., “do this block in
parallel”

CUDA is C lightly modified to make programming of GPU
(graphics) cards possible

OpenCL is C with a parallel library

All of these take advantage of the programmer’s familiarity with
the legacy language (often C)

Which may lure them into a false sense that they understand
what they are doing

78 / 90

Parallel

There have been many attempt to take sequential languages
and tweak them to support parallelism

OpenMP is C with a few hints added, e.g., “do this block in
parallel”

CUDA is C lightly modified to make programming of GPU
(graphics) cards possible

OpenCL is C with a parallel library

All of these take advantage of the programmer’s familiarity with
the legacy language (often C)

Which may lure them into a false sense that they understand
what they are doing

79 / 90

Parallel

There have been many attempt to take sequential languages
and tweak them to support parallelism

OpenMP is C with a few hints added, e.g., “do this block in
parallel”

CUDA is C lightly modified to make programming of GPU
(graphics) cards possible

OpenCL is C with a parallel library

All of these take advantage of the programmer’s familiarity with
the legacy language (often C)

Which may lure them into a false sense that they understand
what they are doing

80 / 90

Parallel

There have been many attempt to take sequential languages
and tweak them to support parallelism

OpenMP is C with a few hints added, e.g., “do this block in
parallel”

CUDA is C lightly modified to make programming of GPU
(graphics) cards possible

OpenCL is C with a parallel library

All of these take advantage of the programmer’s familiarity with
the legacy language (often C)

Which may lure them into a false sense that they understand
what they are doing

81 / 90

Parallel

There have been many attempt to take sequential languages
and tweak them to support parallelism

OpenMP is C with a few hints added, e.g., “do this block in
parallel”

CUDA is C lightly modified to make programming of GPU
(graphics) cards possible

OpenCL is C with a parallel library

All of these take advantage of the programmer’s familiarity with
the legacy language (often C)

Which may lure them into a false sense that they understand
what they are doing

82 / 90

Parallel

Some languages are designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C

83 / 90

Parallel

Some languages are designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C

84 / 90

Parallel

Some languages are designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C

85 / 90

Parallel

Some languages are designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C

86 / 90

Parallel

Some languages are designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C

87 / 90

Parallel

Some languages are designed to be parallel from scratch

Occam (1993): derived from a mathematical notation for
parallel processes. Was going to be big, but the hardware of
the time couldn’t cope

Strand: declarative, derived from Prolog

Erlang: functional. Used in real applications

Go: intended to be a modern version of C, designed by the
designers of C. Also called Golang to aid search on the Web

Rust: designed to be a memory-safe replacement for C

88 / 90

Parallel
Feet

• Occam: You shoot both your feet with several guns at once
• Go: To shoot yourself in the foot you must first import the
unsafe package

• Rust: you try to shoot yourself in the foot, but you can’t as
the gun has immutably borrowed your foot

89 / 90

Parallel

And much more. There is a whole final-year Unit on parallelism!

90 / 90

