GC

Some languages have Garbage Collection, some don’t

1/214

GC

Some languages have Garbage Collection, some don’t
In code

bigclass x = new bigclass(1);
x = new bigclass(2);

or

(setq x (make <bigclass> 1))
(setq x (make <bigclass> 2))

the memory allocated to the new class 1 is no longer
accessible to the program

2/214

GC

Some languages have Garbage Collection, some don’t
In code

bigclass x = new bigclass(1);
x = new bigclass(2);

or

(setq x (make <bigclass> 1))
(setq x (make <bigclass> 2))

the memory allocated to the new class 1 is no longer
accessible to the program

It is garbage, so we need a garbage collector to search out
inaccessible memory and reclaim it for the system

3/214

GC

Languages with integral GC include Lisp, Haskell, Java, Perl

4/214

GC

Languages with integral GC include Lisp, Haskell, Java, Perl

Languages without integral GC include C, C++

5/214

GC

Languages with integral GC include Lisp, Haskell, Java, Perl
Languages without integral GC include C, C++

In languages without GC, if you drop all references to an object,
that’s the programmer’s problem

6/214

GC

Languages with integral GC include Lisp, Haskell, Java, Perl
Languages without integral GC include C, C++

In languages without GC, if you drop all references to an object,
that’s the programmer’s problem

The Java-like code above is also valid C++

7/214

GC

Languages with integral GC include Lisp, Haskell, Java, Perl
Languages without integral GC include C, C++

In languages without GC, if you drop all references to an object,
that’s the programmer’s problem

The Java-like code above is also valid C++

Thus it is buggy C++ with a memory leak

8/214

GC

A program with a memory leak will gradually use more and
more memory until the OS says it's had enough

9/214

GC

A program with a memory leak will gradually use more and
more memory until the OS says it's had enough

And then the program probably crashes as the programmer
only tested it on small examples

10/214

GC

A program with a memory leak will gradually use more and
more memory until the OS says it's had enough

And then the program probably crashes as the programmer
only tested it on small examples

In Java it is arguably not buggy, but it is definitely poor code as
it wastes time creating useless objects

11/214

GC

Code written in non-GC languages must be very careful on
their use of memory (e.g., use of malloc and free, or new and
delete)

12/214

GC

Code written in non-GC languages must be very careful on
their use of memory (e.g., use of malloc and free, or new and
delete)

Code written in GC languages can let the GC take care of
things

13/214

GC

Code written in non-GC languages must be very careful on
their use of memory (e.g., use of malloc and free, or new and
delete)

Code written in GC languages can let the GC take care of
things

GC: no memory worries, but generally less efficient and
encourages sloppy programming

14/214

GC

Code written in non-GC languages must be very careful on
their use of memory (e.g., use of malloc and free, or new and
delete)

Code written in GC languages can let the GC take care of
things

GC: no memory worries, but generally less efficient and
encourages sloppy programming

Non GC: allows accurate memory management, but also
encourages buggy programming

15/214

GC

A garbage collector can be added to C and C++ (etc.) as a
library

16/214

GC

A garbage collector can be added to C and C++ (etc.) as a
library

Not as precise as an in-built GC as it might miss occasional bits
of garbage

17/214

GC

A garbage collector can be added to C and C++ (etc.) as a
library

Not as precise as an in-built GC as it might miss occasional bits
of garbage

Is this the best of both worlds? Unclear

18/214

GC

A garbage collector can be added to C and C++ (etc.) as a
library

Not as precise as an in-built GC as it might miss occasional bits
of garbage

Is this the best of both worlds? Unclear

Better is to write correct code in the first place

19/214

GC

A garbage collector can be added to C and C++ (etc.) as a
library

Not as precise as an in-built GC as it might miss occasional bits
of garbage

Is this the best of both worlds? Unclear
Better is to write correct code in the first place

If Java had true garbage collection, most programs
would delete themselves upon execution
Robert Sewell

20/214

Types

We can classify according to how types are treated

21/214

Types

We can classify according to how types are treated

NB. Some vagueness over nomenclature in this area

22/214

Types

We can classify according to how types are treated
NB. Some vagueness over nomenclature in this area

Note we are not specifically talking about OO languages here

23/214

Types

We can classify according to how types are treated
NB. Some vagueness over nomenclature in this area
Note we are not specifically talking about OO languages here

Types and OO have an interesting relationship, but we shall
mostly talking about types as a separate concept from classes
or objects

24/214

Types

We can classify according to how types are treated
NB. Some vagueness over nomenclature in this area
Note we are not specifically talking about OO languages here

Types and OO have an interesting relationship, but we shall
mostly talking about types as a separate concept from classes
or objects

So the following applies to non-O0 languages like C

25/214

Types

Static typing: C, Haskell, Java, ...

26/214

Types

Static typing: C, Haskell, Java, ...

e expressions and types checked at compile time for
correctness

27/214

Types

Static typing: C, Haskell, Java, ...

e expressions and types checked at compile time for
correctness

e typed variables

28/214

Types

Static typing: C, Haskell, Java, ...

e expressions and types checked at compile time for
correctness
e typed variables

¢ the type of a value is determined by the type of the variable
it came from

29/214

Types

Static typing: C, Haskell, Java, ...

e expressions and types checked at compile time for
correctness
e typed variables

¢ the type of a value is determined by the type of the variable
it came from

Most modern languages have some element of static typing,
sometimes optionally (Maple, Common Lisp)

30/214

Types

Dynamic typing: Lisp, Perl, JavaScript, . ..

31/214

Types

Dynamic typing: Lisp, Perl, JavaScript, . ..

e expressions and types checked at run time

32/214

Types

Dynamic typing: Lisp, Perl, JavaScript, . ..

e expressions and types checked at run time
e untyped variables

33/214

Types

Dynamic typing: Lisp, Perl, JavaScript, . ..

e expressions and types checked at run time
e untyped variables

e values have intrinsic types independent of where they
come from

34/214

Types

Dynamic typing: Lisp, Perl, JavaScript, . ..

e expressions and types checked at run time
e untyped variables

e values have intrinsic types independent of where they
come from

Often scripting and prototyping languages are dynamically
typed

35/214

Types

Strong typing: (very vague) a thing has a definite type and no
implicit conversions between types

36/214

Types

Strong typing: (very vague) a thing has a definite type and no
implicit conversions between types

e expressions checked for type correctness at compile or
runtime

37/214

Types

Strong typing: (very vague) a thing has a definite type and no
implicit conversions between types

e expressions checked for type correctness at compile or
runtime

e little to no automatic type conversions, e.g., integer to
floating point

38/214

Types

Strong typing: (very vague) a thing has a definite type and no
implicit conversions between types

e expressions checked for type correctness at compile or
runtime

e little to no automatic type conversions, e.g., integer to
floating point

Python does no static checking, but does check types at
runtime

39/214

Types

Strong typing: (very vague) a thing has a definite type and no
implicit conversions between types

e expressions checked for type correctness at compile or
runtime

e little to no automatic type conversions, e.g., integer to
floating point

Python does no static checking, but does check types at
runtime

“Strong” seems to cover different ideas in different peoples’
minds, and possibly ought to be avoided as a concept

40/214

Types

Perhaps “strong” is better used as a comparator, e.g., “this
language is more strongly typed than that one”

41/214

Types

Perhaps “strong” is better used as a comparator, e.g., “this
language is more strongly typed than that one”

E.g., “Rust is more strongly typed than C”

42/214

Types

Perhaps “strong” is better used as a comparator, e.g., “this
language is more strongly typed than that one”

E.g., “Rust is more strongly typed than C”

Weak typing: not strongly typed

43/214

Types

Untyped: assembler, BCPL, Forth, ...

44/214

Types

Untyped: assembler, BCPL, Forth, ...

e up to the programmer how to interpret a value

45/214

Types

Untyped: assembler, BCPL, Forth, ...

e up to the programmer how to interpret a value
e all values are just presented as a machine byte or word

46/214

Types

Untyped: assembler, BCPL, Forth, ...

e up to the programmer how to interpret a value
e all values are just presented as a machine byte or word

Not much used as these days types are seen as an essential
aid to the programmer

47/214

Types

Untyped: assembler, BCPL, Forth, ...

e up to the programmer how to interpret a value
e all values are just presented as a machine byte or word

Not much used as these days types are seen as an essential
aid to the programmer

Though assembler is still more widely used than you might
expect

48/214

Types

Feet

e BCPL: You shoot yourself somewhere in the leg—you can’t
get any finer resolution than that

49/214

Types

Feet

e BCPL: You shoot yourself somewhere in the leg—you can’t
get any finer resolution than that

e Forth: Foot yourself in the shoot

50/214

Types

Orthogonal to the kinds of types is how a typed language
indicates its types

51/214

Types

Orthogonal to the kinds of types is how a typed language
indicates its types

Manifest Typing: where the program code includes the types of
variables, e.g., C

int inc(int n)
{

return n+1;

}

52/214

Types

Implicit Typing: where the compiler infers any types it needs (as
much as it can), e.g., Haskell

inc x =x + 1

which Haskell determines to be Num a => a -> a

53/214

Types

Implicit Typing: where the compiler infers any types it needs (as
much as it can), e.g., Haskell

inc x =x + 1
which Haskell determines to be Num a => a -> a

Quite often a statically typed, implicit typed language will also
have type variables

54/214

Types

Implicit Typing: where the compiler infers any types it needs (as
much as it can), e.g., Haskell

inc x =x + 1
which Haskell determines to be Num a => a -> a

Quite often a statically typed, implicit typed language will also
have type variables

And allow (or require, in ambiguous code) the programmer to
include type annotations

55/214

Types

But implicit typing is also used in dynamic languages, too, e.g.,
Lisp

(defun inc (n)
(+n 1))

56/214

Types

Comparing these kinds of types:

57/214

Types

Comparing these kinds of types:
e Dynamic: flexibility for the programmer, particularly in

prototyping where fast coding through few restrictions is
important

58/214

Types

Comparing these kinds of types:

e Dynamic: flexibility for the programmer, particularly in
prototyping where fast coding through few restrictions is
important

o Static: types checked at compile time, catching some bugs
in the source before the program is run

59/214

Types

Comparing these kinds of types:

e Dynamic: flexibility for the programmer, particularly in
prototyping where fast coding through few restrictions is
important

o Static: types checked at compile time, catching some bugs
in the source before the program is run

¢ Untyped: no type errors possible

60/214

Types

We can look at what each do when presented with code like
at+b

61/214

Types

We can look at what each do when presented with code like
at+b

e what a compiler needs to do

62/214

Types

We can look at what each do when presented with code like
at+b

e what a compiler needs to do
e what happens when the compiled program is running

63/214

Types

We can look at what each do when presented with code like
at+b

e what a compiler needs to do
e what happens when the compiled program is running

An interpreter would need to do both stages above while
executing

64/214

Types

A compiler for a dynamic language will need to output code that

checks if a is a number
checks if b is a number

if so call the appropriate add function

else does some coercions then adds; or just signals an
error, as appropriate

65/214

Types

At runtime this code will be executed

66/214

Types

At runtime this code will be executed

There must be a runtime check (in the absence of clever
optimisations)

67/214

Types

At runtime this code will be executed

There must be a runtime check (in the absence of clever
optimisations)

Thus a lot of checking overhead before actually doing the
expected operation

68/214

Types

Static. The compiler will determine the types of a and b and
output code for the appropriate add operation

69/214

Types

Static. The compiler will determine the types of a and b and
output code for the appropriate add operation

It does not need to include code to check the values of a and b
as they must be numbers

70/214

Types

Static. The compiler will determine the types of a and b and
output code for the appropriate add operation

It does not need to include code to check the values of a and b
as they must be numbers

At runtime this simple operation will be executed

71/214

Types

Static. The compiler will determine the types of a and b and
output code for the appropriate add operation

It does not need to include code to check the values of a and b
as they must be numbers

At runtime this simple operation will be executed

There’s no runtime check

72/214

Types

Untyped. The compiler will output code to add the values
(presumably an integer add) regardless of what the
programmer thinks they happen to be

73/214

Types

Untyped. The compiler will output code to add the values
(presumably an integer add) regardless of what the
programmer thinks they happen to be

At runtime this simple operation will be executed

74/214

Types

Untyped. The compiler will output code to add the values
(presumably an integer add) regardless of what the
programmer thinks they happen to be

At runtime this simple operation will be executed

There’s nothing to check!

75/214

Types

If I have a box marked “Socks” | don’t need to check what
comes out of it before | put them on my feet

76/214

Types

If I have a box marked “Socks” | don’t need to check what
comes out of it before | put them on my feet

If I have an unmarked box, | need to look at what | get, first

77/214

Types

In the case of OO method lookup we can also see significant
differences

78/214

Types

In the case of OO method lookup we can also see significant
differences

Suppose we have code a.foo ()

79/214

Types

Dynamic. The compiler will output code to determine the
current value of a, plus code to look up a method that matches
this, then code to call the method

80/214

Types

Dynamic. The compiler will output code to determine the
current value of a, plus code to look up a method that matches

this, then code to call the method

At runtime this complex code is executed

81/214

Types

Dynamic. The compiler will output code to determine the
current value of a, plus code to look up a method that matches
this, then code to call the method

At runtime this complex code is executed

Again, a lot of overhead before the method can be run

82/214

Types

Static. The compiler will determine the type of a, find the
appropriate method, and output code to directly call that
method

83/214

Types

Static. The compiler will determine the type of a, find the
appropriate method, and output code to directly call that
method

At runtime the code of the method is called directly (the lookup
has already been done by the compiler)

84/214

Types

Untyped. No OO possible!

85/214

Types

It seems that static is always faster to run and is therefore better

86/214

Types

It seems that static is always faster to run and is therefore better

But the hidden point in dynamic is “the current value of a”

87/214

Types

It seems that static is always faster to run and is therefore better
But the hidden point in dynamic is “the current value of a”

The type of the object held in a can vary at runtime, so the
appropriate method can vary at runtime

88/214

Types

It seems that static is always faster to run and is therefore better
But the hidden point in dynamic is “the current value of a”

The type of the object held in a can vary at runtime, so the
appropriate method can vary at runtime

The same piece of code might need a different method each
time you come to it

89/214

Types

It seems that static is always faster to run and is therefore better
But the hidden point in dynamic is “the current value of a”

The type of the object held in a can vary at runtime, so the
appropriate method can vary at runtime

The same piece of code might need a different method each
time you come to it

This is the essence of the flexibility of dynamic languages

90/214

Types

It seems that static is always faster to run and is therefore better
But the hidden point in dynamic is “the current value of a”

The type of the object held in a can vary at runtime, so the
appropriate method can vary at runtime

The same piece of code might need a different method each
time you come to it

This is the essence of the flexibility of dynamic languages

The cost is the speed

91/214

Types

Duck typing is a particular kind of dynamic: examples are
Python, JavaScript, Common Lisp, Ruby

92/214

Types

Duck typing is a particular kind of dynamic: examples are
Python, JavaScript, Common Lisp, Ruby

To evaluate a.foo () the interpreter/compiler examines the
current value of a to see if there is a foo method defined on it

and calls it if it find one

93/214

Types

Duck typing is a particular kind of dynamic: examples are
Python, JavaScript, Common Lisp, Ruby

To evaluate a.foo () the interpreter/compiler examines the
current value of a to see if there is a foo method defined on it
and calls it if it find one

It is a runtime error if no method is found

94/214

Types

Duck typing is a particular kind of dynamic: examples are
Python, JavaScript, Common Lisp, Ruby

To evaluate a.foo () the interpreter/compiler examines the
current value of a to see if there is a foo method defined on it
and calls it if it find one

It is a runtime error if no method is found

The same line of code may or may not work depending on the
current value of al

95/214

Types

Duck typing is a particular kind of dynamic: examples are
Python, JavaScript, Common Lisp, Ruby

To evaluate a.foo () the interpreter/compiler examines the
current value of a to see if there is a foo method defined on it
and calls it if it find one

It is a runtime error if no method is found

The same line of code may or may not work depending on the
current value of al

“If it walks like a duck and talks like a duck, then it is a duck”

96/214

Types

Exercise. Consider the Python

def twolO(n):
for i in range(10):
n = 2%n
return n

twol10(1)
twol0("1")

97/214

Types

e Manifest: allows for a simpler compiler as it doesn’t have to
work so hard. Requires the programmer to think explicitly
about the types. For example, Rust requires type
annotations on function declarations, even though it is
mostly implicit and could infer the types itself: the language
designers thought that it would be good practice to get the
programmer thinking

98/214

Types

e Manifest: allows for a simpler compiler as it doesn’t have to
work so hard. Requires the programmer to think explicitly
about the types. For example, Rust requires type
annotations on function declarations, even though it is
mostly implicit and could infer the types itself: the language
designers thought that it would be good practice to get the
programmer thinking

e Implicit: allows for simpler code, but (in dynamic
languages) also allows for more trivial type errors

99/214

Types

Types are often further divided:

100/214

Types

Types are often further divided:

e Monomorphic/Lexical: types are determined by the
variables and checked by comparing variable names

int f(int x) { ... x ... }

101/214

Types

Types are often further divided:

e Monomorphic/Lexical: types are determined by the
variables and checked by comparing variable names

int f(int x) { ... x ... }

e Polymorphic: types are identified by variables and by type
schema using type variables

cons: a * [a] —> [a]

Type inference is needed here

102/214

Types

Many people separate the ideas of polymorphic and
overloading

103/214

Types

Many people separate the ideas of polymorphic and
overloading

Overloading
Some languages (e.g., C++, not C) allow:

int f(int x) { return -x; }
double f(double x) { return 2.0*x; }

104/214

Types

Many people separate the ideas of polymorphic and
overloading

Overloading
Some languages (e.g., C++, not C) allow:

int f(int x) { return -x; }
double f(double x) { return 2.0*x; }

Multiple different functions with the same name. The compiler
can distinguish which we mean by the argument types

105/214

Types

Many people separate the ideas of polymorphic and
overloading

Overloading
Some languages (e.g., C++, not C) allow:

int f(int x) { return -x; }
double f(double x) { return 2.0*x; }

Multiple different functions with the same name. The compiler
can distinguish which we mean by the argument types

Different chunks of code are compiled for each function

106/214

Types

Many people separate the ideas of polymorphic and
overloading

Overloading
Some languages (e.g., C++, not C) allow:

int f(int x) { return -x; }
double f(double x) { return 2.0*x; }

Multiple different functions with the same name. The compiler
can distinguish which we mean by the argument types

Different chunks of code are compiled for each function

The function bodies can be completely different: it's almost
incidental that the functions have the same name

107/214

Types

£ (2) is compiled as a call to the first
£(2.0) is compiled as a call to the second

108/214

Types

£ (2) is compiled as a call to the first
£(2.0) is compiled as a call to the second

In fact, typically the compiler internally renames (“name
mangling”) the two functions as (something like) £_int and
f_double, so giving them distinct names

109/214

Types

£ (2) is compiled as a call to the first
£(2.0) is compiled as a call to the second

In fact, typically the compiler internally renames (“name
mangling”) the two functions as (something like) £_int and
f_double, so giving them distinct names

f(2) is compiled as £ _int(2)
£(2.0) is compiled as f_double(2.0)

110/214

Types

£ (2) is compiled as a call to the first
£(2.0) is compiled as a call to the second

In fact, typically the compiler internally renames (“name
mangling”) the two functions as (something like) £_int and
f_double, so giving them distinct names

f(2) is compiled as £ _int(2)
£(2.0) is compiled as f_double(2.0)

Overloading is very widespread and appears (in a limited way)
in lots of languages: common functions like + are often
overloaded

111/214

Types

Polymorphic
cons Xy = X:y

The same function code works on many types

112/214

Types

Polymorphic
cons Xy = X:y
The same function code works on many types

There is just one chunk of code that works on multiple types

113/214

Types

Polymorphic

cons x y = x:y

The same function code works on many types

There is just one chunk of code that works on multiple types

cons 1 [2] runsthe same code as cons 1.0 [2.0]

114/214

Types

Polymorphic

cons x y = x:y

The same function code works on many types

There is just one chunk of code that works on multiple types
cons 1 [2] runsthe same code as cons 1.0 [2.0]

cons doesn’t care about the types of its arguments

115/214

Types

Beware of overloading disguised as polymorphism:

template <class T> // T is a type variable
T £(T x) { return -x; }

. £(2)

. £(2.0)

in C++
fn £f<T>(x: T) > T

where T: Neg<Output=T> { // T implements negation
-X

}

. £(2)

. £(2.0)
in Rust

116/214

Types
The programmer writes out the same source code for a function

that will work on many types: superficially this looks like
polymorphism

117/214

Types

The programmer writes out the same source code for a function
that will work on many types: superficially this looks like
polymorphism

Here, the compiler also rewrites the code for the individual int
and double versions and compiles those (or does the
equivalent)

118/214

Types

The programmer writes out the same source code for a function
that will work on many types: superficially this looks like
polymorphism

Here, the compiler also rewrites the code for the individual int
and double versions and compiles those (or does the
equivalent)

int f(int x) { return -x; }
double f(double x) { return -x; }

This is called monomorphization: replacing something
apparently polymorphic with multiple monomorphic bits of code

119/214

Types

The programmer writes out the same source code for a function
that will work on many types: superficially this looks like
polymorphism

Here, the compiler also rewrites the code for the individual int
and double versions and compiles those (or does the
equivalent)

int f(int x) { return -x; }
double f(double x) { return -x; }

This is called monomorphization: replacing something
apparently polymorphic with multiple monomorphic bits of code

This is actually overloading as the underlying code to negate an
integer is different from the code to negate a floating point value

120/214

Types

Be aware that some people classify overloading as a particular
kind of polymorphism, even though overloading uses different
pieces of code for each type

121/214

Types

Be aware that some people classify overloading as a particular
kind of polymorphism, even though overloading uses different

pieces of code for each type

They sometimes call it ad hoc polymorphism, in contrast with
true polymorphism, parametric polymorphism

122/214

Types

Note that polymorphism and overloading are not reliant on OO:
in fact they both predate OO

123/214

Types

Note that polymorphism and overloading are not reliant on OO:
in fact they both predate OO

A large number of languages overload the arithmetic functions
like + and *

124/214

Types

Note that polymorphism and overloading are not reliant on OO:

in fact they both predate OO

A large number of languages overload the arithmetic functions
like + and *

Lisp has function polymorphism (cons, length, etc.)

125/214

Types

Note that polymorphism and overloading are not reliant on OO:

in fact they both predate OO

A large number of languages overload the arithmetic functions
like + and *

Lisp has function polymorphism (cons, length, etc.)

Also note that method overriding is merely an example of
overloading

126/214

Types Conclusion

These days types are considered to be an essential part of a
language

127/214

Types Conclusion

These days types are considered to be an essential part of a
language

And so appear in many different kinds of ways

128/214

Types Conclusion

These days types are considered to be an essential part of a
language

And so appear in many different kinds of ways

They are intended to reduce errors, or find errors more quickly

129/214

Types Conclusion

These days types are considered to be an essential part of a
language

And so appear in many different kinds of ways
They are intended to reduce errors, or find errors more quickly

Even in early untyped languages there was a recommendation
that the intended type of a value be reflected in the name of a
variable

130/214

Types Conclusion

These days types are considered to be an essential part of a
language

And so appear in many different kinds of ways
They are intended to reduce errors, or find errors more quickly

Even in early untyped languages there was a recommendation
that the intended type of a value be reflected in the name of a
variable

ilndex, fSalary. See Hungarian notation

131/214

Types Conclusion

There are many places to check for errors

132/214

Types Conclusion
There are many places to check for errors

e compile time: mostly type errors

133/214

Types Conclusion
There are many places to check for errors

e compile time: mostly type errors
e run time: e.g., division by 0, null pointers

134/214

Types Conclusion
There are many places to check for errors

e compile time: mostly type errors
e run time: e.g., division by 0, null pointers

The Rust type system is so strong it can check for null pointers
at compile time and so can avoid this kind of run time error

135/214

Types Conclusion
There are many places to check for errors

e compile time: mostly type errors
e run time: e.g., division by 0, null pointers

The Rust type system is so strong it can check for null pointers
at compile time and so can avoid this kind of run time error

Haskell has no (explicit) pointers, and avoids this, too

136/214

Types Conclusion
There are many places to check for errors

e compile time: mostly type errors
e run time: e.g., division by 0, null pointers

The Rust type system is so strong it can check for null pointers
at compile time and so can avoid this kind of run time error

Haskell has no (explicit) pointers, and avoids this, too

Java has no explicit pointers, but still manages to get null
pointer exceptions

137/214

Types Conclusion
There are many places to check for errors

e compile time: mostly type errors
e run time: e.g., division by 0, null pointers

The Rust type system is so strong it can check for null pointers
at compile time and so can avoid this kind of run time error

Haskell has no (explicit) pointers, and avoids this, too

Java has no explicit pointers, but still manages to get null
pointer exceptions

| don’t think there could reasonably be a language that checks
for O division at compile time!

138/214

Types Conclusion

There are other places for errors we often forget about

139/214

Types Conclusion

There are other places for errors we often forget about

e link time, load time: making sure libraries are present and
correctly called

140/214

Types Conclusion

There are other places for errors we often forget about

e link time, load time: making sure libraries are present and
correctly called

e coding time: getting it right in the first place

141/214

Types Conclusion

“Strong types are for weak minds”
Anon.

142/214

Evaluation

Next: different ways values are passed into function calls

143/214

Evaluation

Next: different ways values are passed into function calls
You might think that when you see a function call like

int f(int p, int @) { ...p...q... }

2 = £(xty, xy);

you understand what is happening!

144/214

Evaluation
Call by Value

In most languages you are familiar with you expect it to:

145/214

Evaluation
Call by Value

In most languages you are familiar with you expect it to:

e evaluate the x+y and the x-y (in some order. . .)

146/214

Evaluation
Call by Value

In most languages you are familiar with you expect it to:

e evaluate the x+y and the x-y (in some order. . .)

e pass those values into f as the values of its parameters p
and q

147/214

Evaluation
Call by Value

In most languages you are familiar with you expect it to:

e evaluate the x+y and the x-y (in some order. . .)

e pass those values into f as the values of its parameters p
and q

This is call by value, where the values of the expressions are
passed to the function call

148/214

Evaluation
Call by Value

This is so very common that everyone thinks this is how it is
always done

149/214

Evaluation
Call by Value

This is so very common that everyone thinks this is how it is
always done

And computer hardware is built in the expectation this is how it
is done (stacks, etc.)

150/214

Evaluation
Call by Value

This is so very common that everyone thinks this is how it is
always done

And computer hardware is built in the expectation this is how it
is done (stacks, etc.)

Example. C. And most others

151/214

Evaluation

Call by Reference

In C++ we can write

void inc(int &n)

{

n++;
}
int m = 1;

inc(m) ;

and the value of m is incremented

152/214

Evaluation

Call by Reference

In C++ we can write

void inc(int &n)

{

n++;

}

int m = 1;
inc(m) ;

and the value of m is incremented

The argument declaration is read as “int reference n”

153/214

Evaluation

Call by Reference

This is a call by reference

154/214

Evaluation
Call by Reference

This is a call by reference

It's not the value of m that gets passed into the function, but a
reference to the variable m

155/214

Evaluation
Call by Reference

This is a call by reference

It's not the value of m that gets passed into the function, but a
reference to the variable m

Meaning, within the function, operations on n are “really”
operations on m

156/214

Evaluation
Call by Reference

This is a call by reference

It's not the value of m that gets passed into the function, but a
reference to the variable m

Meaning, within the function, operations on n are “really”
operations on m

Call by reference passes in the variables, not their values

157/214

Evaluation
Call by Reference

C++ allows both call by value and call by reference

158/214

Evaluation
Call by Reference

C++ allows both call by value and call by reference

Call by reference allows simple looking code like the above that
manipulates variables out of the scope of the function body

159/214

Evaluation
Call by Reference

C++ allows both call by value and call by reference

Call by reference allows simple looking code like the above that
manipulates variables out of the scope of the function body

Used wisely, it makes for simpler code, potentially more efficient
when than call by value, when those values are large structures

160/214

Evaluation
Call by Reference

C++ allows both call by value and call by reference

Call by reference allows simple looking code like the above that
manipulates variables out of the scope of the function body

Used wisely, it makes for simpler code, potentially more efficient
when than call by value, when those values are large structures

Used unwisely, it is a source of subtle bugs

161/214

Evaluation
Call by Reference

In the example above calling
inc(a[3]);

is fine as a[3] refers to a memory location; now n in the
function is simply a reference to a[3]

162/214

Evaluation
Call by Reference

In the example above calling
inc(a[3]);

is fine as a[3] refers to a memory location; now n in the
function is simply a reference to a[3]

But
inc (2*m) ;

is a bug, and will not compile!

163/214

Evaluation

Call by Reference

Note that in C and other languages we can use pointers

void inc(int *n)

{

*n++;
}
int m;
inc(&m) ;

will update the value of m

164/214

Evaluation
Call by Reference

This looks like call by reference, but C is purely call by value

165/214

Evaluation
Call by Reference

This looks like call by reference, but C is purely call by value

It’s just that the value is a reference!

166/214

Evaluation
Call by Reference

This looks like call by reference, but C is purely call by value
It’s just that the value is a reference!

Exercise. Using & in the function declaration in C++ is a hint on
how C++ implements call by reference. Read about this

167/214

Evaluation
Call by Name

Call by name takes this a bit further, lifting the restriction that
the arguments are variables

168/214

Evaluation
Call by Name

Call by name takes this a bit further, lifting the restriction that
the arguments are variables

For example the function

integer procedure sumsq(n, m)
integer n, m;
begin

sumsq := (n + m)*(n + m);
end;

that squares the sum of the arguments

169/214

Evaluation
Call by Name

Then

sumsq(x+1, y+2)

is evaluated as

((x+1) + (y+2)) * ((x+1) + (y+2))

i.e., the whole expressions in the call are substituted in the
function body, which is then evaluated

170/214

Evaluation
Call by Name

Then

sumsq(x+1, y+2)

is evaluated as

((x+1) + (y+2)) * ((x+1) + (y+2))

i.e., the whole expressions in the call are substituted in the
function body, which is then evaluated

Exercise. Compare with inlining code

171/214

Evaluation
Call by Name
Care is taken over name clashes so that local variables in the
function body will never coincide with variables passed in

172/214

Evaluation
Call by Name
Care is taken over name clashes so that local variables in the
function body will never coincide with variables passed in

integer procedure foo(n)
integer n;
begin integer m;
m := 1;
foo = n + m;
end;

173/214

Evaluation
Call by Name
Care is taken over name clashes so that local variables in the
function body will never coincide with variables passed in

integer procedure foo(n)
integer n;
begin integer m;
m := 1;
foo = n + m;
end;

And then foo(m + 1) is not evaluated as
begin integer m;
m := 1;

foo := (m + 1) + m;
end;

as there is inadvertent capture of the global m by the local m

174/214

Evaluation
Call by Name

Rather, something more like

begin integer m001;

m001 := 1;
foo := (m + 1) + m001;
end;

where the local m is renamed

175/214

Evaluation
Call by Name

Rather, something more like

begin integer m001;

m001 := 1;
foo := (m + 1) + m001;
end;

where the local m is renamed

Example. Algol 60

176/214

Evaluation
Call by Name

Rather, something more like

begin integer m001;

m001 := 1;
foo := (m + 1) + m001;
end;

where the local m is renamed
Example. Algol 60

Exercise. Read about Jensen’s Device

177/214

Evaluation
Call by Name

This is an interesting evaluation strategy that is sometimes
more efficient than call by value:

integer procedure k(x, y)
integer x, y;
begin
k := x;
end

n = k(1+1, 1+2+3+4+5+6+7);

178/214

Evaluation
Call by Name

This is an interesting evaluation strategy that is sometimes
more efficient than call by value:

integer procedure k(x, y)
integer x, y;
begin
k := x;
end

n = k(1+1, 1+2+3+4+5+6+7);

Here the second argument is not used in the function body, so

will not be substituted in, and therefore not evaluated

179/214

Evaluation
Call by Name

This is an interesting evaluation strategy that is sometimes
more efficient than call by value:

integer procedure k(x, y)
integer x, y;
begin
k := x;
end

n = k(1+1, 1+2+3+4+5+6+7);

Here the second argument is not used in the function body, so
will not be substituted in, and therefore not evaluated

(Note: of the millions of functions | have written, only
vanishingly few of them have had unused arguments. . .)

180/214

Evaluation
Call by Name

On the other hand, the call by name substitution mechanism is
usually quite expensive, so we don’t often win overall

181/214

Evaluation
Call by Name

On the other hand, the call by name substitution mechanism is
usually quite expensive, so we don’t often win overall

And in the example above, the x+1 and y+2 are both evaluated
twice, less efficient than a call by value

182/214

Evaluation
Call by Name

On the other hand, the call by name substitution mechanism is
usually quite expensive, so we don’t often win overall

And in the example above, the x+1 and y+2 are both evaluated
twice, less efficient than a call by value

Algol 60 also allows call by value, for this reason

183/214

Evaluation
Call by Name

On the other hand, the call by name substitution mechanism is
usually quite expensive, so we don’t often win overall

And in the example above, the x+1 and y+2 are both evaluated
twice, less efficient than a call by value

Algol 60 also allows call by value, for this reason

Exercise. Compare with non-strict evaluation

184/214

Evaluation
Call by Need

Call by need, also called lazy evaluation

185/214

Evaluation
Call by Need

Call by need, also called lazy evaluation

A form of call by name that tries to get closer to the efficiency of
call by value, where you only evaluate a given argument once

186/214

Evaluation
Call by Need

Call by need, also called lazy evaluation

A form of call by name that tries to get closer to the efficiency of
call by value, where you only evaluate a given argument once

Now
sumsq(x+1, y+2)

would evaluate as call by name, but now the x+1 and the y+2
are only evaluated at most once each

187/214

Evaluation
Call by Need

The argument evaluations are memoised, i.e., remembered, so
when the same expression is seen again (within the function
body), the previously computed valued can simply be reused

188/214

Evaluation
Call by Need

The argument evaluations are memoised, i.e., remembered, so
when the same expression is seen again (within the function
body), the previously computed valued can simply be reused

The trade-off here is single evaluation of the arguments against
a more complicated evaluation mechanism

189/214

Evaluation
Call by Need

The argument evaluations are memoised, i.e., remembered, so
when the same expression is seen again (within the function
body), the previously computed valued can simply be reused

The trade-off here is single evaluation of the arguments against
a more complicated evaluation mechanism

Example. Haskell

190/214

Evaluation
Call by Need

Proponents of languages like Haskell claim the compiler can
analyse the code, spot the actual use of an expression, and
compile it in “the normal way” so avoiding the cost of lazy and

memoisation

191/214

Evaluation
Call by Need

Proponents of languages like Haskell claim the compiler can
analyse the code, spot the actual use of an expression, and
compile it in “the normal way” so avoiding the cost of lazy and
memoisation

This is true, if the compiler is good enough

192/214

Evaluation
Call by Need

Proponents of languages like Haskell claim the compiler can
analyse the code, spot the actual use of an expression, and
compile it in “the normal way” so avoiding the cost of lazy and
memoisation

This is true, if the compiler is good enough

There has been a long history of language design predicated
on the future existence of a “sufficiently clever compiler”

193/214

Evaluation
Call by Need

Proponents of languages like Haskell claim the compiler can
analyse the code, spot the actual use of an expression, and
compile it in “the normal way” so avoiding the cost of lazy and
memoisation

This is true, if the compiler is good enough

There has been a long history of language design predicated
on the future existence of a “sufficiently clever compiler”

Mostly, that compiler was never created

194/214

Evaluation
Call by Need

Proponents of languages like Haskell claim the compiler can
analyse the code, spot the actual use of an expression, and
compile it in “the normal way” so avoiding the cost of lazy and
memoisation

This is true, if the compiler is good enough

There has been a long history of language design predicated
on the future existence of a “sufficiently clever compiler”

Mostly, that compiler was never created

Perhaps, in the last couple of years, such compilers are just
about beginning to appear

195/214

Evaluation

Examples. Suppose we have

struct Big {

int stuff[1000];
int things[1000];
};

This structure might occupy 8000 bytes

196/214

Evaluation

Examples. Suppose we have

struct Big {

int stuff[1000];
int things[1000];
};

This structure might occupy 8000 bytes

(Be careful about saying “a big value”: if you have int n =
100000000; then the value of n is big, but the variable n
occupies maybe just 4 bytes)

197/214

Evaluation

Then for struct Big b = ... we get

call by value

foo(b) ; slow, copies 8000 bytes of b into the function
bar (&b) ; fast, copies 8 (perhaps) bytes of pointer into the
function

198/214

Evaluation

call by reference
foo(b) ; fast, copies 8 bytes of reference to b (a pointer) into
the function

199/214

Evaluation

call by name
foo(b) ; expression b is substituted into function; cost likely
high without a good optimiser

200/214

Evaluation

call by need
foo(b) ; as call by name, but with extra cost of the
memoisation check

201/214

Evaluation

Exercise. Many other evaluation strategies have been thought
about. Read about them

Exercise. Is Java call by value or call by reference? Explain.

202/214

Evaluation

Exercise.

func foo(n) {
if (n < 2) { return 1; }
return n*xfoo(n-1);

}

Trace the evaluation of this function in a call by need language

203/214

Application

In contrast to the “generic” languages, several applications
areas have languages specifically designed for that area

204/214

Application

In contrast to the “generic” languages, several applications
areas have languages specifically designed for that area

Maple: maths. The basic datatypes are numbers, polynomials,
matrices, functions (trig, exp, etc.) and the like. The basic
operations are arithmetics of all these things, integration,
differentiation, and so on

205/214

Application

expand ((x+1)~100) ;
100 929 98 97 96 95

1+ x

+

+

+

+

+

+

+

+

+ 100 x + 4950 x + 161700 x + 39212256 x + 75287520 x

94 93 92 91
1192052400 x + 16007560800 x + 186087894300 x + 1902231808400 x

90 89 88
17310309456440 x + 141629804643600 x + 1050421051106700 x

87 86 85
7110542499799200 x + 44186942677323600 x + 253338471349988640 x

84 83
1345860629046814650 x + 6650134872937201800 x

82 81
30664510802988208300 x + 132341572939212267400 x

80 79
535983370403809682970 x + 2041841411062132125600 x

78 7
7332066885177656269200 x + 24865270306254660391200 x

76 75
79776075565900368755100 x + 242519269720337121015504 x

206/214

Application

Cobol: business. Data on employees, payroll and so on

207/214

Application

Cobol: business. Data on employees, payroll and so on

Fortran: numerical computation. Numbers and almost nothing
else

208/214

Application

Visual Basic: interfaces, teaching

209/214

Application

Visual Basic: interfaces, teaching

Postscript and its compact cousin, PDF: printing and display

210/214

Application

Visual Basic: interfaces, teaching
Postscript and its compact cousin, PDF: printing and display

Cisco 10S (Internetwork Operating System): Network hardware

211/214

Application

Visual Basic: interfaces, teaching
Postscript and its compact cousin, PDF: printing and display
Cisco 10S (Internetwork Operating System): Network hardware

Actionscript (derived from JavaScript): Flash Player

212/214

Application

Visual Basic: interfaces, teaching

Postscript and its compact cousin, PDF: printing and display
Cisco 10S (Internetwork Operating System): Network hardware
Actionscript (derived from JavaScript): Flash Player

And so on

213/214

Application

Visual Basic: interfaces, teaching

Postscript and its compact cousin, PDF: printing and display
Cisco 10S (Internetwork Operating System): Network hardware
Actionscript (derived from JavaScript): Flash Player

And so on

It is so easy to create new language these days, people rarely
stop to consider whether they should: is there an existing
language that would suit this application well?

214/214

Application

Exercise. Go, Rust and Apple Swift are new languages
presently being developed. Look at them and decide what is
new and different in each language (if anything)

215/214

